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Abstract

In this position paper, we motivate and summarize our
work on repeatably generating cryptographic keys from
spoken user input. The goal of this work is to enable a
device to generate a key (e.g., for encrypting files) upon
its user speaking a chosen password (or passphrase) to
it. An attacker who captures the device and extracts all
information it contains, however, should be unable to de-
termine this key. We outline our approach for achieving
this goal and present preliminary empirical results for it.
We also describe several directions for future work.

1. Introduction

In computer security parlance, a reference monitor is an
abstract machine that mediates all accesses to objects by
subjects in a computer system (e.g., [5]). The speech pro-
cessing community has made significant progress in im-
plementing speech-based reference monitors to mediate
access by humans to computer resources. These refer-
ence monitors are typically implemented using speaker
authentication technologies including automatic speaker
verification (SV) [1] and verbal information verification
(VIV) [8]. SV is the process of verifying whether an
unknown speaker is the person as claimed. VIV is the
process of verifying spoken utterances against the infor-
mation stored in a given personal data profile. Though
there are many differences in the performance of these
approaches in various scenarios, to a first approximation,
all of these can be viewed as a replacement for typed
passwords to authenticate a user and determine whether
the user should be allowed to access a resource. They
are particularly convenient for use in applications where
speech is the natural human-device interface.

There are several scenarios, however, in which re-
liance on a non-bypassable reference monitor to protect
data is simply not possible. One common example is
when data is stored on a portable device (e.g., laptop com-
puter) that may be stolen. Once stolen, the thief may
examine the disk byte-by-byte, bypassing any reference
monitor that was intended to protect it (which is typically
implemented as part of the file system).

For such cases, cryptography is often used to remove
the need for a non-bypassable reference monitor. Cryp-
tography can be used to encode data so that it is rendered

unintelligible to other than the intended recipients of it (a
property referred to as data confidentiality). Similarly, it
can be used to encode data so that any modification of it
by unintended parties can be detected (data authenticity).
In this way, an attacker who captures the encoded data—
which is presumed possible since a non-bypassable refer-
ence monitor cannot be implemented—can nevertheless
not make sense of the data or modify it in an undetectable
way. (The attacker can, however, destroy the data, and for
this reason at least, cryptography is not a fully adequate
replacement for a reference monitor.)

The ability to decode encrypted data to make it intel-
ligible, or to encode data in a way that makes it appear
authentic, requires the possession of a secret value called
a key that must be given as input to the cryptographic al-
gorithm. In order for a cryptographic algorithm to ac-
complish its goals, keys must have at least the following
properties:

1. Keys must be unguessable, in the sense that any
effort that would enable the key to be discovered
must be deemed outside the abilities of the pre-
sumed attacker. This implies that a key must be
drawn from a distribution with sufficient entropy
to render it computationally infeasible to exhaus-
tively search (or otherwise to prevent the attacker
from confirming a guess at the key, though this is
typically much harder). In addition, the key must
remain computationally infeasible to find in light
of all the information the attacker is able to gather
about it.

2. Keys must be reproducible by intended parties when
needed to perform cryptographic operations. Since
each cryptographic encoding has a corresponding
decoding action, and since at least one of these two
(and often both) require possession of the secret
key, typically the key will need to be reproduced
spatially or temporally. For example, a key may
need to exist at two different computers simultane-
ously (a spatial reproduction) if they are interacting
in a cryptographic communication protocol. A key
may need to exist in the same computer at different
times (a temporal reproduction), but not in the in-
tervening period, if the key is used to encrypt and
decrypt files on the computer.



2. Voice-generated cryptographic keys

In this paper, we advocate research into the generation of
cryptographic keys from voice input. We are primarily
interested in keys that can be temporally reproduced on
the same device from the same user’s voice, and that are
unguessable to an attacker who captures that device. This
appears to be a harder problem than building a speech-
based reference monitor, since a solution to our problem
can be used to build a reference monitor directly: the ref-
erence monitor would take the cryptographic key derived
from the voice signal as input, and compare it to what the
key was supposed to be (just as a password-based login
program does).

