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Abstract 

Authenticating the source of a message in a large dis- 
tributed system can be difficult due to the lack of a single 
authority that can tell for whom a channel speaks. This has 
led many to propose the use of a path of authorities, each 
able to authenticate the next in the path, such that the first 
in the path can be authenticated by the message recipient 
and the last can authenticate the message source. In this 
paper we suggest the use of multiple paths to provide redun- 
dant confirmation of the message source, and focus on two 
related notions of path independence that seem to bolster 
authentication. We formalize the problems of locating max- 
imum sets of paths with these independence properties in a 
graph-theoretic framework, give evidence that they are not 
polynomial-time solvable, and propose approximation algo- 
rithms for these problems. We also introduce PathServer 
for PGP, a service for fmding sets of such paths to support 
authentication in PGP applications. 

1 Introduction 

Enforcing access controls generally requires that sources 
of access requests be det ermined. In a computer system, 
a request is received on some channel, such as a network. 
Determining the set of principals (e.g., users, processes, or 
computers) that could have initiated that request is called 
authenticating the channel (or request). Authentication in 
centralized computer systems is simplified by the fact that 
there is a central authority (the operating system, or a se- 
curity kernel thereof) that controls all channels and knows 
what principals can initiate requests on what channels. In 
a distributed system there typically is no such central au- 
thority for this information. As the distributed system gets 
larger and more diverse, the difficulty of reliably authenti- 
cating a channel can increase substantially. 

This difficulty is exemplified in secure electronic mail sys- 
tems such as PEM [ll] and a number of systems based on 
the PGP [23] public key management and encryption tools. 
An e-mail message in these systems would typically contain 
a digital signature that is intended to enable the recipient 
of the message to det ermine the user who sent the message. 
Following [13], the channel in this case is the public key that 
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can be used to verify the signature on the message, and au- 
thenticating the channel means determining the principals 
that could have generated that signature. Lacking a global 
authority on this information, the user is asked to defer to a 
“path” of channels cl , . . . , CL (other public keys) such that (i) 
the user believes it can authenticate cl, (ii) each c;, i < .!, 
has uttered a statement (a certificate) regarding for what 
principal c;+l speaks, and (iii) CL has uttered a statement re- 
garding for what principal the channel of interest to the user 
speaks. If the user is willing to trust the statements of each 
channel on the path, then the user authenticates the target 
channel according to the statement that cl made about it. 
Such approaches have also been promoted in [2, 8, 13, 221. 

Relying on a single path of channels can be unreliable 
since it assumes trust in all intermediate channels on the 
path, and a single instance of misplaced trust can result in a 
false authentication of the target channel. That is, if any c; 
in the path provides a false statement regarding c;.+l, either 
accidentally or purposely, then there is no reason to believe 
that a proper semantics for the target channel is reached. 
One way to increase the assurance in the channel authenti- 
cation is to limit the length of the path used, thereby limiting 
the number of intermediate principals that must be trusted. 
A second way is to employ multiple paths, and to authenti- 
cate the target channel based upon information obtained via 
each of these paths. This approach is inspired by prior work 
in nullifying Byzantine-faulty sources of information by con- 
sulting multiple “independent” sources of information and 
accepting as true the information returned by a majority of 
them (e.g., [18]). In this context, our multiple sources of 
information are multiple paths of bounded length resulting 
in statements about the target channel. 

In this paper we explore what it means for multiple 
length-bounded paths to be independent in this context. We 
focus on two related notions of independence: 

1. A set of bounded paths are ‘Lindependent” if they are pair- 
wise disjoint, i.e., ifno two paths share a common channel. 
We call this a set of bounded disjoint paths. Bounded dis- 
joint paths are appealing because no channel is relied on 
multiple times in the authentication of the target channel. 

2. A set of bounded paths are 5ndependent” if the removal 
of lc channels is necessary to disconnect all of them. We 
call this a set of bounded /c-connective paths. Bounded 
k-connective paths are robust to the compromise of any 
IZ - 1 channels: if some Ic - 1 channels are compromised 
and thus the statements they contribute are forgeries (and 
should be disregarded), there is still a bounded path con- 
taining none of these compromised channels to the target 
channel. Note that a set of Ic bounded disjoint paths is a 
set of bounded k-connective paths, but in general a set of 
bounded L-connective paths will not be disjoint. 
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To demonstrate the utility of these notions in prac- 
tice, we have built a World-Wide-Web service, called Path- 
Server, that supports authentication of PGP public keys 
using our bounded disjoint paths and bounded connective 
paths paradigms. If bounded disjoint paths are requested, 
PathServer locates a set of such paths from the requesting 
principal (or more precisely, a channel that is known to speak 
for it) to the target channel in our database of PGP certifi- 
cates (a “keyring” in PGP parlance). If bounded connective 
paths are requested, PathServer returns a value k and a set 
of bounded k-connective paths from the requesting principal 
to the target channel. Though PathServer currently sup- 
ports only PGP, our work can also be applied to other pub- 
lic key management systems (e.g., those based on X.509) as 
well as to systems that employ other types of channels (e.g., 
shared keys, protected physical links, or a combination of 
these [13]). 

