
Dynamic Byzantine Quorum Systems

Lorenzo Alvisi� Dahlia Malkhiy Evelyn Piercez Michael K. Reiterx Rebecca N. Wright{

Abstract

Byzantine quorum systems [13] enhance the availabil-
ity and efficiency of fault-tolerant replicated services when
servers may suffer Byzantine failures. An important limita-
tion of Byzantine quorum systems is their dependence on a
static threshold limit on the number of server faults. The
correctness of the system is only guaranteed if the actual
number of faults is lower than the the threshold at all times.
However, a threshold chosen for the worst case wastes ex-
pensive replication in the common situation where the num-
ber of faults averages well below the worst case.

In this paper, we present protocols for dynamically rais-
ing and lowering the resilience threshold of a quorum-
based Byzantine fault-tolerant data service in response to
current information on the number of server failures. Using
such protocols, a system can operate in an efficient low-
threshold mode with relatively small quorums in the ab-
sence of faults, increasing and decreasing the quorum size
(and thus the tolerance) as faults appear and are dealt with,
respectively.

1 Introduction

Quorum systems are valuable tools for implementing
highly available distributed shared memory. Mathemati-
cally, a quorum system is simply a set of sets (calledquo-
rums), each pair of which intersect. The principle behind

�Department of Computer Sciences, University of Texas at Austin,
USA. Email:lorenzo@cs.utexas.edu.

ySchool of Computer Science and Engineering, The Hebrew University
of Jerusalem, Israel. Email:dalia@cs.huji.ac.il.

zDepartment of Computer Sciences, University of Texas at Austin,
USA. Email:tumlin@cs.utexas.edu.

xBell Labs, Lucent Technologies, Murray Hill, NJ, USA. Email:
reiter@research.bell-labs.com.

{AT&T Labs–Research, Florham Park, NJ, USA. Email:
rwright@research.att.com.

This document describes work partially supported by NSF CAREER
award CCR-9734185, DARPA/SPAWAR grant N66001-98-8911, NSF
CISE grant CDA-9624082, and United States Air Force contract F30602-
99-C-0165. Any opinions, findings, conclusions or recommendations ex-
pressed in this document are those of the author(s) and do not necessarily
reflect the views of any of these sponsoring organizations.

their use in distributed data services is that, if a shared vari-
able is stored at a set of servers, read and write operations
need be performed only at a quorum of those servers. The
intersection property of quorums ensures that each read has
access to the most recently written value of the variable.

Traditionally, quorum systems have been used forbe-
nign fault tolerance, i.e., maintaining data availability in
the presence of unresponsive servers (crashes). Recently,
Byzantine quorum systems have been introduced to provide
data availability even in the presence of arbitrary (Byzan-
tine) faults [13]. The Byzantine fault model is attractively
powerful in that it can be used to analyze a wide variety
of faulty behaviors; for example, it has been proposed as
a framework for modeling security problems such as intru-
sions and sabotage.

One important limitation of standard Byzantine fault-
tolerance techniques, quorum-based or otherwise, is their
dependence on a static, pessimistically definedresilience
threshold, which limits the number of faults.1 The designer
must decide in advance what maximum number of simulta-
neous failures the system will tolerate and build the system
to tolerate that number of faults, at the expense of keeping
an appropriate number of separate up-to-date copies of each
data item for this worst-case failure assumption. If the cho-
sen threshold is higher than necessary, the excess replication
is wasted, so that the system is unnecessarily inefficient and
unwieldy. On the other hand, if the threshold is chosen too
low, the correctness guarantees of the system are nullified.
Furthermore, even if a threshold is appropriately positioned
for the worst case failure scenario, this scenario will usually
be relatively rare; the degree of replication required will be
wasted in the average case.

In this paper, we present a method of dynamically rais-
ing and lowering the resilience threshold of a quorum-based
Byzantine fault-tolerant data service in response to esti-
mates of the number of server failures. ([1] presents failure
detection methods that might be used to obtain these esti-
mates for such services.) The goal of our work is to design
protocols that allow a quorum system to respondat run time
to the presence or absence of detected faults. This flexibil-

1Papers such as [13] consider generalized fault structures, offering a
more general way of characterizing fault tolerance than a threshold. How-
ever, such structures remain static, and therefore necessarily worst-case.

0-7695-0707-7/00 $10.00 � 2000 IEEE

ity comes at a cost: tolerating a given maximum number
of faults requires more servers in our approach than in a
static system. However, with a fixed number of servers, our
protocols allow a system to operate in low-threshold mode
with smaller quorums than a static approach would require
for the same worst-case threshold. A natural way of using
a dynamic quorum system is to increase the threshold when
faults are detected, and decrease it again when the failures
have been dealt with. The threshold could also be raised
or lowered based on external evidence that the threat of an
attack has increased or decreased, such as information in
server logs or new information about the value of the data
being stored.