The goal of unguessability precludes perhaps the most
natural approach to deriving a repeatable key from a spo-
ken utterance: i.e., apply automatic speech recognition
to recognize the password spoken, and then simply use
the password as a cryptographic key. Specifically, mod-
ern ASR tools suitable for our goals can reliably recog-
nize a vocabulary of at most about 104 words under the
best circumstances. A key drawn from such a small space
can, of course, be easily searched by an automated attack.
Moreover, requiring the user to create her password by
appending several words from the vocabulary taxes the
user’s memory and yields marginal improvement in en-
tropy, as experience with PINs has demonstrated. In con-
trast, to achieve unguessability, it is necessary to draw
entropy from how the user speaks a password.

To be entirely clear, a solution to our problem would
look as follows. The user would utter a password (or
passphrase) to her device when prompted to do so. Us-
ing the voice input, the device would generate a sequence
of bits (the key). Repeated utterance of the same pass-
word by the same user should regenerate the same key.
However, an attacker who captures and dissects the de-
vice should be posed with a computationally infeasible
task to recover that key. Ideally, the key should resist dis-
covery even if the attacker knows the password, but even
a solution relying on the secrecy of the password would
have significant practical utility.

It is important to note that text dependent or speaker
dependent models used for speaker verification—as are
typical in the implementation of speech-based reference
monitors—may leak significant information to an attacker
who captures and dissects the device on which the model
is stored. In the case of a password that is secret, a text
dependent model can obviously leak information about
what that password is. And, a speaker dependent model
will generally leak information about the user’s relevant
voice features. Consequently, the device must generate
a speaker dependent cryptographic key from a speaker’s
voice characteristics without referring to any text depen-
dent or speaker dependent model. To our knowledge, this
is a new challenge to speaker recognition research.

Based on this description, it should be clear that while

false negatives is an appropriate measure for key repro-
ducibility, false positives is perhaps not the most relevant
measure for the security (i.e., unguessability) of such a
system. False positives does not fully capture the diffi-
culty of the problem posed to the attacker who captures
the device. Rather, measures typical in the cryptographic
literature are more suitable to reasoning about the secu-
rity of such a system. We describe one such measure and
its use in our empirical evaluation in Section 3.3, though
for completeness, we also report false positives.

3. Initial research

There have been a few prior efforts to generate crypto-
graphic keys from various types of biometric data [15,
3, 7, 12], though none with particular attention to voice.
In [11], we describe our initial efforts at adapting the
approach of [12] to the problem of generating a crypto-
graphic key from a vocalized password. The work of [12]
described a way of generating a hardened password, the
entropy of which was drawn from both the secrecy of the
typed password and the user’s keystroke patterns (dura-
tions of keystrokes, latencies between keystrokes) while
typing it. In Section 3.1 we outline the pertinent aspects
of this preceding work, and then we summarize our ef-
forts to extend this work to the voice case in Section 3.2.
A brief empirical evaluation of these efforts is presented
in Section 3.3.

3.1. Cryptographic key generation from biometrics

A biometric measurement can be summarized as a col-
lection of features �1; : : : ; �n. For example, if keystroke
timings are the biometric of interest, �1 might denote the
duration of the first keystroke, �2 the latency between the
first and second keystrokes, and so forth. The approach
of [12] for generating a cryptographic key from biomet-
rics requires that there be a way of mapping�1; : : : ; �n to
anm-bit feature descriptor. Continuing with the keystroke
example, the i-th bit b(i) of feature descriptor b might be
obtained by comparing�1 to a fixed threshold and assign-
ing b(i) to be 0 or 1 depending on whether �1 was less
than or greater than the threshold.

Ideally, feature descriptors should separate users in
the sense that descriptors produced by the same user are
“sufficiently similar” (i.e., small intra-user variation), but
ones produced by different users are “sufficiently differ-
ent” (i.e., large inter-user variation). Indeed, if this prop-
erty were satisfied, and if feature descriptors were reli-
ably repeatable, then the feature descriptor could be a
candidate for use as a cryptographic key. However, since
users are generally not consistent in all features (and in
fact may be consistent in relatively few), the challenge
in generating cryptographic keys from biometrics lies in
accommodating variations in those features in which a
user is inconsistent while still generating the same key



each time. In addition, for schemes measuring biomet-
rics during the entry of a secret password, it is generally
necessary to hide which feature descriptor bits are consis-
tent for the user, since this information could conceivably
leak information to an attacker as to what the user’s pass-
word is. This, in turn, could be used to attack the scheme
directly (as in [12]) or possibly to better predict the val-
ues of those feature descriptor bits in which the user is
consistent.

