Dynamic Byzantine Quorum Systems

Lorenzo Alvist Dahlia Malkhif

Abstract

Byzantine quorum systems [13] enhance the availabil-
ity and efficiency of fault-tolerant replicated services when
servers may suffer Byzantine failures. An important limita-
tion of Byzantine quorum systems is their dependence on a
gtatic threshold limit on the number of server faults. The
correctness of the system is only guaranteed if the actual
number of faultsis lower than the the threshold at all times.
However, a threshold chosen for the worst case wastes ex-
pensive replication in the common situation where the num-
ber of faults averages well below the worst case.

In this paper, we present protocols for dynamically rais-
ing and lowering the resilience threshold of a quorum-
based Byzantine fault-tolerant data service in response to
current information on the number of server failures. Using
such protocols, a system can operate in an efficient low-
threshold mode with relatively small quorums in the ab-
sence of faults, increasing and decreasing the quorum size
(and thusthe tolerance) as faults appear and are dealt with,
respectively.

1 Introduction

Quorum systems are valuable tools for implementing
highly available distributed shared memory. Mathemati-
cally, a quorum system is simply a set of sets (catjad-
rums), each pair of which intersect. The principle behind

*Department of Computer Sciences, University of Texas at Austin,
USA. Email:l orenzo@s. ut exas. edu.

tSchool of Computer Science and Engineering, The Hebrew University
of Jerusalem, Israel. Emaital i a@s. huji.ac.il.

fDepartment of Computer Sciences, University of Texas at Austin,
USA. Email:t um i n@s. ut exas. edu.

§Bell Labs, Lucent Technologies, Murray Hill, NJ, USA. Email:
reiter@esearch. bel | -1 abs. com

TAT&T Labs—Research, Florham Park,
rwight @esearch.att.com

This document describes work partially supported by NSF CAREER

award CCR-9734185, DARPA/SPAWAR grant N66001-98-8911, NSF
CISE grant CDA-9624082, and United States Air Force contract F30602-
99-C-0165. Any opinions, findings, conclusions or recommendations ex-

NJ, USA. Email:

Evelyn Piercé

Michael K. Reitet Rebecca N. Wrigtt

their use in distributed data services is that, if a shared vari-
able is stored at a set of servers, read and write operations
need be performed only at a quorum of those servers. The
intersection property of quorums ensures that each read has
access to the most recently written value of the variable.

Traditionally, quorum systems have been usedider
nign fault tolerance, i.e., maintaining data availability in
the presence of unresponsive serveraghes). Recently,
Byzantine quorum systems have been introduced to provide
data availability even in the presence of arbitraByzZan-
tine) faults [13]. The Byzantine fault model is attractively
powerful in that it can be used to analyze a wide variety
of faulty behaviors; for example, it has been proposed as
a framework for modeling security problems such as intru-
sions and sabotage.

One important limitation of standard Byzantine fault-
tolerance techniques, quorum-based or otherwise, is their
dependence on a static, pessimistically definesilience
threshold, which limits the number of faults. The designer
must decide in advance what maximum number of simulta-
neous failures the system will tolerate and build the system
to tolerate that number of faults, at the expense of keeping
an appropriate number of separate up-to-date copies of each
data item for this worst-case failure assumption. If the cho-
sen threshold is higher than necessary, the excess replication
is wasted, so that the system is unnecessarily inefficient and
unwieldy. On the other hand, if the threshold is chosen too
low, the correctness guarantees of the system are nullified.
Furthermore, even if a threshold is appropriately positioned
for the worst case failure scenario, this scenario will usually
be relatively rare; the degree of replication required will be
wasted in the average case.

In this paper, we present a method of dynamically rais-
ing and lowering the resilience threshold of a quorum-based
Byzantine fault-tolerant data service in response to esti-
mates of the number of server failures. ([1] presents failure
detection methods that might be used to obtain these esti-
mates for such services.) The goal of our work is to design
protocols that allow a quorum system to respatidin time
to the presence or absence of detected faults. This flexibil-

Ipapers such as [13] consider generalized fault structures, offering a

pressed in this document are those of the author(s) and do not necessarilynore general way of characterizing fault tolerance than a threshold. How-

reflect the views of any of these sponsoring organizations.

0-7695-0707-7/00 $10.00 ® 2000 IEEE

ever, such structures remain static, and therefore necessarily worst-case.

ity comes at a cost: tolerating a given maximum number
of faults requires more servers in our approach than in a
static system. However, with a fixed number of servers, our
protocols allow a system to operate in low-threshold modé-=t:!
with smaller quorums than a static approach would require
for the same worst-case threshold. A natural way of using
a dynamic quorum system is to increase the threshold when
faults are detected, and decrease it again when the failures
have been dealt with. The threshold could also be raised
or lowered based on external evidence that the threat of an
attack has increased or decreased, such as information in
server logs or new information about the value of the data
being stored.