The difficulty in dynamically adjusting Byzantine quo-
rum systems can be exemplified as follows. Consider a
thresholdmasking quorum system [13] of n = 9 replicated
servers with quorums consisting of all sets of6 servers. This
guarantees that every pair of quorums intersect in3 servers
or more, and can tolerate a thresholdb = 1 of Byzan-
tine server failures while still guaranteeing that the major-
ity of every quorum intersection is correct. Now, suppose
that some client, detecting a possible failure in the system,
wishes to reconfigure the quorum system to raise the re-
silience threshold tob = 2. This can be accomplished by
making every set of7 servers a quorum, thereby guaran-
teeing that every pair of new quorums intersect in at least
5 servers, a majority of which are correct. However, if the
client informs an old quorum of6 servers about the new
configuration (Figure 1), or even a newly adjusted quorum
of 7 servers (dashed line), then there is no guarantee that the
intersection with theold quorum will contain a majority of
correct servers. As a result, another client, which still uses
a quorum of size6, may obtain conflicting information by a
collusion of2 faulty servers.

Our methods address this very problem. We describe
protocols that guaranteesafe shared variable semantics [8]
in the face of repeated configuration changes, and despite
the use of arbitrarily stale quorum configurations by clients.
Our work is the first of which we are aware that provides
data replication with safe variable semantics in the face of
a varying resilience threshold in a Byzantine environment,
with no reliance on any concurrency control mechanism
(e.g., no locking).

Our approach makes use of athreshold variable B which
is coupled with the ordinary replicated variables that our
system maintains, and is designated to maintain the current
resilience thresholdb. We show how to implement such a
threshold variable with stronger semantics than safety in or-
der to maintain the safety of the ordinary variables. Updates
to B are made toannounce sets, which are generally larger
than ordinary quorums and are guaranteed to be observed
by clients who may be using arbitrarily old thresholds. Or-
dinary variable operations are accordingly modified to take

Figure 1. Byzantine failures in quorum thresh-
old adjustment.

B into account. Maintaining safety of variables is compli-
cated by the fact that we allow reads and writes to occur
simultaneously with adjustments toB. The challenge is to
guarantee sufficient intersection of new quorums with pre-
viously written quorums (of unknown thresholds) without
accessing too many servers in the normal case.

The structure of the remainder of the paper is as follows.
We discuss related work in Section 1.1. In Section 2, we
give our system model and preliminary definitions. In Sec-
tion 3 we introduce the threshold adjustment framework and
its requirements. In Section 4, we present the protocols
for reading and modifying a dynamic threshold in thresh-
old masking quorum systems. In Section 5, we present
the enhanced protocols for reading and writing shared vari-
ables using the dynamic threshold. Section 6 generalizes
some of the concepts of dynamic threshold adjustments to
topographically defined quorum systems. We discuss per-
formance and optimizations in Section 7 and conclude in
Section 8.

1.1 Related Work

Our work builds on a substantial body of knowledge
on quorum systems and their uses, which was initiated
in [6, 16]; for a survey of quorum systems work, see [12].
More specifically, our methods are designed for Byzantine
quorum-based replication, which was introduced in [13]

0-7695-0707-7/00 $10.00 � 2000 IEEE

and further investigated in various works [3, 15, 14].
Our consideration of Byzantine faults makes our treat-

ment fundamentally different from most prior works on dy-
namic quorum reconfiguration with benign failures only.
In [5, Ch. 8,missing writes protocol] and [7, 10], a quorum
system is reconfigured by forming a write-quorum in such
a way that following readers learn about the reconfiguration
in the course of the normal read protocol. Byzantine faults
complicate this scheme in that (undetectably) faulty servers
might misinform a reader. As discussed earlier, this is espe-
cially significant when increasing the resilience threshold,
since the reader, which may be using an out-of-date quo-
rum system, could be misled by a new threshold of collud-
ing Byzantine faulty servers.

Quorumadaptation for crash failures is discussed in [4].
In their approach, if a serveru fails while u is the only
server contained in the intersection of two quorumsQi and
Qj , then the intersection property is maintained by remov-
ing u from Qi andQj and by substituting another correct
server. Our work differs from [4] in two significant ways.
First, the fact that we treat Byzantine failures means that
we must enable on-the-fly changes not only to the set of
quorums, but also to the very intersection property that de-
fines those quorums. Second, our clients (which we assume
to be potentially numerous and transient) do not communi-
cate between themselves and cannot inform one another of
changes. Our work differs from [4, 9] as well, in that our
protocols can take hints on the possible level of failures in
the system in order to adjust the resilience threshold, rather
than rely on specific detection of server failures.

Some work in Byzantine agreement considers dynamic
threshold changes during the run of the protocol. For exam-
ple, Bar-Noy et al [2] present an optimal-round agreement
protocol that lowers its operating threshold midway through
the protocol in order to improve efficiency while still main-
taining overall the resilience of the original threshold. Our
work differs from theirs by considering general replicated
data rather than agreement protocols, but more fundamen-
tally in that our protocols allow the fault threshold to be
raised or lowered as fault-tolerance needs change. In partic-
ular, they take a detected fault as a sign that therefore there
are fewer remaining faults in the system, while we may take
it as a sign that the initial threshold was too optimistic and
should be increased.