The approach of [12] for achieving these goals is to
hide information about which bits of a user’s feature de-
scriptors are consistently repeatable within an m�2 table
T stored on the key generating device. During each “lo-
gin”, the induced feature descriptor b 2 f0; 1gm is used
to retrieve the m elements fT (i; b(i))g1�i�m. Initially,
the table T is populated using a generalized secret shar-
ing scheme (see [13, Chapter 12] for an introduction) so
that these m elements can be used to construct the same
cryptographic key, regardless of the feature descriptor b.
However, as the login program identifies a bit b(i) of the
user’s feature descriptors that is consistent from one lo-
gin to the next—bit b(i) is said to be distinguishing—
the i-th row of the table is perturbed so that the retrieval
of T (i; b(i)) is necessary to construct that cryptographic
key. (A key constructed from the table can then be tested
for correctness against stored information, e.g., a file en-
crypted under the correct key.) So, an imposter that yields
a feature descriptor b0 such that b0(i) = 1 � b(i) will
cause the key generation to fail. Moreover, the table T

is populated using a secret sharing scheme that renders it
computationally costly (and ideally infeasible) for an at-
tacker who captures the device to determine which rows
have been perturbed. So, in the limit the attacker must
simply guess feature descriptors b0 until it finds one that
reconstructs the key. Since there are 2m such feature de-
scriptors, this becomes infeasible to search as m grows.

Due to the possibility of transient errors in the fea-
ture descriptor of the valid user (e.g., due to noise in
her acoustic environment), it is generally necessary to at-
tempt to reconstruction of the cryptographic key not only
using the induced feature descriptor b, but also feature de-
scriptors b0 that are “close” to b, i.e., such that b0 differs
from b in a limited number of positions. We will elaborate
more on this later.

3.2. Generating feature descriptors from voice

The steps of key generation that voice considerations im-
pact most immediately are the identification of features
�1; : : : ; �n and the means for mapping them to feature
descriptors b 2 f0; 1gm. Here we outline the approach
that we have studied so far to achieve this; a more detailed
treatment is given in [11]. While many of the component
algorithms described here have been borrowed from prior
work in speech and speaker recognition, to our knowl-
edge our overall algorithm is novel.

segment i

speech signal

frame j

segment m

. . .

Figure 1: Segmentation

Our initial efforts into identifying suitable feature sets
have utilized a representation of the user’s utterance as a
sequence of frames, each of which is a 12-dimensional
vector of cepstral coefficients characterizing a 30 mil-
lisecond window of the utterance (with successive win-
dows overlapping by 10 milliseconds). We first apply
endpoint detection, silence removal, and cepstrum mean
subtraction [9] to the sequence, and then we use a text
independent, speaker independent acoustic model (built
from many different utterances from many different speak-
ers) to segment this sequence of frames into m segments
(see Figure 1). This algorithm, which is similar to seg-
mental vector quantization [14, p. 382], begins from a
segmentation of the frame sequence intom, roughly equal-
length segments. It then iterates the following two steps
until they converge on a segmentation:

1. For each segment, find the centroid in the acoustic
model that yields the highest likelihood score for
the segment.

2. Use the Viterbi algorithm [16, 4] to compute a new
segmentation with m segments that maximizes the
product of segment likelihoods relative to the cen-
troids chosen in Step 1.