The difficulty in dynamically adjusting Byzantine quo-
rum systems can be exemplified as follows. Consider aciuirz
thresholdmasking quorum system [13] of n = 9 replicated
servers with quorums consisting of all set$servers. This
guarantees that every pair of quorums intersegétservers
or more, and can tolerate a threshéld= 1 of Byzan-
tine server failures while still guaranteeing that the major-
ity of every quorum intersection is correct. Now, suppose
that some client, detecting a possible failure in the system,
wishes to reconfigure the quorum system to raise the re-
silience threshold té = 2. This can be accomplished by
making every set of servers a quorum, thereby guaran-
teeing that every pair of new quorums intersect in at least
5 servers, a majority of which are correct. However, if the 3 into account. Maintaining safety of variables is compli-
client informs an old quorum of servers about the new cated by the fact that we allow reads and writes to occur
configuration (Figure 1), or even a newly adjusted quorum simultaneously with adjustments & The challenge is to
of 7 servers (dashed line), then there is no guarantee that thgyuarantee sufficient intersection of new quorums with pre-
intersection with theld quorum will contain a majority of viously written quorums (of unknown thresholds) without
correct servers. As a result, another client, which still uses accessing too many servers in the normal case.
a quorum of sizé&, may obtain conflicting information by a The structure of the remainder of the paper is as follows.
collusion of2 faulty servers. We discuss related work in Section 1.1. In Section 2, we

Our methods address this very problem. We describegive our system model and preliminary definitions. In Sec-
protocols that guarantesafe shared variable semantics [8] tion 3 we introduce the threshold adjustment framework and
in the face of repeated configuration changes, and despitdts requirements. In Section 4, we present the protocols
the use of arbitrarily stale quorum configurations by clients. for reading and modifying a dynamic threshold in thresh-
Our work is the first of which we are aware that provides old masking quorum systems. In Section 5, we present
data replication with safe variable semantics in the face of the enhanced protocols for reading and writing shared vari-
a varying resilience threshold in a Byzantine environment, ables using the dynamic threshold. Section 6 generalizes
with no reliance on any concurrency control mechanism some of the concepts of dynamic threshold adjustments to
(e.g., no locking). topographically defined quorum systems. We discuss per-

Our approach makes use ofrmeshold variable B which formgnce and optimizations in Section 7 and conclude in
is coupled with the ordinary replicated variables that our Section 8.
system maintains, and is designated to maintain the current
resilience threshold. We show how to implement such a 1.1 Related Work
threshold variable with stronger semantics than safety in or-
der to maintain the safety of the ordinary variables. Updates Our work builds on a substantial body of knowledge
to B are made t@nnounce sets, which are generally larger on quorum systems and their uses, which was initiated
than ordinary quorums and are guaranteed to be observeth [6, 16]; for a survey of quorum systems work, see [12].
by clients who may be using arbitrarily old thresholds. Or- More specifically, our methods are designed for Byzantine
dinary variable operations are accordingly modified to take quorum-based replication, which was introduced in [13]

~ .
e

Figure 1. Byzantinefailures in quorum thresh-
old adjustment.

0-7695-0707-7/00 $10.00 ® 2000 IEEE

and further investigated in various works [3, 15, 14]. that server received since the beginning of time to an out-
Our consideration of Byzantine faults makes our treat- put message. A server that receives the sequence of inputs
ment fundamentally different from most prior works on dy- my, ..., my should respond ten; with F(m,...,my),
namic quorum reconfiguration with benign failures only. the correct response. At any given moment a server may
In [5, Ch. 8,missing writes protocol] and [7, 10], a quorum be eithercorrect or faulty. A correct server responds to
system is reconfigured by forming a write-quorum in such any request with the correct response. We allow Byzan-
a way that following readers learn about the reconfigurationtine failures: a faulty server may respond with an arbitrary
in the course of the normal read protocol. Byzantine faults response (including no response). However, note that a cor-
complicate this scheme in that (undetectably) faulty serversrect response is defined irrespective of a server’s prior faulty
might misinform a reader. As discussed earlier, this is espe-output behavior (or state modifications). In practice, since
cially significant when increasing the resilience threshold, servers usually have a state that does not include the entire
since the reader, which may be using an out-of-date quo-history, this means that for a once-failed server to be consid-
rum system, could be misled by a new threshold of collud- ered correct, it must be recovered to the state that it would

ing Byzantine faulty servers. have held if it had never failed.

Quorumadaptation for crash failures is discussed in [4]. The set of clients of the service is disjoint frdim Each
In their approach, if a server fails while « is the only client is assumed to have a FIFO channel to each server.
server contained in the intersection of two quorughsand In our system, clients may be numerous and transient. In

Q;, then the intersection property is maintained by remov- particular, clients are not aware of each other, nor do they
ing u from @; and@; and by substituting another correct necessarily have the ability to communicate with one an-
server. Our work differs from [4] in two significant ways. other. We restrict our attention in this work to server fail-
First, the fact that we treat Byzantine failures means thatures; clients and channels are assumed to be reliable.

we must enable on-the-fly changes not only to the set of We use a replicated data service model baseglorum
guorums, but also to the very intersection property that de-systems, which are defined as follows:

fines those quorums. Second, our clients (which we assume)

to be potentially numerous and transient) do not communi- D€finition: - A quorum systemon a set/ is a setQ C 2v

cate between themselves and cannot inform one another ofUch that/@1,Q, € Q,Q1 N Q» # 0. Elements ofQ are
changes. Our work differs from [4, 9] as well, in that our calledquorums. u
protocols can take hints on the possible level of failures in
the system in order to adjust the resilience threshold, rathert
than rely on specific detection of server failures.