2 Preliminaries

Our system consists of a setU of data servers such that
the numbern = jU j of servers is fixed. During an exe-
cution of the system, a server receives input messages and
responds to each with a (non-null) output message. Thecor-
rect response of a server for each input message is defined
by a functionF that maps the preceding history of all inputs

that server received since the beginning of time to an out-
put message. A server that receives the sequence of inputs
m1; : : : ;mk should respond tomk with F (m1; : : : ;mk),
the correct response. At any given moment a server may
be eithercorrect or faulty. A correct server responds to
any request with the correct response. We allow Byzan-
tine failures: a faulty server may respond with an arbitrary
response (including no response). However, note that a cor-
rect response is defined irrespective of a server’s prior faulty
output behavior (or state modifications). In practice, since
servers usually have a state that does not include the entire
history, this means that for a once-failed server to be consid-
ered correct, it must be recovered to the state that it would
have held if it had never failed.

The set of clients of the service is disjoint fromU . Each
client is assumed to have a FIFO channel to each server.
In our system, clients may be numerous and transient. In
particular, clients are not aware of each other, nor do they
necessarily have the ability to communicate with one an-
other. We restrict our attention in this work to server fail-
ures; clients and channels are assumed to be reliable.

We use a replicated data service model based onquorum
systems, which are defined as follows:

Definition: A quorum system on a setU is a setQ � 2U

such that8Q1; Q2 2 Q; Q1 \ Q2 6= ;. Elements ofQ are
calledquorums.

In such a service, clients perform read and write opera-
tions on a variable by reading or writing its value at a quo-
rum of servers. The intersection property ensures that any
read operation observes the value of the most recent write
operation; timestamps can be used to distinguish this value
from older ones.

A useful type of quorum system for Byzantine fault tol-
erance is theb-masking quorum system:

Definition: A b-masking quorum system is a quorum sys-
temQ such that8Q1; Q2 2 Q; jQ1 \Q2j � 2b+ 1.

This additional intersection property ensures that in spite
of up tob faults in the system, any two quorums intersect in
at leastb + 1 correct servers. This enables clients to deter-
mine the correct variable value using an algorithm that com-
bines voting and timestamps. Ab-masking quorum system
is thus designed to tolerate failures in a system with a static
resilience thresholdb.

For the greater part of this paper we focus our attention
on a particular type ofb-masking system called athreshold
quorum system. Threshold systems are defined as follows:

Definition: A threshold masking quorum system is a quo-
rum systemQ such that8Q 2 Q; jQj = d(n+ 2b+ 1)=2e.

0-7695-0707-7/00 $10.00 � 2000 IEEE

For simplicity, we assume hereafter thatn is odd, so that
we can eliminate the ceiling operator from our calculations.

Ordinary (i.e., static)b-masking quorum systems sup-
port replicated variables in a Byzantine environment as
follows. To emulate a shared variableV , each serveru
stores a “copy”Vu of V along with a timestamp variable
TV;u. A timestamp is assigned by a client toTV;u when
the client writesVu. Our protocols require that different
clients choose different timestamps, and thus each clientc
chooses its timestamps from some setTc that does not inter-
sectTc0 for any other clientc0. The timestamps inTc can be
formed, e.g., as integers appended with the name ofc in the
low-order bits. Note that faulty servers may return arbitrary
values both for variables and for timestamps. The read and
write operations are implemented as follows.

Write: For a client to write the valuev to variableV , it
queries servers in some quorumQ to obtain the timestamp
tu from TV;u at eachu 2 Q. The client then chooses a
timestampt 2 Tc greater than the highest timestamp value
in ftugu2Q and greater than any timestamp it has chosen in
the past, and updatesVu andTV;u at each serveru in some
quorumQ0 to v andt, respectively.

Read: For a client to read a variableV , it queries servers
in some quorumQ to obtain valuesvu; tu from variables
Vu; TV;u at eachu 2 Q. From among allhvu; tui pairs
returned by at leastb + 1 servers inQ, the client chooses
the pairhv; ti with the highest timestampt, and then returns
v as the result of the read operation. If there is no pair
returned by at leastb + 1 servers, the result of the read
operation is? (a null value).

A serveru that receives an updatehv; ti during a write
operation updatesVu; TV;u to hv; ti, respectively, ifft >
TV;u. This pair of protocols guaranteessafe [8] variable se-
mantics, i.e., a read operation that does not overlap a write
operation returns the value of the most recent write (the
proof of this assertion can be found in [13]).

3 Threshold Adjustment

The read/write protocols above provide safe variable em-
ulation in a Byzantine environment with a static resilience
threshold. The goal of this work is to extend these proto-
cols so as to allow dynamic adaptations of quorum systems
to varying resilience thresholds. The challenge is to main-
tain safety of any replicated variable in the system while
dynamically performing such changes, without stopping the
normal operation of the system.

To accommodate changes in the threshold setting, we in-
troduce a new replicated variableB that contains the current

threshold setting. The variableB can be written with inte-
gral values in the range[bmin ; bmax]. The threshold variable
has an associated timestampTB that follows the same rules
as the timestamps of other variables: every update to the
variable is stamped with a unique timestamp that is greater
than any timestamp used in a previously completed opera-
tion.