While our experience with PathServer suggests that these 
independence concepts are useful in bolstering assurance in 
authentication, they also have certain limitations. First, our 
insistence on independent paths is an effort to avoid depend- 
ing heavily on a few principals in the process of authenticat- 
ing a target channel. However, since computer systems can 
identify principals only syntactically, in general it is outside 
the scope of a system to detect channels controlled by prin- 
cipals whose actions are closely correlated (e.g., two close 
friends). Thus, we are forced to settle for the aforementioned 
syntactic notions of independence, and to appeal to the user 
for assistance in pruning potentially correlated paths further. 

Second, the complexities of finding a mozimum set of 
bounded disjoint paths (i.e., a set of largest cardinality) and 
of finding the m&mum k for which there exists a set of 
bounded k-connective paths provide strong evidence that 
neither can be performed in polynomial time. Specifically, 
the former is NP-hard and the latter is coNP-hard [6]. More- 
over, the foremost practical instances of these problems that 
we are targeting (i.e., public key certification systems such 
as PGP) induce graphs of suflicient size to make this a severe 
limitation. We thus propose efficient heuristics to approxi- 
mate solutions to these problems. 

The rest of this paper is structured as follows. We begin 
in Section 2 by describing related work. We formalize our 
problems in Section 3. In Section 4, we motivate our work by 
describing the PathServer application. We present and eval- 
uate our approximation algorithms for finding a maximum 
set of bounded-length disjoint paths in Section 5. We extend 
these algorithms to compute a set of bounded k-connective 
paths for an approximately maximum k in Section 6. We 
conclude and discuss future work in Section 7. 

2 Related work 

There has been much work on the problem of gaining in- 
creased assurance in the authentication provided by paths 
of channels. Much of this work has focused on assigning nu- 
merical measures of trustworthiness to paths or collections 
of paths (e.g., [20,1,15]). These efforts have recognized that 
shorter paths and multiple paths lend additional credibility 
to the authentication of a channel, and the derived numer- 
ical measures tend to reflect these observations. Our work 
complements this research by providing algorithms and tools 
to efficiently locate as many independent paths as possible, 
which can serve as input to such evaluation functions. 

Prior work on locating paths of channels typically focuses 
on finding a single path to a channel, and either assumes 
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a known “topology” regarding what channels make statc- 
ments about others [2, 8, 131 or exhibits exponential worot- 
case complexity as a function of the number of channels and 
statements [20,21,22]. A contribution of our work is to look 
beyond a single path to locate a collection of paths with de- 
sired independence properties, without assuming a known 
topology on the relationships between channels and often 
without suffering from exponential complexity. 

In the context of PGP, there have been efforts to gather 
statistics about the graph of channels (public keys) induced 
by PGP certificates worldwide [16]. This work focuses on 
characterizing the structure of the graph, and in particular 
identifying its strongly-connected components, determining 
mean and maximum shortest path distances between chnn- 
nels, and identifying channels in the graph that are central 
to its connectivity. Our work differs both in its goals-i.e., 
increasing assurance in authentication of any channel of in- 
terest (versus characterizing the structure of the graph)- 
and in its focus on locating independent paths to channclo. 
Our PathServer service highlights both of these gonlo. 

Prior work on the algorithmic aspects of our problem will 
be discussed in subsequent sections. 

3 Problem statement 

In formalizing our problem, we borrow concepts and ter- 
minology from [13]. Our system consists of a set of priflcipalo 
(e.g., people, machines, roles), some of which are ChonnClo 
(e.g., network addresses or encryption keys). Channels arc 
the only principals that can make statements directly. Par 
the purposes of this paper, the only statements that we con- 
sider are statements of the form “cl says cs 3 P” where 
cr and cs are channels, P is a principal, and 3 denotes the 
“speaks for” relation. Intuitively, cz + P means that if a 
statement emanates from cs (i.e., cs “says” the statement), 
then the statement can be treated as if P said it. cl ~nys 
cz j P is then cl’s statement that this is true. 