Some work in Byzantine agreement considers dynamic
threshold changes during the run of the protocol. For exam-
ple, Bar-Noy et al [2] present an optimal-round agreement
protocol that lowers its operating threshold midway through
the protocol in order to improve efficiency while still main-
taining overall the resilience of the original threshold. Our
work differs from theirs by considering general replicated Definition: A b-masking quorum system is a quorum sys-
data rather than agreement protocols, but more fundamentem Q such thatvQ:, Q- € Q, |Q1 N Q2| > 20+ 1.
tally in that our protocols allow the fault threshold to be]
raised or lowered as fault-tolerance needs change. In partic-
ular, they take a detected fault as a sign that therefore there This additional intersection property ensures that in spite
are fewer remaining faults in the system, while we may take Of up tob faults in the system, any two quorums intersect in

it as a sign that the initial threshold was too optimistic and at least + 1 correct servers. This enables clients to deter-
should be increased. mine the correct variable value using an algorithm that com-

bines voting and timestamps. tAmasking quorum system

is thus designed to tolerate failures in a system with a static
resilience thresholél.

) For the greater part of this paper we focus our attention
Our system consists of a sEtof data servers such that o 5 particular type of-masking system calledtareshold

the numbem = |U] of servers is fixed. During an exe- guorum system. Threshold systems are defined as follows:
cution of the system, a server receives input messages an

responds to each with a (hon-null) output message.cbhe Definition: A threshold masking quorum system is a quo-
rect response of a server for each input message is defined rum system@ such thatvv@ € Q,|Q| = [(n + 2b+ 1)/2].
by a functionF’ that maps the preceding history of all inputs |

In such a service, clients perform read and write opera-
ions on a variable by reading or writing its value at a quo-
rum of servers. The intersection property ensures that any
read operation observes the value of the most recent write
operation; timestamps can be used to distinguish this value
from older ones.

A useful type of quorum system for Byzantine fault tol-
erance is thé-masking quorum system:

2 Preiminaries

0-7695-0707-7/00 $10.00 ® 2000 IEEE

For simplicity, we assume hereafter thiais odd, so that threshold setting. The variabl® can be written with inte-
we can eliminate the ceiling operator from our calculations. gral values in the randé, ..., bz]. The threshold variable

Ordinary (i.e., statich-masking quorum systems sup- has an associated timestaffip that follows the same rules
port replicated variables in a Byzantine environment as as the timestamps of other variables: every update to the
follows. To emulate a shared variable each server variable is stamped with a unique timestamp that is greater
stores a “copy’V, of V along with a timestamp variable than any timestamp used in a previously completed opera-
Ty,. A timestamp is assigned by a client 1§, when tion.
the client writesV,,. Our protocols require that different A client that wishes to change the resilience threshold
clients choose different timestamps, and thus each atient for the system must first write the up-to-date threshold into
chooses its timestamps from someðat does notinter- B, and then continue performing operations with the new
sect7,: for any other client’. The timestamps iff, can be resilience threshold accounted for. Intuitively, a client can
formed, e.g., as integers appended with the nanagrothe updateB in much the same way that it updates any other
low-order bits. Note that faulty servers may return arbitrary shared variable. There is one significant complication, how-
values both for variables and for timestamps. The read andever: because the threshold is dynamic, different clients
write operations are implemented as follows. may have different memories of its value depending on how

recently they have accessed the quorum system. It is there-

Write For a client to write the value to variableV, it fore necessary that new threshold values be written to a

queries servers in some quorunto obtain the timestamp St Of seérvers whose intersection wéilh possible quorums
t, from Ty, at eachu € Q. The client then chooses a (-8 defined by any € [buin, bina.]) is sufficiently large to
timestamptv € 7. greater than the highest timestamp value allow clients to determine unambiguously the correct cur-

in {t.}uc and greater than any timestamp it has chosen inrent thres'hold during any given operatlon; the client can
the past, and updatd andTy., at each serve in some Fhen continue or restart 'Fhe operation accordingly. He.nce,
quorum@’ to v andt, respectively. in athreshold write operation 3 is updated at all servers in

anannounce set. A few issues need to be addressed in or-

der to specify threshold adjustment fully. First, we need to
Read: For a client to read a variable, it queries servers specify the intersection requirement between the announce
in some quorun® to obtain values,, ¢, from variables set and all ordinary quorums in such a way that threshold
Vi, Tv,u at eachu € Q. From among alKv,,t.) pairs adjustments will be noticed by all potential clients. Sec-
returned by at leasdt + 1 servers inQ, the client chooses ong, we need to specify threshold write and read protocols.
the pair(v, t) with the highest timestamp and then returns Thjrg, we need to modify our read/write protocols to ac-

v as the result of the read operation. If there is no pair count for threshold adjustments. These will be the topic of

operationisL (a null value). Since the system for which we design our protocols

] .) has a dynamically changing resilience threshold, a standard
A servery that receives an updafe, ¢) during a write hreshold constraint, e.g., “the number of faulty servers in
operation update¥y, Ty, to (v,), respectively, ifft > the system at any given time does not exckgdloes not
Tv,,- This pair of protocols guarantesafe 8] variable se- gyffice for our purposes. Rather, in order to guarantee cor-
mantics, i.e., a read operation that does not overlap a Writerecness, we need a statement that the dynamically written
operation returns the value of the most recent write (the ireshold values are correct. To this end, we adopt the fol-
proof of this assertion can be found in [13]). lowing assumption for the remainder of the paper.