A client that wishes to change the resilience threshold
for the system must first write the up-to-date threshold into
B, and then continue performing operations with the new
resilience threshold accounted for. Intuitively, a client can
updateB in much the same way that it updates any other
shared variable. There is one significant complication, how-
ever: because the threshold is dynamic, different clients
may have different memories of its value depending on how
recently they have accessed the quorum system. It is there-
fore necessary that new threshold values be written to a
set of servers whose intersection withall possible quorums
(i.e., defined by anyb 2 [bmin ; bmax]) is sufficiently large to
allow clients to determine unambiguously the correct cur-
rent threshold during any given operation; the client can
then continue or restart the operation accordingly. Hence,
in a threshold write operation,B is updated at all servers in
anannounce set. A few issues need to be addressed in or-
der to specify threshold adjustment fully. First, we need to
specify the intersection requirement between the announce
set and all ordinary quorums in such a way that threshold
adjustments will be noticed by all potential clients. Sec-
ond, we need to specify threshold write and read protocols.
Third, we need to modify our read/write protocols to ac-
count for threshold adjustments. These will be the topic of
discussion in the remainder of this paper.

Since the system for which we design our protocols
has a dynamically changing resilience threshold, a standard
threshold constraint, e.g., “the number of faulty servers in
the system at any given time does not exceedb,” does not
suffice for our purposes. Rather, in order to guarantee cor-
rectness, we need a statement that the dynamically written
threshold values are correct. To this end, we adopt the fol-
lowing assumption for the remainder of the paper.

Assumption 1 Let o be any operation, i.e., a threshold
read, threshold write, variable read, or variable write. Let
b be the minimum among (i) the value written in the last
write to B preceding o (in some serialization of all preced-
ing writes) and (ii) the values written to B in any threshold
writes that are concurrent with o. Then, no quorum access
issued within o returns more than b faulty responses (i.e., no
more than b servers are “currently” faulty).

In practice, Assumption 1 amounts to requiring that the
threshold should be changed proactively and at a reasonable
rate.

0-7695-0707-7/00 $10.00 � 2000 IEEE

The goal of our threshold adjustment protocols is to
maintain safety of all replicated variables despite possible
modifications to the resilience threshold. For the purpose
of safety, we treat the associated threshold variableB as an
integral part of any variableV . Accordingly, the modified
safety condition that our protocols will satisfy is the follow-
ing.

Safety: A read operation onV that overlaps no writes to
V or threshold write operations toB returns the value of
the most recent write toV that precedes this read, in some
serialization of all write operations preceding it.

4 Quorum Adjustment in Threshold Systems

In this section we present and discuss protocols that al-
low clients to read and adjust the fault tolerance of a thresh-
old masking quorum system. An important property of our
protocols is that they require no direct interaction among
clients; all information is passed through shared variables.

4.1 Basic Protocol

We wish to design protocols in which the resilience
threshold of the underlying quorum system can be dynami-
cally adjusted to any value within some range[bmin ; bmax].
The simplest way to ensure that clients always use the cor-
rect threshold is to require clients to read the threshold be-
fore any read or write, and to adopt a threshold value only if
at leastbmax+1 servers in a quorum agree on this threshold
and its associated timestamp. By Assumption 1 and the def-
inition of bmax , no more thanbmax responses to any query
will be faulty. Therefore, if the announce set for a thresh-
old change intersects every possible quorum (i.e., every set
of size(n + 2b + 1)=2 for bmin � b � bmax), in at least
2bmax +1 servers, it follows that the response to any query
will include at leastbmax + 1 notifications of the change.
(One advantage of this approach is that clients need not
maintain their own copy of the current value of the thresh-
old b. In particular, new clients can join without having to
initialize a copy of the threshold.)

We take as announce sets all sets of sizen�bmax , i.e., the
largest number of servers guaranteed to be available under
any threshold setting. This value will be sufficient provided
that the intersection between any quorum and any announce
set is of size at least2bmax + 1. That is, we need:

2bmax + 1 � ((n+ 2bmin + 1)=2) + (n� bmax)� n

It follows thatn � 6bmax � 2bmin + 1, and thus we need
at least6bmax � 2bmin + 1 servers to provide a dynamic
threshold quorum system whose threshold ranges frombmin

to bmax . We take this as an assumption for the remainder of
the paper.

Assumption 2 n � 6bmax � 2bmin + 1.

Note that Assumption 2 is a generalization of the4b + 1
servers required by a static threshold system, i.e., one where
bmin = bmax [13].

The protocol for raising or lowering the threshold using
an announce set of sizen� bmax is as follows:

Threshold write: For a client to setB to a new threshold
valueb, it queries servers in some announce setA (of size
n � bmax) to obtain valuesbu; tu from variablesBu; TB;u
at eachu 2 A. It then chooses a timestampt 2 Tc greater
than the largest timestamp inftugu2Q, and greater than any
timestamp it has chosen in the past. Finally, at each server
u in some announce setA0, it updatesBu andTB;u to b and
t, respectively. (Note that this is exactly the static variable
write protocol except that an announce set is used instead of
a standard quorum.)

Threshold read: For a client to read the current threshold
valueb fromB, it queries servers in some quorumQ of size
(n + 2bmin + 1)=2 to obtain valuesbu; tu from variables
Bu; TB;u at eachu 2 Q. Of thehbu; tui pairs returned by at
leastbmax +1 servers inQ, it selects the pairhb; ti with the
highest timestampt, provided that it is notcountermanded
as defined below. If there is no such pair, or ifhb; ti is coun-
termanded, then it setsb to? (undefined).

Definition: A threshold/timestamp pairhb; ti is counter-
manded in a given query if at leastbmax + 1 servers re-
turn threshold timestamps (not necessarily identical) greater
thant. A threshold valueb is countermanded if all the pairs
it appears in are countermanded.