We model our system with a directed graph G = (V, E), 
where V is a fmite set of channels (nodes) and E is a fi- 
nite set of edges denoting statements of the form described 
above. The statement cl says ca j P, where cr,ca E V, 

is represented by an edge cl 5 cs in E, which we often ab- 
breviate by cr + cz when P is not important. We represent 

multiple statements cl 2 cs,. . .,cr 3 ca made by the same 
channel cl about the same channel cz by a single statement 

PlA...hPj 
+ cz. This graph is perhaps most easily pictured in 

iie context of a “web” of public keys. In this case, V would 
be a set of public keys, and E would bc a set of ccrtificatcs, 
Nevertheless, the graph can be interpreted to include any 
channels and appropriate statements. 

The problem at hand is for a principal to derive the mean- 
ing of some channel t E V of interest, called the target. Par 
simplicity, we assume that the principal has sole control of 
some channel s E V, called the source, and that any ntate- 
ments that the principal is willing to utter regarding other 
channels are represented by edges in E emanating from o. 
We assume that the principal has access to all of G. 

As motivated in Section 1, it is our thesis that multi- 
ple independent paths from s to t, each of at most some 
specified length, can help the principal to authenticate t. 

More precisely, a path from s to t in G is a sequence of 
edgess+cr +... + cl + t for some e 2 0, where each 
ci e {s, t} and where i # j implies ci # cj. The lengtli 



of a path s + cl + . . . + CL + t is e, and a path is b- 
bounded if its length is at most b. In our first interpretation 
of “independent”, we employ disjoint paths. More precisely, 
twopathsfromstot,says+c:+...+c~,+tand 

2 8 + Cl + . . . + cf, + t, are disjoint if c: # c: for all 
;,l<;<el,andallj,15jIez. Inthiscaseourproblem 
becomes the following: 

Bounded Disjoint Paths (BDP): 
Given: A directed graph G, distinguished nodes s and 
t, and a path bound b. 
Problem: Find a maximum set of mutually disjoint b 
bounded paths from s to t. 

To capture our second notion of “independence”, we say 
that a set D of paths from s to t, where s + t e D, is k- 
connective if the smallest subset of V \ {s, t} that intersects 
every path in D is of size k. That is, the paths in D are k- 
connective if it is necessary to remove k nodes (other than s 
and t) to disconnect them all. The b-connectivity from s to t 
is the maximum k for which a set of b-bounded k-connective 
paths from s to t exists (with the edge s + t removed if it 
exists). Our second problem is then: 

Bounded Connective Paths (BCP): 
Given: A directed graph G, distinguished nodes s and 
t, and a path bound b. 
Problem: Find the Ixonnectivity from s to t, say k, 
and a set of b-bounded k-connective paths from s to t. 

Note that ifs 74 t, then any k disjoint b-bounded paths from 
s to t are k-connective, but in general a set of b-bounded 
k-connective paths from s to t are not disjoint. For compar- 
isons of these concepts on undirected graphs, see [6, 141. 

Though we contend that solutions to BDP and BCP can 
be useful in supporting authentication of a target channel, it 
is up to individual users’ policies to determine exactly how 
they are used. Given a set of disjoint or connective paths 

s~c:+...+c:,% 
8 + c: + . . . + c:, s t 

the requesting principal might authenticate t by, e.g., requir- 
ing consensus among the paths, i.e., that PI = Pa = . . . = 
Pi. If there exist pi, PHI that are diRerent, then this indicates 
a discrepancy in what different paths reported about t that 
must be resolved by the requesting principal’s policy (e.g., 
adopting a P; common to k + 1 disjoint paths overcomes k 
compromised channels). 

4 PathServer 

Before addressing how to solve BDP and BCP, we 
lirst give an example of how such solutions can be use- 
ful. We have developed a service for finding bounded 
disjoint or connective paths from a source channel to a 
target channel. Our service, called PathServer, is cur- 
rently implemented to work in the context of the PGP 
key management and encryption system, although it could 
be easily adapted to work with other types of public 

key management systems. PathServer can be found at 
http://nnn.research.att.com/‘reiter/PathServer. 