3 Threshold Adjustment Assumption 1 Let o be any operation, i.e, a threshold
read, threshold write, variable read, or variable write. Let

The read/write protocols above provide safe variable em-b be the minimum among (i) the value written in the last

ulation in a Byzantine environment with a static resilience Write to B preceding o (in some serialization of all preced-

threshold. The goal of this work is to extend these proto- ing writes) and (ii) the values written to B in any threshold

cols so as to allow dynamic adaptations of quorum systemsWrites that are concurrent with o. Then, no quorum access

to varying resilience thresholds. The challenge is to main- issued within o returns more than b faulty responses (i.e., no

tain safety of any replicated variable in the system while morethan b serversare“ currently” faulty).

dynamically performing such changes, without stopping the

normal operation of the system. In practice, Assumption 1 amounts to requiring that the
To accommodate changes in the threshold setting, we in-threshold should be changed proactively and at a reasonable

troduce a new replicated variatifethat contains the current rate.

0-7695-0707-7/00 $10.00 ® 2000 IEEE

The goal of our threshold adjustment protocols is to Assumption 2 n > 6b,,0: — 2bsmin + 1.
maintain safety of all replicated variables despite possible) . o
modifications to the resilience threshold. For the purposeNOte that Assumption 2 is a generalization of e+ 1
of safety, we treat the associated threshold varifids an servers required by a static threshold system, i.e., one where
integral part of any variabl&. Accordingly, the modified bimin = bmas [13]

safety condition that our protocols will satisfy is the follow- 1 "€ protocol for raising or lowering the threshold using
ing. an announce set of size— b,,,,. 1S as follows:

Safety: A read operation o’ that overlaps no writes to Threshold write: For a client to seB to a new threshold
V or threshold write operations t6 returns the value of ~ Valueb, it queries servers in some announce 4€pf size

the most recent write t& that precedes this read, in some ™ — bmaz) 10 obtain values,, t,, from variablesB,, Ts..
serialization of all write operations preceding it. ateachu € A. Itthen chooses a timestampe 7. greater

than the largest timestamp{m, }..cq. and greater than any
. . timestamp it has chosen in the past. Finally, at each server
4 Quorum AdJ ustment in Threshold Systems u in some announce sdf, it updates3,, and71 , to b and
t, respectively. (Note that this is exactly the static variable
write protocol except that an announce set is used instead of
a standard quorum.)

In this section we present and discuss protocols that al-
low clients to read and adjust the fault tolerance of a thresh-
old masking quorum system. An important property of our
protocols is that they require no direct interaction among

clients; all information is passed through shared variables. 1 resholdread: Foraclientto read the current threshold

valueb from B, it queries servers in some quordpof size
(n + 2bym + 1)/2 to obtain values,, t,, from variables
B., T, ateachs € Q. Of the(b,, t,,) pairs returned by at
We wish to design protocols in which the resilience €8Stma. + 1 serversing, it selects the paifb, t) with the
threshold of the underlying quorum system can be dynami-Nighest timestamp, provided that it is notountermanded
cally adjusted to any value within some rar8gin , bmas|- as defined below._ If there is no suc_h pair, ofbift) is coun-
The simplest way to ensure that clients always use the corermanded, then it seisto L (undefined).
rect threshold is to require clients to read the threshold be-
fore any read or write, a_nd to adopt a threshold yalue only if manded in a given query if at leash,,., + 1 SErvers re-
at lef”‘Sme + 1 SErVversin a quorum agree on this threshold turn threshold timestamps (not necessarily identical) greater
and its associated timestamp. By Assumption 1 and the dEBf'thant. A threshold valué is countermanded if all the pairs

|n.|t|on of b4z, NO More thanbmm responses to any query appears in are countermanded. n
will be faulty. Therefore, if the announce set for a thresh-

old change intersects every possible quorum (i.e., every set The purpose of this definition is made clear by the fol-
of size(n + 2b+ 1)/2 for bpin < b < bpag), inatleast lowing theorem:

2b,,q2 + 1 servers, it follows that the response to any query

will include at least, ., + 1 notifications of the change. Theorem 1 If b is older than the most recently completed
(One advantage of this approach is that clients need notthreshold write at the time of a threshold read, then it will
maintain their own copy of the current value of the thresh- be countermanded in that read.

old b. In particular, new clients can join without having to

4.1 Basic Protocol

Definition: A threshold/timestamp paifb, t) is counter-

initialize a copy of the threshold.) Proof: If no threshold write operations are taking place
initaiiz py ' concurrently with the threshold read, then the result follows

i e[IEGRIEY o Assumpton 1, the miersecton pro
9 . 59) - . erty between announce sets and quorums, and the fact that
any threshold setting. This value will be sufficient provided

. . bmaz > b. Furthermore, for any, the number of cor-
that the intersection between any quorum and any announce)
. . ; ; Fect servers whose threshold timestamp exceeds that of
set is of size at leag®, ., + 1. Thatis, we need: . . .
is monotonically nondecreasing over the course of a thresh-
2maz +1 < (0 + 20min +1)/2) + (1 — bpaz) — 70 old write. Therefore the result holds during threshold writes

as well. [|
It follows thatn > 6byez — 2bmin + 1, @and thus we need

at least6b, ;o — 2bin + 1 Servers to provide a dynamic
threshold quorum system whose threshold ranges &rpm

t0 b,,4,. We take this as an assumption for the remainder of The correctness of the threshold variable follows from the
the paper. following theorem and subsequent corollary to Theorem 1.