The purpose of this definition is made clear by the fol-
lowing theorem:

Theorem 1 If b is older than the most recently completed
threshold write at the time of a threshold read, then it will
be countermanded in that read.

Proof: If no threshold write operations are taking place
concurrently with the threshold read, then the result follows
immediately from Assumption 1, the intersection prop-
erty between announce sets and quorums, and the fact that
bmax � b. Furthermore, for anyb, the number of cor-
rect servers whose threshold timestamp exceeds that ofb
is monotonically nondecreasing over the course of a thresh-
old write. Therefore the result holds during threshold writes
as well.

4.1.1 Correctness

The correctness of the threshold variable follows from the
following theorem and subsequent corollary to Theorem 1.

0-7695-0707-7/00 $10.00 � 2000 IEEE

Theorem 2 In any threshold read that does not overlap a
threshold write, the most recently written threshold value
(in the serialization consistent with timestamp order of the
writes) is returned.

This theorem is easily seen to be implied by the following
two lemmas:

Lemma 1 For any such threshold read, the most recently
written threshold/timestamp pair is returned by at least
bmax + 1 servers.

Proof: Let b be the most recently written threshold value.
The announce set for this threshold intersects all possible
quorums in at least2bmax + 1 servers by Assumption 2.
Becauseb was set in the most recent threshold write, and
the current threshold read does not overlap any threshold
writes, the variableB has not been overwritten at any cor-
rect servers in this set. By Assumption 1 and the fact that
b � bmax , at leastbmax + 1 servers in any possible quo-
rum will return the thresholdb along with the most recent
timestamp.

Lemma 2 For any such threshold read, the most recently
written threshold is not countermanded.

Proof: The most recently written threshold has the highest
(nonforged) timestamp. Therefore if the correct threshold is
b, then by Assumption 1, no more thanb servers may forge
higher timestamps in their response to the query. Sinceb <
bmax + 1, the valueb is not countermanded.

Corollary 1 A threshold read that overlaps one or more
threshold writes will not return a threshold older than the
value in the most recently completed threshold write.

Proof: This follows from Theorem 1 and the fact that the
read does not return a countermanded value.

Remark: A consequence of this theorem and corollary is
that the protocol given above implements a weakened ver-
sion ofregular variable semantics [8] for the threshold vari-
able; i.e., a query that overlaps one or more writes will re-
turn either the value of the most recently completed write,
the value of one of the writes which it overlaps, or?. This
is a stronger guarantee than that provided by safe semantics.

5 Variables Implemented with Dynamic
Threshold Systems

In a quorum system whose resilience threshold is dy-
namic, a change to the quorum structure may require some
attention to the variables that make use of that threshold.
Specifically, an increase in the threshold may compromise

the integrity of previously written variables unless some
specific corrective action is taken.

Suppose, for example, that the threshold of a system is
increased fromb to b+ 3. Once this operation is complete,
clients performing read and write operations will learn of
the new threshold and perform those operations on quorums
of the new size. Unfortunately, values that have been writ-
ten under the previous threshold will appear only at anold
quorum of servers. The intersection between an old quorum
and a new one is only guaranteed to be2b+4, not the2b+7
required for tolerating an additional3 faults.

More generally, the main difficulty is that if a variable
was last written when the threshold was smaller than the
current thresholdb, then reading from a quorum of size(n+
2b+1)=2 does not suffice to ensure thatb+1 correct servers
will respond with the latest value. Rather, to ensure that
b + 1 correct servers will respond with the latest value, it
may be necessary to increase the quorum used during a read
operation to(n+ 2b+ 1)=2 + b� bmin .

A similar problem occurs when a writer accesses a quo-
rum of servers in order to determine a timestamp for the
write. The writer needs to access a quorum that guaran-
tees intersection in one correct server with the most recently
written quorum. The difficulty is that the latter could have
a quorum size that corresponds to an arbitrarily old thresh-
old. If the current thresholdb can be determined, then a
quorum of size(n + 2b+ 1)=2� bmin suffices to intersect
in b + 1 with any other quorum, and hence, in at least one
correct server. However, if the threshold cannot be deter-
mined, which can happen when a write operation overlaps
a threshold-write operation, then a (potentially larger) quo-
rum of size(n+2bmax +1)=2� bmin needs to be accessed
in order to determine a correct timestamp for the write op-
eration.

We address these issues in the protocol below.

5.1 The Protocol

The protocol for reading and writing a variableV using
dynamic thresholds is as follows:

Read: For a client to read variableV , it performs the fol-
lowing steps:

1. Perform a threshold read using the protocol in Sec-
tion 4 to obtain current thresholdb. If b = ?, return?
as the result of the read.

2. Query servers in a quorumQ of size(n + 2b + 1)=2
to obtain valuesvu; tu from variablesVu; TV;u at each
u 2 Q.

3. Of the hvu; tui pairs returned by at leastbmin + 1
servers inQ, consider the pairhv; ti with the high-
est value oft. If no such pair exists, return? as the

0-7695-0707-7/00 $10.00 � 2000 IEEE

result of the read. Ifhv; ti appears inb + 1 identical
responses, returnv as the result of the read.