PGP is the most popular civilian public key system in 
the world today, due in no small part to the decentralized 
model of trust it supports. In PGP, users create signed cer- 
tificates (statements) that bind semantics (e.g., a name and 
an e-mail address) to a public key. These statements, which 
taken together form a graph as described in Section 3, can 
be disseminated through personal communications, on elec- 
tronic newsgroups, or, as is often the case, via a number 
of PGP servers spread across the world. Authentication 
of a message-i.e., of the public key (channel) that signed 
(stated) it-takes place as described in Section 1, with a 
user finding a path of channels by which it can authenti- 
cate the channel of interest. PGP allows a user to specify a 
bound on the length of paths she is willing to accept. PGP 
also provides primitive support for using multiple paths. 
More precisely, it provides interfaces to specify keys as being 
“completely” or “marginally” trusted for certification, and 
for specifying how many completely trusted or marginally 
trusted signatures are required to authenticate a channel. 

PGP lacks, however, the abiity to search for all indepen- 
dent information about a key that is likely to be useful to 
the requesting party. Following our thesis that the appro- 
priate information to provide is disjoint or connective paths 
of bounded length from a channel that the requesting prin- 
cipal trusts to the channel of interest, we have implemented 
PathServer to provide this information. Our service provides 
a World-Wide-Web interface by which a user can submit a 
path length bound, PGP key identifiers for a source key (e.g., 
her own) and a target key, and a choice of disjoint or con- 
nective paths, and will receive in real time a display of the 
requested paths. An example is shown in Figure 1, which is 
the result of specifying disjoint paths of length at most eight 
with a source key identilier of C7A966DD and a target key 
identifier of A40B96D9. The service generates this informa- 
tion using a graph built from a database of PGP certificates, 
which our service updates periodically from other PGP key 
servers throughout the world. 

It is important to note that PathServer need not be 
trusted (module certain caveats that will be discussed in 
Section 6): a user can verify the information retrieved from 
our service by retrieving the appropriate certificates from 
any PGP database (including PathServer) and verifying for 
herself that the paths exist using the existing PGP program. 
Thus, the information retrieved from our service can merely 
be considered as hints to enable independent corroboration 
of the semantics associated with a given target key. 

At the time of this writing-roughly four months after the 
introduction of PathServer on July 24, 1996-PathServer 
has performed over 2000 searches for bounded disjoint or 
connective paths in response to user queries. Initial user re- 
sponse indicates that PathServer is useful for authenticating 
a key prior to acting on information signed by that key and, 
in particular, before adding that key to one’s PGP keyring. 

5 Finding bounded disjoint paths 

We now return to an algorithmic consideration of the 
problems we presented in Section 3, beginning with Bounded 
Disjoint Paths (BDP). BDP has been previously studied 
from a complexity-theoretic point of view, and has been 
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Figure 1: An output of PathServer (disjoint paths, source key id = C7A966DD, target key id= A40B96D9) 

proved to be NP-hard [9].’ Thus, there is little hope of 
finding an efficient solution to BDP, and we turn to fmding 
approximation algorithms for this problem. By an “approx- 
imation algorithm,” we intuitively mean an efficient algo- 
rithm that usually comes close to the actual answer; a more 
careful definition and discussion can be found in [S]. The 
only prior work of which we are aware on approximation 
algorithms for BDP is due to Ronen and Per1 [17]. They 
proposed an algorithm and showed empirically that it per- 
forms well on small random undirected graphs of 50 nodes. 
Their algorithm runs in G(b2n2m) time and O(b2nm) space 
with a path bound b on a graph with n nodes and m edges. 

The class of algorithms that we describe in this section 
is much simpler than that in [17], and offers superior time 
and space complexity. In one instantiation, our algorithm 
runs in O(nm) time and O(ra + m) space. Another runs in 
O(bnm+bn’ log(bn)) time and O(bnfm) space. Zn order to 
motivate our algorithms, we first present another algorithm 
that runs in no(‘) time and space, and thus is exponential 
in b. While we introduce this first algorithm primarily for, 
motivational purposes, it can be argued to be “efficient” in 
the following senses. First, if P # NP, then there is no 
algorithm for solving BDP exactly that is polynomial in II, 
since BDP remains NP-hard for any fixed b 2 4 [9]. Put 
another way, a user that always chooses a fixed bound b > 4 
will observe polynomial growth in the running time of this 
algorithm as a function of the graph size, whereas there is 
no known algorithm that can solve BDP exactly for a fixed 
b 1 4 and provide polynomial growth as a function of graph 
size if P # NP. Second, we expect that in most cases the 
size of b that users desire will be reasonably small. 