411 Correctness

0-7695-0707-7/00 $10.00 ® 2000 IEEE

Theorem 2 In any threshold read that does not overlap a the integrity of previously written variables unless some
threshold write, the most recently written threshold value specific corrective action is taken.
(in the serialization consistent with timestamp order of the Suppose, for example, that the threshold of a system is
writes) is returned. increased frond to b + 3. Once this operation is complete,
clients performing read and write operations will learn of

This theorem is easily seen to be implied by the following the new threshold and perform those operations on quorums
two lemmas: of the new size. Unfortunately, values that have been writ-
ten under the previous threshold will appear only ablkh
qguorum of servers. The intersection between an old quorum
and a new one is only guaranteed tdbe- 4, not the2b+ 7
required for tolerating an additionalfaults.

More generally, the main difficulty is that if a variable

Proof: Letb be the most recently written threshold value. was last written when the threshold was smaller than the
The announce set for this threshold intersects all possible

quorus i at sy 1 servers by Assumpton 2. SSTULeshol, e eadng foma quonm ol e
Becauseh was set in the most recent threshold write, and

the current threshold read does not overlap any threshold\é"III respond with the latest value. Rather, to ensure that

writes, the variablé3 has not been overwritten at any cor- m; 1b((:aor:(raec?atsss2rrvetz)sir\:\glrlefssg%r:ed Vgg?uf:iéaetgztu\fr:uz rléa d
rect servers in this set. By Assumption 1 and the fact that Y y q 9

b < bmag, 8t 108Stine, + 1 SErVers in any possible quo- Opiz?rﬁir;;r](nr:b?ebg ggéir:vlzlgezmainv.vriter accesses a quo-
rum will return the threshold along with the most recent P q

timestamp. - rum of servers in order to determine a timestamp for the
write. The writer needs to access a quorum that guaran-
Lemma 2 For any such threshold read, the most recently tees intersection in one correct server with the most recently
written threshold is not counter manded. written quorum. The difficulty is that the latter could have
a quorum size that corresponds to an arbitrarily old thresh-
Proof: The most recently written threshold has the highest old. If the current threshold can be determined, then a
(nonforged) timestamp. Therefore if the correct threshold is quorum of sizen + 2b + 1) /2 — by, Suffices to intersect
b, then by Assumption 1, no more thaiservers may forge in b+ 1 with any other quorum, and hence, in at least one
higher timestamps in their response to the query. Since ~ correct server. However, if the threshold cannot be deter-

Lemmal For any such threshold read, the most recently
written threshold/timestamp pair is returned by at least
bmaz + 1 SErvers.

bmaz + 1, the valueb is not countermanded. [mined, which can happen when a write operation overlaps

a threshold-write operation, then a (potentially larger) quo-
Corollary 1 A threshold read that overlaps one or more rum of size(n + 2b,,42 + 1) /2 — b,i, NE€dS to be accessed
threshold writes will not return a threshold older than the in order to determine a correct timestamp for the write op-
value in the most recently completed threshold write. eration.

We address these issues in the protocol below.
Proof: This follows from Theorem 1 and the fact that the

read does not return a countermanded value. [| 5.1 TheProtocol

Remark: A consequence of this theorem and corollaryis ~ The protocol for reading and writing a variabifeusing
that the protocol given above implements a weakened ver-dynamic thresholds is as follows:

sion ofregular variable semantics [8] for the threshold vari-

able; i.e., a query that overlaps one or more writes will re- Read: For a client to read variablé, it performs the fol-
turn either the value of the most recently completed write, Jowing steps:

the value of one of the writes which it overlaps, or This

is a stronger guarantee than that provided by safe semantics. 1. Perform a threshold read using the protocol in Sec-

tion 4 to obtain current threshold If b = L, return_L

. .) as the result of the read.
5 Variables Implemented with Dynamic

Threshold Systems 2. Query servers in a quoru@ of size(n + 2b + 1)/2
to obtain values,,, t,, from variablesV,, Ty ,, at each

In a quorum system whose resilience threshold is dy- ueQ.
namic, a change to the quorum structure may require some 3. Of the (v,,t,) pairs returned by at leadt,;, + 1
attention to the variables that make use of that threshold. servers inQ, consider the paifv, ¢t) with the high-
Specifically, an increase in the threshold may compromise est value oft. If no such pair exists, return. as the

0-7695-0707-7/00 $10.00 ® 2000 IEEE

result of the read. I{v,t) appears irb + 1 identical
responses, retunnas the result of the read.