4. Otherwise (i.e.,hv; ti appears at leastbmin + 1 times
but fewer thanb + 1), query servers in an additional
setC of size b � bmin , to obtain valuesvu; tu from
variablesVu; TV;u at eachu 2 Q0, whereQ0 = Q [C
contains(n+ 2b+ 1)=2 + b� bmin servers.

5. Of thehvu; tui pairs that appear in at leastb + 1 re-
sponses fromQ0, select the pairhv0; t0i with the high-
est value oft0 and returnv0 as the result of the read. If
no such pair exists, return? as the result of the read.

Write: For a client to write valuev to variableV , it per-
forms the following steps:

1. Perform threshold read using the protocol in Section 4
to obtain the current thresholdb. If b = ?, then use
b = bmax .

2. Query servers in a quorumQ of size(n+2b+1)=2�
bmin to obtain timestamptu from TV;u at eachu 2 Q.

3. Create a new timestampt 2 Tc such thatt is larger than
any timestamp inftugu2Q and any timestamp used be-
fore by this client.

4. Write v and t to Vu andTV;u, respectively, at each
serveru in a quorum of size(n+ 2b+ 1)=2.

Note that in a steady system state, when reads and writes
obtain the up-to-date thresholdb, they perform operations
simply by accessing ordinaryb-masking quorums, i.e., of
size(n+2b+1)=2. Following adjustments to the threshold,
though, operations may incur the higher costs of accessing
larger quorums.

5.1.1 Correctness

The following theorem proves the correctness of the above
protocol—namely, that it maintains safety of the variable
V :

Theorem 3 A read operation that overlaps no write oper-
ations to V or threshold write operations to B returns the
value of the most recent write to V that precedes this read,
in some serialization of all write operations preceding it.

Proof: LetW denote the set of all write operations preced-
ing the read. By Theorem 2, Step 1 of the read operation ob-
tains the most recently written thresholdb or a concurrently
written one. Therefore, by Assumption 1, any quorum of
responses obtained in the read contains at mostb faulty re-
sponses. Consider the write operation inW with the highest

timestamp. Since this write completed at(n+2bmin+1)=2
or more servers, its value and timestamp appear in at least
bmin +1 of the responses returned in Step 2 of the read pro-
tocol. It is then returned in Step 3 if it appeared inb + 1
of the responses from Step 2, or otherwise will be returned
in Step 5 since reading from(n + 2b + 1)=2 + b � bmin

(Step 4) intersects any previous write quorum in at least
2b+ 1 servers.

It is left to show that there is a serialization of the writes
in W in which the write with the highest timestamp is last,
i.e., that a write operationw2 that follows a write operation
w1 uses a higher timestamp. This follows from the facts that
if w2 uses the thresholdb0, then at mostb0 faulty responses
to its query in Step 2 are returned, and that(n+2b0+1)=2�
bmin servers must intersect the quorum written inw1 in b0+
1 servers (and thus at least one correct server).

6 Other b-Masking Quorum Systems

In this section, we briefly discuss how to employ two
additionalb-masking quorum systems in an environment
with a dynamically varying resilience threshold, and how
to set an appropriate announce set for changing the thresh-
old value. Thus, the utility of our methods is not limited to
the threshold construction.

6.1 BoostFPP quorum system

BoostFPP masking quorum systems [15] are constructed
as a composition of two quorum systems. The first is a quo-
rum system based on a finite projective plane (FPP), sug-
gested originally by [11]. In the FPP quorum system, there
areq2 + q + 1 elements and quorums of sizeq + 1 (corre-
sponding to the hyperplanes of the FPP), whereq = pr � 2
for some primep and integerr. Each pair of distinct quo-
rums in FPP intersect in exactly one element. The second
quorum system is a thresholdb-masking quorum system
with some system sizes � 4b + 1. The composition of
the two systems is made by replacing each element of the
FPP with a distinct copy of a threshold system. That is, the

universe for a boostFPP system isU =
Sq2+q+1

i=1 Ui where
eachUi is a set ofs servers, andUi \Uj = ; for anyi 6= j.
EachUi is called a “super element”. A quorum is selected
by first selecting a quorum of super elements in the FPP, say
Ui1 ; : : : ; Uiq+1 , and then selectingd(s+2b+1)=2e servers
from eachUij . A boostFPP is ab-masking quorum sys-
tem since every pair of quorums of super elements intersect
in at least one super element, sayUi, while the selection
of threshold quorums withinUi guarantees intersection of
2b+ 1 elements.

To employ boostFPP with a variable resilience threshold
bmin � b � bmax , we leave the FPP construction of su-
per elements unmodified, and change only the selection of

0-7695-0707-7/00 $10.00 � 2000 IEEE

servers within each super-element. That is, we require that
s � 6bmax�2bmin+1 and for eachUi and any thresholdb,
we select quorums inUi as in the threshold system, e.g., an
ordinary quorum hasd(s + 2b + 1)=2e servers in eachUi,
and an announce set comprises ofs � bmax servers from
each suchUi.

It is easily seen that such selections guarantee the re-
quired intersection size between announce sets and ordinary
quorums, as well as between read and write quorums and
pairs of write quorums, as in the threshold system case.

6.2 M-grid quorum system

An M-Grid masking quorum system is described in [15].
For any resilience thresholdb, whereb � (

p
n � 1)=2,

M-Grid is constructed as follows: The universe ofn servers
is arranged as a

p
n�pn grid. A quorum in an M-Grid con-

sists of any choice of
p
b+ 1 rows and

p
b+ 1 columns.