Let bdp(G,b,a,t) d enote the cardinality of a maximum 
set of disjoint paths from a to t of length at most b in 
graph G = (V,E). Each of the algorithms A that we 

‘More precisely, BDP remains NP-hard for any fixed b 2 4, 
but can be solved in O(m&i) time on a graph with n nodes and 
m edges if b < 4 using maximum matching and maximum flow 
techniques [9]. It is interesting to note that the related problem 
of finding a requested number of disjoint paths of minimum total 
length can be solved in polynomial time [19]. 
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present here produce a set with cardinality A(G, b,s,t) of 
disjoint paths from a to t of length at most b, where (i) 
A(G,b,a,t) 5 bdp(G,b,a,t), and (ii) if bdp(G,b,a,t > 0, 
then A(G, b, a, t) > 0. The fist of these properties 1 which 
is also required by the definition of an approximation algo- 
rithm [S]) indicates that our algorithms are fail-LWCU~C, in 
the sense that they will never return a set of paths from u 
source channel a to a target channel t that exaggerates the 
actual maximum set of disjoint paths from s to t. In addi- 
tion to the above properties, each algorithm uses heuristics 
to search for a maximum set of paths. In Section 5.3, WC 

give empirical evidence that our algorithms perform well on 
one type of interesting graph. However, this data nlso indi- 
cates that the error of our algorithms is not constant, but 
rather increases as a function of problem size. The following 
theorem provides a small amount of justification. 

Theorem 1 If P # NP, then no polUnomia1 approxcima- 
tion algorithm A for BDP can guarantee bdp(G, b, 8, t) - 
A(G, b, a, t) < K for a fixed constant K. 

Proof : (sketch) Suppose for a contradiction that there in 
such an algorithm A and constant K. We use A to con- 
struct a polynomial time algorithm for solving BDP exactly. 
Consider a problem instance (G = (V,E), b,a, t), and as- 
sume without loss of generality that s 74 t and that K is an 
integer. The algorithm constructs a new problem instance 
(G’, b, a, t) where G’ consists of K + 1 “copies” of G with 
the exception that s and t are represented in G’ only once. 
That is, the nodes for G’ are 

V’={a,t}U 

[ 

u ~411,.*.,4~+ 41 
CEV\C4 1 

and the edge set E’ is defined by 

C1[31-+Cz[jl (l-<j<K-t-1) ifcirca $?{a,t} 
E’ 3 

and cl + cs E E 
3 + 4.71 (l<j<K+l) ifa+cEB 
CM + t (l<j<Kfl) ifc-#tEB 

/ 

I 

) !--_ _ I-----L-- --- .y- __, 
i . . -.7- ._ ._ - yi- .> --- _ - ..-- ,,___ - 
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G’ can be constructed in polynomial time, since K is fixed. 
Note that bdp(G’, b, a, t) = (K + l)bdp(G, b, 8, t). More- 

over, an exact solution to BDP on the instance (G, b, a, t) 
can be obtained by running A on (G’, b, a, t) and taking the 
largest subset of paths that A selected from any single copy 
of G, since A can find less than a maximum set of paths on 
at most K copies of G. 0 

A further characterization of approximation limitations 
for the Bounded Disjoint Paths problem is a topic for future 
research. We now turn to presenting our algorithms. 

5.1 Independent set 

The first approximation algorithm for BDP that we 
present was influenced by work on approximation algorithms 
for a different problem, called Maximum Independent Set. 

Maximum Independent Set (MIS): 
Given: An undirected graph G = (v E). 
Problem: Find a set V’ s V of largest cardinality such 
that no two nodes in V’ are joined by an edge in E. 

Any set V’ 2 V such that no two nodes in V’ are joined 
is said to be an independent set. Such a set V’ of largest 
cardinality is said to be a m&mum independent set. 

MIS is a well-known NP-hard problem (see [S]). In [lo], 
Johnson presented a simple approximation algorithm for this 
problem; the algorithm is detailed in Figure 2. Intuitively, 
it constructs an approximately maximum independent set 
by repeating the following step: find the node w with the 
smallest degree (i.e., that has the fewest neighbors), add v 
to the independent set, and delete u and all neighbor nodes 
from the graph. Choosing the node with the smallest degree 
minimizes the number of candidate nodes eliminated by each 
choice of node to include in the independent set. 

1. Set I = 0 and U = V. 

2. Let v be the node in U with the minimum degree in the 
subgraph induced by U. Set I = I U {v} and U = U \ 
((u} u{u E U: (w,u) E E}). 