4. Otherwise (i.e.(v,t) appears at leadt,,;,, + 1 times

but fewer tharb + 1), query servers in an additional

setC of sizeb — by, to Obtain values,,, t,, from
variablesV,,, Ty, at eachu € Q', whereQ' = QU C
containg(n + 2b + 1)/2 + b — by SErVErs.

5. Of the(uv,,t,) pairs that appear in at leat+ 1 re-
sponses frond)’, select the paifv’, t') with the high-

est value ot’ and returrv’ as the result of the read. If

no such pair exists, returh as the result of the read.

Write: For a client to write value to variableV/, it per-
forms the following steps:

1. Perform threshold read using the protocol in Section 4
to obtain the current threshold If b = 1, then use

b = bmaz-

2. Query serversin a quorugnof size(n +2b+1)/2 —
bmin t0 Obtain timestamp,, from 7', at eachu € Q.

3. Create a newtimestamE 7. such that is larger than

any timestamp ift,, } e and any timestamp used be-

fore by this client.

4. Writev and¢ to V,, and Ty, respectively, at each

serveru in a quorum of sizén + 2b + 1)/2.

timestamp. Since this write completed at- 2b,,,;, +1)/2

or more servers, its value and timestamp appear in at least
bmin + 1 Of the responses returned in Step 2 of the read pro-
tocol. It is then returned in Step 3 if it appearedbin- 1

of the responses from Step 2, or otherwise will be returned
in Step 5 since reading frofh + 2b 4+ 1)/2 4+ b — byin
(Step 4) intersects any previous write quorum in at least
2b + 1 servers.

It is left to show that there is a serialization of the writes
in W in which the write with the highest timestamp is last,
i.e., that a write operatiow, that follows a write operation
wy uses a higher timestamp. This follows from the facts that
if wy uses the threshold, then at mosb’ faulty responses
to its query in Step 2 are returned, and that2b'+1) /2 —
bmin SEIVErs mustintersect the quorum writteminin b’ +
1 servers (and thus at least one correct server). |

6 Other b-Masking Quorum Systems

In this section, we briefly discuss how to employ two
additional --masking quorum systems in an environment
with a dynamically varying resilience threshold, and how
to set an appropriate announce set for changing the thresh-
old value. Thus, the utility of our methods is not limited to
the threshold construction.

6.1 BoostFPP quorum system

BoostFPP masking quorum systems [15] are constructed
as a composition of two quorum systems. The firstis a quo-

Note that in a steady system state, when reads and write$, ., system based on a finite projective plane (FPP), sug-

obtain the up-to-date threshold they perform operations
simply by accessing ordinaymasking quorums, i.e., of
size(n+2b+1)/2. Following adjustments to the threshold,

gested originally by [11]. In the FPP quorum system, there
areq® + g + 1 elements and quorums of siger 1 (corre-
sponding to the hyperplanes of the FPP), whetep” > 2

though, operations may incur the higher costs of accessinq:Or some primep and integer-. Each pair of distinct quo-

larger quorums.

51.1 Correctness

The following theorem proves the correctness of the above
protocol—namely, that it maintains safety of the variable

V.

Theorem 3 A read operation that overlaps no write oper-
ationsto V' or threshold write operations to B returns the
value of the most recent write to V' that precedes this read,
in some serialization of all write operations preceding it.

Proof:

rums in FPP intersect in exactly one element. The second
guorum system is a thresholdmasking quorum system
with some system size > 4b + 1. The composition of
the two systems is made by replacing each element of the
FPP with a distinct copy of a threshold system. That is, the
universe for a boostFPP systeniis= U;?:{q“ U, where
eachU; is a set ofs servers, and/; N U; = 0 for anyi # j.
EachU; is called a “super element”. A quorum is selected
by first selecting a quorum of super elements in the FPP, say
Ui,---,Us,,,, and then selectinf(s + 2b + 1) /2] servers
from eachU;,. A boostFPP is @&-masking quorum sys-
tem since every pair of quorums of super elements intersect

Let W denote the set of all write operations preced- in at least one super element, ddy, while the selection

ing the read. By Theorem 2, Step 1 of the read operation ob-of threshold quorums withid/; guarantees intersection of

tains the most recently written threshaéldr a concurrently
written one. Therefore, by Assumption 1, any quorum of

responses obtained in the read contains at méailty re-

sponses. Consider the write operatiofiinwith the highest

0-7695-0707-7/00 $10.00 ® 2000 IEEE

2b + 1 elements.

To employ boostFPP with a variable resilience threshold
bmin < b < bnez, We leave the FPP construction of su-
per elements unmodified, and change only the selection of

servers within each super-element. That is, we require thatwith other quorums using thethreshold (the normal case).

8 > 6byas — 2bmin + 1 @and for eact/; and any threshold, In Step 4 of the read protocol, we use enlarged quorums of
we select quorums ify; as in the threshold system, e.g., an \/bb+71+ rows and’“r—1 columns, guaranteeing intersec-
ordinary quorum ha$(s + 2b + 1)/2] servers in each’;, tionind+ 1 correct servers For Step 2 of the write proto-

. b+1 b+1
andhan a;jnounce set comprisessof b,,q. servers from col, a quorum comprising %bi—Jr rows and2¢—
each suctv;. columns is queried for timestamps, guaranteeing intersec-

It is eaSily seen that such selections guarantee the re‘uon inb + 1 servers (and hence, one Correct) with any pre-

quired intersection size between announce sets and ordinaryjously written quorum. Finally, it suffices to send updates
quorums, as well as between read and write quorums andg ordinaryb-quorums containing/b + 1 rows andy/d + 1

pairs of write quorums, as in the threshold system case. ¢gJumns.