Given the segmentation so produced, we have explored
three different types of features of this segmentation to
generate a feature descriptor. Here we describe only the
one for which we have gathered significant empirical data.
To describe these features, recall that to each segment,
say the i-th, is associated a “closest” centroid ci in the
acoustic model. Moreover, let �i denote the segment
mean. Then, the i-th feature �i is the position of �i rel-
ative to a fixed plane translated to a coordinate system
with ci at the origin (see Figure 2). That is, if � is a 12-
dimensional vector of coefficients specifying the plane
� � x = 0 (where � denotes the dot product), then the
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Figure 2: Creation of feature descriptor bit

i-th feature is the value of � � (�i � ci). If this value is
less than a specified threshold (we use 0), then b(i) = 0,
and otherwise b(i) = 1.

3.3. Empirical evaluation

In this section we briefly describe the performance of the
algorithm described in Section 3.2 in selected empirical
tests. Our empirical tests are based on a data set con-
taining 90 users, each recorded during a single phone call
saying the same phone number five times. The phone
calls were sampled at a rate of 8 kHz. In the tests de-
scribed here, feature descriptors were of length m = 46.
Though m = 46 is too small for even moderately se-
cure applications—a table T with 46 rows can readily be
exhaustively searched for the key by a modern personal
computer—our results suggest that keys of at least this
length can be achieved. Our current work is focused on
demonstrating good results for larger keys (i.e., 60 bits or
more).

3.3.1. Measures

Traditional measures of biometric quality are false neg-
ative and false positive rates. In our context, false neg-
atives are attempts in which the key generating device
fails to regenerate the cryptographic key despite the valid
user uttering her password. Similarly, false positives are
instances in which the cryptographic key is regenerated
even though the user providing the input is not the valid
user. False positive tests can further be differentiated on
the basis of whether the imposter is uttering the user’s
password or something else. While good false positives
in both cases is obviously desirable, we believe there is
practical utility even if the password is required to be se-
cret from the attacker.

Both of the above measures are influenced by the er-
ror correction strategy in use. As alluded in Section 3.1,
the key generating device will generally attempt recon-
struction of the key not only with the feature descriptor
b induced by the user’s utterance, but also with feature
descriptors b0 that are “close” to b. In the tests described
here, alternative feature descriptors b0 were determined
by first eliminating a single bit from b and “shifting” the
remaining bits forward, and then correcting for a limited
number d of additional bit errors in the shifted feature de-
scriptor. For example, if m = 5 and b = 01101 is the fea-
ture descriptor induced by the user’s utterance, then some
alternative feature descriptors that the login program at-
tempts are obtained by eliminating b(2) to yield 0?101;
shifting the remaining bits forward to yield 0101?; and
then generating feature descriptors of Hamming distance
at most d from 01010 or 01011. In general, the login
program thus searches 2m

Pd

i=0

�
m

d

�
feature descriptors

before returning a negative result to the user. The value
of d that can be accommodated is dictated primarily by
the computation time the device is allowed to spend be-
fore returning a negative answer to the user. Thus, this
is dependent on both the application and the cost of per-
forming reconstructions from the table T on that device.
Here we describe results using d = 3 and d = 4.

As we alluded previously, however, false positives are
not the best measure of security for our schemes, since
an attacker who captures the key generating device has
significantly more avenues to attempt to recover the key
than merely speaking the password (or potential pass-
words) to the device. As a result, we have focused on
a different measure of security for our schemes, which
we believe conservatively estimates the effort required
for an attacker to recover the key even if given direct ac-
cess to the table T . This measure, called guessing en-
tropy [10, 2], is a measure intuitively defined as follows.
(For a precise definition in our context, see [12].) Con-
sider a game in which an attacker is presented with a ta-
ble T of an unknown user selected at random from a fi-
nite population A of users. The goal of the attacker is to
find the cryptographic key of this user by selecting fea-
ture descriptors b, retrieving elements fT (i; b(i))g1�i�m
from the table, and reconstructing a value from these el-
ements, which the attacker may then test to see if this is
the right value (e.g., by using it to decrypt a file). Guess-
ing entropy is the expected number of feature descriptors
that the attacker must examine in this way before finding
the key. To make this game as advantageous for the at-
tacker as possible, we allow the attacker to have perfect
knowledge of the population A, i.e., precise knowledge
for each user of which of the user’s feature descriptor bits
are distinguishing and, for those that are, what the typical
value of that bit is. The attacker can then select feature
descriptors for the candidate table in an optimal order to
minimize its expected number of tries.