3. If U = 0, then halt and return I. Otherwise, go to 2. 

Figure 2: Johnson’s approximation algorithm for MIS on 
undirected graph G = (V, E) 

This approximation algorithm for MIS suggests the fol- 
lowing approximation algorithm for BDP. Given an instance 
(G, b, a, t) of BDP, we construct an undirected graph G 
whose nodes denote paths from a to t of length at most 
b in G, and where two nodes in d are connected if and only 
if the paths they represent in G are not disjoint. Since there 
is a one-to-one correspondence between independent sets in 
6 and sets of disjoint paths from a to t of length at most 
b in G, we can employ Johnson’s algorithm on 6 to find 
an approximate solution to the BDP problem on G. It is 
instructive to note that by applying Johnson’s algorithm to 
6 we are choosing paths from a to t in G that intersect the 
fewest other paths from a to t. 

The proof of [lo, Theorem 3.11 shows that the algorithm 
in Figure 2 is guaranteed to find an independent set of size 

1. Set U = V and 

2.Fmdapathp=s+cr+...+c~+t,l<e<b,inthe 
subgraph induced by U such that CC(p) is the minimum 
over all such paths. If no such path exists, then halt and 
return D. 

3.SetD=DUCp}andU=U\{cr ,..., cr},andgoto2. 

Figure 3: Approximation algorithm for BDP on instance 

(G = (K El, h 8, t) 

at least llog, ;il in any undirected graph 6 = (P, fi), where 

ii = [PI and k is the smallest integer such that P can be 
partitioned into k independent sets (and thus the size of the 
maximum independent set is at least [fi/k]). We obtain the 
analagous result for BDP as a corollary, i.e., where fi is the 
number of paths from a to t of length at most b. While this 
guarantee is weak, the algorithm seems to perform much 
better in practice, as we show in Section 5.3. 

The dominant cost in this algorithm is constructing G:, 
which requires no(‘) time and space if G = (V, E) and IV1 = 
n. As we argued previously, growth that is exponential in b 
is not necessarily a limiting factor for the applications that 
we are considering. Nevertheless, in the following section we 
explore algorithms whose complexity grows polynomially in 
both n and b. In the rest of the paper, we refer to the 
algorithm of this section as Independent Set. 

5.2 Approximating Independent Set 

The algorithms in this section can be viewed as algo- 
rithms that approximate the behavior of the hdependent 
Set algorithm of the previous section. Recall the intuition 
behind that algorithm: at each step, choose the path from 
a to t that intersects the fewest other paths. The main cost 
in that algorithm is dete rmining how many other paths that 
each path intersects; this is precisely the information con- 
tained in the undirected graph 6. So, a natural direction to 
speeding up this approach is to avoid this determination ex- 
plicitly, and to use other information to indicate at each step 
the path that is likely to intersect the fewest other paths. 

Given an instance (G = (V, E), b, a, t) of BDP, our algo- 
rithms then will proceed to efficiently find a path from a to 
t of length at most b that we have reason to believe will in- 
tersect the fewest other paths from a to t of length at most 
b. We will add this path to the set of disjoint paths we are 
generating, delete it and all incident edges from the graph, 
and repeat. For the moment we abstract the function we use 
to choose a path as an evaluation function G(p) on paths p; 
i.e., we choose the path p that minimizes H(p). Thus, our 
algorithm executes as shown in Figure 3. 

In this paper we consider the following evaluation func- 
tions for locating a path that is Yikely” to intersect the 
fewest other paths. 

1. Length: In each iteration of the algorithm, choose the 
path from a to t of shortest length (m the range [l, . . . , b]); 
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i.e., @e(p) is the length ofp. Intuitively, shorter paths have 
fewer nodes to share with other paths, and thus should be 
likely to intersect fewer other paths. The shortest path 
from a to t can be found in O(m) time using breadth-first 
search, where m = ]E]. 

2. Degree: For a path p = a + cl + . . . + CL + t, the 
degree of p is defined as 

de&) = c deg(4, 

where the deg(c;) denotes the degree of (i.e., the number 
of edges incident on) c;. In each iteration of the algo- 
rithm, choose the path from s to t of length at most b 
with the smallest degree. Thus, a(p) = deg@). Intu- 
itively, paths with lower degree offer fewer opportunities 
for other paths to cross them. The path of length at most 
b from a to t with the smallest degree can be found in 
O(bm + bnlog(bn)) time where n = IV1 and m = I..??], 
using a variation of Dijkstra’s shortest path algorithm [4]. 