The proof of correctness is essentially identical to the
6.2 M-grid quorum system threshold system case, simply making use of the intersec-
tion size statements for this construction.
An M-Grid masking quorum system is described in [15].

For any resilience threshold whereb < (v/n — 1)/2, 7 Discussion

M-Grid is constructed as follows: The universero$ervers
is arranged as @n x v/n grid. A quorum in an M-Grid con-
sists of any choice of/b + 1 rows andy/b + 1 columns.
Formally, denote the rows and columns of the grid Ry
andC;, respectively, wheré < i < y/n. Then, the quorum
system is

7.1 Comparison to static quorums

When deploying a system in practice, the maximum an-
ticipated number of failures,, ., is typically calculated as
a function of the total number of servets e.g., based on
M-Grid(b) = an analysis of the probability of each individual server fail-
ing. A disadvantage of the approach in this paper, as com-
ared to a static quorum system deployment, is that it can
U C; U U Ri: I C{1...v/n} [J|=I|=Vb+1 gccommodate fev(\q/er valueZmM forg g;livenn: ours re-
jed iel quiresn > 6b,,40 — 2bmin + 1 Servers, as opposed to only
n > 4bn.. + 1 in the static case. However, for those con-
figurations ofn andb,,.,; where our dynamic approach is
possible, our approach performs better than a static quorum
system in the common case, where there are no Byzantine
failures and the system runs with a threshold of (or close to)

M-Grid maintains the requirement dfmasking quorum
systems as follows: If a pair of quorums overlap in a full
row or column, then there argn > 2b + 1 elements in
their intersection. Otherwise, their intersection contains the
crossing points of all rows of one quorum with columns

of the other, and vice versa, and hence contains at least ™"

2VDEIVE 31> 2 4 1 clemens, sider 1 quorum sse, Since tis determings the number o
To make use of M-Grid quorum systems with a vari- q ’

able resilience thresholbl,;, < b < b,.... we need to servers a client must access in ordelr to perform an oper-
require thath,e, < (v — 1)72. The grid arrangement ation. LetQ(b_) denote the quorum size for a static quo-
remains static for all quorum systems, but the number of rum system with thresholtf e.g., in the threshold syst.em,
rows/columns in each quorum will depend bnthe cur- Qb) = (n+2bf 1)/2. For all of the quorum construcﬂor)s
rent resilience threshold. For the purpose of setting the V€ have described—threshold, boostFPP, and M-Grid—

: L variable read and write operations access quorums of onl
threshold variablé3, we use announce sets comprising of P 4 y

(bae-+1) (e +1)) sizeQ (b,,in) While the system runs with a thresholdgf;,,
IV\/_bmerl-I rows and "\/bmm+l-| columns, which guaran- a4 there are no threshold write operations. This compares

tees that they intersect any quorum ever usezbjp,; + 1 favorably to theQ (b,,..)-Sized quorums that a static system
servers. With these announce sets, we use the same threshould use.

old write and threshold read protocols as for the thresh- That said, when the threshold is raised to sérmeb,,;,,

old b-masking system. Unfortunately, the read and write penalties can be experienced that exceed the costs of access-
protocols cannot use ordinary size quorums, since in gen-ing a static system. For example, in the threshold quorum
eral, quorums in M-Grith) may not intersect quorums in construction, the threshold write itself accesses b,,q,
M-Grid(b') in b + bmin + 1 elements as required. Hence, servers; variable read operations may access quorums of
for Step 2 of the read protocol, we need to use quorumssizeQ(2b— b,,s,); and variable writes may access quorums
comprising ofmax{v/b + 1, SJ&M} rows and columns of size Q(b,...) When concurrent with threshold write op-

to guarantee intersection éf,;, + 1 correct servers with erations. Similarly, our variable read and write protocols
any previously written quorum, and intersection2éf+ 1 for M-Grid employ quorums comprised @¥(b) rows and

0-7695-0707-7/00 $10.00 ® 2000 IEEE

columns, so their cost is on the order@fb?). Also, be- write operations are sufficiently less frequent than read op-
cause read operations retutnif the threshold read does, erations, this alternative way of using a varying threshold
the likelihood that a read operation retutrhss increased. may be attractive.

In the performance discussion above, we have ignored
the number of communication rounds performed by our
protocols, and indeed, have not attempted to optimize for it.
An obvious direction for optimization is to couple together .)
the threshold reading with the value or timestamp reading N this paper, we have presented protocols for reading
at the beginning of variable read or write operations. For and adjusting the Byzantine fault tolerance level of a thresh-

Conclusion

brevity, we do not include these in the exposition here. ~ 0ld masking quorum system, and shown how these proto-
cols can be extended to other typesbahasking quorum
7.2 An alternative approach systems, specifically M-Grid and boostFPP systems. In do-

ing so, we have preserved the safe variable semantics pro-

One of the strongest restrictions on the work we have vided by such systems.

presented here is that of Assumption 1. At the cost of mak-
ing writes pessimistically static (and thus more expensive) Refer ences
we can weaken this restriction while still maintaining safety.