Formally, denote the rows and columns of the grid byRi

andCi, respectively, where1 � i � p
n. Then, the quorum

system is

M-Grid(b) =8<
:
[
j2J

Cj [
[
i2I

Ri : J; I � f1 : : :png; jJ j = jI j = p
b+ 1

9=
;

M-Grid maintains the requirement ofb-masking quorum
systems as follows: If a pair of quorums overlap in a full
row or column, then there are

p
n � 2b + 1 elements in

their intersection. Otherwise, their intersection contains the
crossing points of all rows of one quorum with columns
of the other, and vice versa, and hence contains at least
2
p
b+ 1

p
b+ 1 > 2b+ 1 elements.

To make use of M-Grid quorum systems with a vari-
able resilience thresholdbmin � b � bmax , we need to
require thatbmax � (

p
n � 1)=2. The grid arrangement

remains static for all quorum systems, but the number of
rows/columns in each quorum will depend onb, the cur-
rent resilience threshold. For the purpose of setting the
threshold variableB, we use announce sets comprising ofl
(bmax+1)p
bmin+1

m
rows and

l
(bmax+1)p
bmin+1

m
columns, which guaran-

tees that they intersect any quorum ever used in2bmax + 1
servers. With these announce sets, we use the same thresh-
old write and threshold read protocols as for the thresh-
old b-masking system. Unfortunately, the read and write
protocols cannot use ordinary size quorums, since in gen-
eral, quorums in M-Grid(b) may not intersect quorums in
M-Grid(b0) in b + bmin + 1 elements as required. Hence,
for Step 2 of the read protocol, we need to use quorums
comprising ofmaxfpb+ 1; b+bmin+1

2
p
bmin+1

g rows and columns
to guarantee intersection ofbmin + 1 correct servers with
any previously written quorum, and intersection of2b + 1

with other quorums using theb threshold (the normal case).
In Step 4 of the read protocol, we use enlarged quorums of

b+1p
bmin+1

rows and b+1p
bmin+1

columns, guaranteeing intersec-
tion in b + 1 correct servers. For Step 2 of the write proto-
col, a quorum comprising of b+1

2
p
bmin+1

rows and b+1
2
p
bmin+1

columns is queried for timestamps, guaranteeing intersec-
tion in b+ 1 servers (and hence, one correct) with any pre-
viously written quorum. Finally, it suffices to send updates
to ordinaryb-quorums containing

p
b+ 1 rows and

p
b+ 1

columns.
The proof of correctness is essentially identical to the

threshold system case, simply making use of the intersec-
tion size statements for this construction.

7 Discussion

7.1 Comparison to static quorums

When deploying a system in practice, the maximum an-
ticipated number of failuresbmax is typically calculated as
a function of the total number of serversn, e.g., based on
an analysis of the probability of each individual server fail-
ing. A disadvantage of the approach in this paper, as com-
pared to a static quorum system deployment, is that it can
accommodate fewer values ofbmax for a givenn: ours re-
quiresn � 6bmax � 2bmin + 1 servers, as opposed to only
n � 4bmax + 1 in the static case. However, for those con-
figurations ofn andbmax where our dynamic approach is
possible, our approach performs better than a static quorum
system in the common case, where there are no Byzantine
failures and the system runs with a threshold of (or close to)
bmin .

More specifically, the measure of efficiency that we con-
sider is quorum size, since this determines the number of
servers a client must access in order to perform an oper-
ation. LetQ(b) denote the quorum size for a static quo-
rum system with thresholdb; e.g., in the threshold system,
Q(b) = (n+2b+1)=2. For all of the quorum constructions
we have described—threshold, boostFPP, and M-Grid—
variable read and write operations access quorums of only
sizeQ(bmin) while the system runs with a threshold ofbmin

and there are no threshold write operations. This compares
favorably to theQ(bmax)-sized quorums that a static system
would use.

That said, when the threshold is raised to someb > bmin ,
penalties can be experienced that exceed the costs of access-
ing a static system. For example, in the threshold quorum
construction, the threshold write itself accessesn � bmax

servers; variable read operations may access quorums of
sizeQ(2b�bmin); and variable writes may access quorums
of sizeQ(bmax) when concurrent with threshold write op-
erations. Similarly, our variable read and write protocols
for M-Grid employ quorums comprised ofO(b) rows and

0-7695-0707-7/00 $10.00 � 2000 IEEE

columns, so their cost is on the order ofQ(b2). Also, be-
cause read operations return? if the threshold read does,
the likelihood that a read operation returns? is increased.

In the performance discussion above, we have ignored
the number of communication rounds performed by our
protocols, and indeed, have not attempted to optimize for it.
An obvious direction for optimization is to couple together
the threshold reading with the value or timestamp reading
at the beginning of variable read or write operations. For
brevity, we do not include these in the exposition here.

7.2 An alternative approach

One of the strongest restrictions on the work we have
presented here is that of Assumption 1. At the cost of mak-
ing writes pessimistically static (and thus more expensive)
we can weaken this restriction while still maintaining safety.
Specifically, we can replace it with:

Assumption 3 Any operation that is concurrent with no
threshold writes receives no more than b faulty responses
in any quorum access, where b is the current value of B.
In addition, no quorum access in any operation (even one
concurrent with threshold writes) returns more than bmax

faulty responses.