3. Random: Prior to executing the algorithm of Figure 3, 
assign a random weight ‘u)(c) to each c E V. Define the 
weightofapathp=s+cr+...+cr+tas 

w(p) = c W(G). 
l$<L 

Then, let G(p) = w(p). There is little intuition as to 
why this choice of Cp should yield a path that intersects 
few other paths, and it is included primarily as a point 
of comparison for our empirical evaluation in Section 5.3. 
The path p minimizing +(p) can be found in O(bm + 
bnlog(bn)) time, using a similar variation of Dijkstra’s 
shortest path algorithm. 

Unlike the Independent Set algorithm of Section 5.1, the 
algorithm of Figure 3, combined with any of the choices of 
G(p) described above, can offer no nontrivial guarantee of 
the cardinality of the set of disjoint paths that it will locate. 
This is because for any of these choices for 9, it is possible 
to construct classes of graphs that will foil this algorithm 
(in the case of Random, almost all of the time), causing it 
to return a set of disjoint paths of cardinality at most one 
for some a and t regardless of the actual number of disjoint 
paths there are from a to t. 

The advantage of this algorithm, however, is its efficiency. 
Since each execution of Step 3 removes at least one node 
from U, Step 2 can be executed at most n = IV1 times. Thus, 
the algorithm instantiated with G(p) being the length of p 
(Length) runs in O(nm) time. If G(p) = deg(p) (Degree) or 
a@) = vu(p) (Random), then the algorithm runs in O(bnm+ 
bn log(bn)) time. 

5.3 Empirical results 

Motivated by our PathServer application (see Section 4), 
we performed tests on the approximation algorithms de- 
scribed in Sections 5.1 and 5.2 to evaluate their accuracy 
on a number of different graphs. In order to measure their 
accuracy, for each test graph and for every ordered pair of 
nodes in the graph, we computed the number of disjoint 
paths from the first node to the second, both in actuality 
and according to each approximation algorithm. 

As the basis for the graphs in our tests, we used 
the PGP keyring held at the MIT PGP Key Service 

62 

(pgp-public-keysQpgp .mit . edu) as of November 21, 1995, 
This keyring induces a graph consisting of 13,896 non-trivial 
edges (i.e., edges of the form cr + cs for cl # cs) and 
7,529 non-trivial nodes (i.e., nodes with incident, non-trivial 
edges). Due to the size of this graph, it was not possible 
to evaluate the accuracy of our approximation algorithms 
on the entire graph. Doing so would require u5 to compute 
the actual number of disjoint paths between pairs of nodes, 
which is an exponential computation that far exceeds our 
resources for a graph of this size. 

In an effort to evaluate the accuracy of our algorithms de- 
spite this hurdle, and also to learn how our algorithms pcr- 
formed as a function of graph size, we used various subgraphs 
induced by selecting (non-trivial) edges randomly from the 
total graph. In the rest of this section, let G, denote the sub- 
graph that resulted by selecting each edge from the whole 
graph with probability %. Some statistics for graphs we 
used are shown in Table 1. “Connected node pairs” arc the 
number of node pairs (a, t) such that bdp(G., b, a,t) 2 1. 
“Multiply connected node pairs” are the number of node 
pairs (a, t) such that bdp(G,, b, a, t) > 2. 

The results of our tests are shown% Table 2. This table 
characterizes the error of each algorithm. For each graph 
G E {Gs, Go,Gls, Gao,Gas,Gao,G40}, each path bond b E 
{5,10,15} (b E (5,lO) for Gss and b = 5 for GaorG40), 
and each algorithm A E {Independent Set, Length, De.grcc, 
Random} we computed the following values: 

err : among all pairs (a, t) such that bdp(G, b, a, t) > 2, the 
fraction for which d(G, b, a, t) # bdp(G, b, s, t) (recall 
that bdp(G, b,s, t) = d(G, b, a, t) if bdp(G, b,a, t) 5 1); 

avg: for all (a, t) such that d(G,b, a, t) # bdp(G, b, a, t), the 
average value of bdp(G, b, 8, t) - d(G, b, 8, t); 

max: for all (a, t) such that d(G, b,s, t) # bdp(G, b, a, t), the 
maximum value of bdp(G, b, a, t) - d(G, b, a, t). 