Specifically, we can replace it with: [1] L. Alvisi, D. Malkhi, E. Pierce, and M. Reiter. Fault de-
tection for Byzantine quorum systems. MPnoceedings of
the 7th International Working Conference on Dependable
Computing for Critical Applications, pages 357-372, Jan-

Assumption 3 Any operation that is concurrent with no
threshold writes receives no more than b faulty responses

in any quorum access, where b is the current value of B. uary 1999.

In addition, no quorum access in any operation (even one [2] A. Bar-Noy, D. Dolev, C. Dwork, and R. Strong. Shifting

concurrent with threshold writes) returns more than b4, gears: Changing algorithms on the fly to expedite Byzantine

faulty responses. agreement.Information and Computation, 97(2):205-233,
1992.

A consequence of the second half of this assumption is [3]

. e R. A. Bazzi. Synchronous Byzantine quorum systems. In
that a write quorum performs correctly if it intersects all

Proceedings of the 16th ACM Symposium on Principles of

other write quorums in at least, ., + 1 servers. Thisis ac- Distributed Computing, pages 259-266, August 1997.
complished by any write quorum size betwe@nt bmq, + [4] M. Bearden and R. Bianchini. A fault-tolerant algorithm for
1)/2 andn — bmg,. However, there remains the require- decentralized online quorum adaptation. Piroceedings of
ment of ensuring that every read quorum intersects every the 28th International Symposium on Fault-Tolerant Com-
write quorum in at leas?b + 1 servers, wheré is the cur- puting (FTCS98), pages 262-271, June 1998.

rent threshold during the reddf we use a write quorum of [5] P. A. Bernstein, V. Hadzilacos, and N. Goodmadoncur-
the smallest size, reads arere expensive than in the static rency control and recovery in database systems. Addison-
case for values dfthat are sufficiently close t,,... If, on Wesley, 1987. . .

the other hand, we use write quOrUMS of Size byqq, it [6] D. K. Gifford. Weighted voting for replicated data. Rro-

ceedings of the 7th Symposium on Operating Systems Prin-
ciples, pages 150-162, 1979.

[7] M. Herlihy. Dynamic quorum adjustment for partitioned
data. ACM Transactions on Database Systems, 12(2), June

becomes unnecessary for read operations to be aware of the
current threshold at all; we have shown above that a read
guorum based ob,,,;;,, intersects such a write quorum in at

least2b,,., + 1 servers. This is a potentially useful trade- 1987.

off for systems in which reads are much more frequentthan [g] | Lamport. On interprocess communications (part ii: algo-

writes. Itis, however, a static system and as such is uninter- rithms). Distributed Computing, 1:86-101, 1986.

esting from the point of view of this work. [9] E. Lotem, I. Keidar, and D. Dolev. Dynamic voting for con-
A more interesting approach is to set the write quorum to sistent primary components. [IProceedings of the 16th

the same size as in a stabig,,, system, i.e(n + 2b,,42 + ACM Symposium on Principles of Distributed Computing

1)/2. In this case, a read quorum can be sure of a sufficient (PODC), August 1997. _
intersection with the previous write quorum if it is of size [10] N. Lynch and A. Shvartsman. Robust emulation of shared
(n + 4b — 2byee + 1), whereb is the current threshold. If memory using dynamic quorum-acknoyvledged bro.adcasts.
b = bynas, then this is exactly the same as a stafig, read In Proceedings of the 20th Annual International Symposium

quorum; ifb < by,q itis an improvement even over a static on Fault-Tolerant Comptting (FTCS 97), June 1997. Seat-

read quorum fow, let aloneb For systems in which tle, Washington.
q ! mat: Y [11] M. Maekawa. A,/n algorithm for mutual exclusion in de-

2Since the safety property applies to reads that do not overlap threshold centralized systemsACM Transactions on Computer Sys-
adjustment operations,is well defined. tems, 3(2):145-159, 1985.

0-7695-0707-7/00 $10.00 ® 2000 IEEE

[12] D. Malkhi. Quorum Systems. in The Encyclopedia of Dis-
tributed Computing. Joseph Urban and Partha Dasgupta ed-
itors, Kluwer Academic Publishers, To be published.

[13] D. Malkhi and M. Reiter. Byzantine quorum systeniis-
tributed Computing, 11(4):203-213, 1998.

[14] D. Malkhi, M. Reiter, A. Wool, and R. N. Wright. Proba-
bilistic Byzantine quorum systems. Technical Report 98.7,
AT&T Research, 1998.

[15] D. Malkhi, M. K. Reiter, and A. Wool. The load and avail-
ability of Byzantine quorum systems. Rroceedings 16th
ACM Symposium on Principles of Distributed Computing
(PODC), pages 249-257, August 1997. To appear in Siam
Journal of Computing.

[16] R. H. Thomas. A majority consensus approach to concur-
rency control for multiple copy databaseACM Transac-
tions on Database Systems, 4(2):180-209, 1979.

0-7695-0707-7/00 $10.00 ® 2000 IEEE