A consequence of the second half of this assumption is
that a write quorum performs correctly if it intersects all
other write quorums in at leastbmax +1 servers. This is ac-
complished by any write quorum size between(n+ bmax +
1)=2 andn � bmax . However, there remains the require-
ment of ensuring that every read quorum intersects every
write quorum in at least2b+ 1 servers, whereb is the cur-
rent threshold during the read.2 If we use a write quorum of
the smallest size, reads aremore expensive than in the static
case for values ofb that are sufficiently close tobmax . If, on
the other hand, we use write quorums of sizen � bmax , it
becomes unnecessary for read operations to be aware of the
current threshold at all; we have shown above that a read
quorum based onbmin intersects such a write quorum in at
least2bmax + 1 servers. This is a potentially useful trade-
off for systems in which reads are much more frequent than
writes. It is, however, a static system and as such is uninter-
esting from the point of view of this work.

A more interesting approach is to set the write quorum to
the same size as in a staticbmax system, i.e.(n+ 2bmax +
1)=2. In this case, a read quorum can be sure of a sufficient
intersection with the previous write quorum if it is of size
(n + 4b� 2bmax + 1), whereb is the current threshold. If
b = bmax , then this is exactly the same as a staticbmax read
quorum; ifb < bmax it is an improvement even over a static
read quorum forb, let alonebmax . For systems in which

2Since the safety property applies to reads that do not overlap threshold
adjustment operations,b is well defined.

write operations are sufficiently less frequent than read op-
erations, this alternative way of using a varying threshold
may be attractive.

8 Conclusion

In this paper, we have presented protocols for reading
and adjusting the Byzantine fault tolerance level of a thresh-
old masking quorum system, and shown how these proto-
cols can be extended to other types ofb-masking quorum
systems, specifically M-Grid and boostFPP systems. In do-
ing so, we have preserved the safe variable semantics pro-
vided by such systems.

References

[1] L. Alvisi, D. Malkhi, E. Pierce, and M. Reiter. Fault de-
tection for Byzantine quorum systems. InProceedings of
the 7th International Working Conference on Dependable
Computing for Critical Applications, pages 357–372, Jan-
uary 1999.

[2] A. Bar-Noy, D. Dolev, C. Dwork, and R. Strong. Shifting
gears: Changing algorithms on the fly to expedite Byzantine
agreement.Information and Computation, 97(2):205–233,
1992.

[3] R. A. Bazzi. Synchronous Byzantine quorum systems. In
Proceedings of the 16th ACM Symposium on Principles of
Distributed Computing, pages 259–266, August 1997.

[4] M. Bearden and R. Bianchini. A fault-tolerant algorithm for
decentralized online quorum adaptation. InProceedings of
the 28th International Symposium on Fault-Tolerant Com-
puting (FTCS 98), pages 262–271, June 1998.

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concur-
rency control and recovery in database systems. Addison-
Wesley, 1987.

[6] D. K. Gifford. Weighted voting for replicated data. InPro-
ceedings of the 7th Symposium on Operating Systems Prin-
ciples, pages 150–162, 1979.

[7] M. Herlihy. Dynamic quorum adjustment for partitioned
data. ACM Transactions on Database Systems, 12(2), June
1987.

[8] L. Lamport. On interprocess communications (part ii: algo-
rithms). Distributed Computing, 1:86–101, 1986.

[9] E. Lotem, I. Keidar, and D. Dolev. Dynamic voting for con-
sistent primary components. InProceedings of the 16th
ACM Symposium on Principles of Distributed Computing
(PODC), August 1997.

[10] N. Lynch and A. Shvartsman. Robust emulation of shared
memory using dynamic quorum-acknowledged broadcasts.
In Proceedings of the 20th Annual International Symposium
on Fault-Tolerant Computing (FTCS’97), June 1997. Seat-
tle, Washington.

[11] M. Maekawa. A
p
n algorithm for mutual exclusion in de-

centralized systems.ACM Transactions on Computer Sys-
tems, 3(2):145–159, 1985.

0-7695-0707-7/00 $10.00 � 2000 IEEE

[12] D. Malkhi. Quorum Systems. in The Encyclopedia of Dis-
tributed Computing. Joseph Urban and Partha Dasgupta ed-
itors, Kluwer Academic Publishers, To be published.

[13] D. Malkhi and M. Reiter. Byzantine quorum systems.Dis-
tributed Computing, 11(4):203–213, 1998.

[14] D. Malkhi, M. Reiter, A. Wool, and R. N. Wright. Proba-
bilistic Byzantine quorum systems. Technical Report 98.7,
AT&T Research, 1998.

[15] D. Malkhi, M. K. Reiter, and A. Wool. The load and avail-
ability of Byzantine quorum systems. InProceedings 16th
ACM Symposium on Principles of Distributed Computing
(PODC), pages 249–257, August 1997. To appear in Siam
Journal of Computing.

[16] R. H. Thomas. A majority consensus approach to concur-
rency control for multiple copy databases.ACM Transac-
tions on Database Systems, 4(2):180–209, 1979.

0-7695-0707-7/00 $10.00 � 2000 IEEE