3.3.2. Results

We have evaluated the guessing entropy, false negative
rate, and false positive rate of the algorithm described
in Sections 3.1–3.2. These measures are illustrated in
Figures 3–5 for tests involving the previously described
recordings of 90 users (in “windows” of size 10; see be-
low). Each test is parameterized by a value k (defined
in [11]) that intuitively indicates the sensitivity of our
scheme; i.e., smaller values of k indicate a more sen-
sitive scheme that generally yields more distinguishing
features, and larger values of k indicate a less sensitive
scheme. For each value of k, planes (i.e., vectors �; see
Section 3.2) were randomly sampled from among those
with coefficients in f�1; 0; 1g and with up to five nonzero
coefficients each. For each such plane, four of each user’s
utterances were used to train a table T for that user (see
Section 3.1), and then the guessing entropy was com-
puted for those tables. The one remaining utterance for
each user was used as a test utterance to compute a false
negative rate. Twenty different utterances chosen at ran-
dom from other users (i.e., an “open set” experiment)
were tested against each table T to compute false posi-
tive rates. In one false positive test, denoted “FP – same”
in Figures 4 and 5, these other users said the same phone
number as the user who trained the table. In another test,
denoted “FP – diff”, they said different phone numbers,
which happen to be highly correlated to one another but
not to the number used to train the table.
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Figure 3: Guessing entropy

Due to computational cost of computing guessing en-
tropy for a collection of tables (which grows rapidly with
the number of users), we divided the 90 users in our test
into windows of size 10 and performed the described test
on each window of 10. The plotted points are then the
average of the results for the 9 windows.

The results shown in Figures 3–5 provide evidence
that our approach to key generation from voice may yield
good security and reliability in practice, once properly
tuned. In particular, the point k = 0:712 with d = 3
provides an example achieving false negatives under 9%,
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Figure 4: False negatives and positives, d = 3

false positives of roughly 2% when the imposter says a
different password, and entropy of roughly 98% of max-
imum. Since guessing entropy is already a conserva-
tive measure of security, a value of 98% of maximum
still may provide a strong degree of confidence. Fig-
ure 5 demonstrates an even better data point: the point
k = 0:65 with d = 4 yields false negatives under 2%,
false positives of roughly 2% when the imposter says a
different password, and 100% of the maximum entropy.
Note, however, that setting d = 4 expends significantly
more computation than d = 3 to attempt to reconstruct
the key, and so may not be suitable for use with resource
constrained devices.

Average for 90 Speakers (d=4 )

0

2

4

6

8

10

12

14

0.65 0.681 0.712 0.743

k

%

FN

FP - same

FP - diff

Figure 5: False negatives and positives, d = 4

4. Future work

The initial research described in Section 3 has exposed
numerous opportunities for future research in the gener-
ation of cryptographic keys from biometrics and specif-
ically voice. An immediate direction for future work is
more comprehensive testing of our present approach, us-
ing larger data sets and utterances recorded in multiple



sessions. Other directions include exploiting other voice
features for our purposes. Even within the limited frame-
work we have explored, there are other features that might
be used, such as the likelihood scores of the segments into
which the user’s utterance is divided (see Section 3.2).

For our own work and likely for many alternatives,
error correction (see Section 3.3) plays an important role
in achieving a reasonable false negative rate. Since error
correction requires attempting numerous alternative fea-
ture descriptors and corresponding reconstructions from
the table T , it is necessary for reconstructions to be very
efficient. One direction of our continuing research is the
development of secret sharing schemes for which recon-
struction is very efficient, thereby enabling broader error
correction (but possibly also more efficient attacks).

Finally, another topic for future work is to tune the
particular parameters of our approach with an eye toward
deployment in practice. In order to make use of our ap-
proach, particular values of � and k must be chosen for
our scheme. Principal component analysis (e.g., see [6])
may be of use in identifying vectors � that best separate
users, but we have thus far had little success in applying
these techniques where guessing entropy is the measure
to optimize. We hope to explore this more closely in the
future.
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