Equations for each of these values is given at the bottom 
of Table 2. Note that these measures pertain only to those 
pairs of nodes that are multiply connected, which according 
to Table 1 is the vast minority of node pairs. On the re- 
maining vast majority of node pairs, each of the algorithms 
is guaranteed to return a true maximum set of disjoint paths 
(of cardinality zero or one). 

While Table 2 is inconclusive, some trends seem to 
emerge. First, and not surprisingly, Independent Set sccm5 
to be more accurate than any of the other algorithms. Set- 
ond, Degree seems to become more accurate than Length 
and Random as the graph size increases. Setting aside Ran- 
dom (it is slower than Length and no more accurate), it 
appears that we can rank the algorithms on accuracy in the 
order Independent Set, Degree, Length. On the other hand, 
these algorithms are ranked in terms of performance in CX- 
actly the opposite order (and our empirical observations sup- 
port this ordering), with Independent Set becoming costly 
quickly as a function of b. For PathServer (see Section 4), 
we therefore typically use the Degree algorithm as a good 
balance between accuracy and interactive performance. 

Another observation that we can make from Table 2 is 
that when our Length, Degree, and Independent Set algo- 
rithms erred, they usually missed a maximum set of disjoint 
paths by only one (see the “avg” columns). If this appar- 
ent stability of the error magnitude continues as the graph 
grows, it is conceivable that we could predict with high prob- 
ability the error of our algorithms for a given graph size. 
This would be an interesting contrast to Theorem 1 proved 
at the beginning of this section, stating that no absolute 
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Table 1: Graphs used in testing 

graph GS Go Gls Go G2s Gso G40 

nontrivial nodes 1,105 1,846 2,477 3,011 3,487 3,881 4,636 
nontrivial edges 768 1,518 2,265 2,978 3,687 4,406 5,809 

connected b=5 1,498 6,906 20,639 45,341 73,299 117,081 204,776 
node pairs b = 10 1,652 12,324 50,515 92,994 170,771 

b = 15 1,652 14,263 54,522 95,115 

multiply b=5 10 242 2,010 5,692 9,509 17,847 33,079 
connected b = 10 12 430 6,240 14,184 22,649 
node pairs b= 15 12 463 6,726 14,514 

GS b=5 .ooo 

b = lo .ooo 

b = 15 .ooo 

GIO b= 5 .ooo 

b = 10 .ooo 

b = 15 -000 

Glrj b= 5 .ooo 

b= lo .ooo 

b= 15 .002 

G20 b=5 .OOl 
b = 10 .005 

b= 15 .008 

G2s b= 5 .002 

b= 10 .009 

G30 b=5 .002 

G40 b=5 .005 

hf={(d,t):A :, b, iz, i 

hd 
err 

Table 2: Accuracy results for multiply connected pairs 

endent Set 

avg 1 max 

I 0 

I 0 

I 0 

I 0 

I 0 

I 0 

I 0 

1.000 1 
1.000 1 
1.000 1 
1.000 1 
1.000 1 
1.000 1 
1.025 2 

1.000 1 
1.006 2 

f bdp(G h 8, t 

-II-- 

err = IW/IC(~,t) : W(G,b, 8,t) I 231 
I = undefined (division by zero) 

Length Degree 

err ah3 max err w3 max err 

.ooo I 0 .ooo I 0 .ooo 

.ooo I 0 .ooo I 0 .ooo 

.ooo I 0 .ooo I 0 .ooo 

.008 1 1.000 ] 1 I] .004 ] 1.000 ] 1 ]I .016 

.076 1.004 2 .053 1.003 2 .091 

.140 1 1.011 ] 2 I] .lOO ] 1.005 1 2 I( .132 

.168 1.018 2 .119 1.009 2 .165 

.109 1.008 2 .079 1.003 2 .119 

.164 1.017 2 .lOl 1.009 2 .156 

.167 1.017 2 .112 1.011 2 .168 

.192 1.037 3 JO5 1.012 2 .183 

.237 1.064 3 .115 1.028 3 .224 

avg = I~(,,t)EM bdp(G, h 8) t) - . 

bound on error could be guaranteed. Further tests are re- 
quired, however, before we can draw any such conclusions. 

More generally, we caution the reader that the numbers 
of Table 2 are no guarantee of good accuracy for all graphs, 
or even for all graphs induced by certifhzation systems. We 
consider an important open problem to be the discovery of 
efficient approximation algorithms for BDP for which some 
non-trivial accuracy can be proved. An equally important 
goal is to find algorithms (perhaps our own) that can be 
empirically shown to provide accurate results on a wider 
range of graphs that are characteristic of those we expect to 
see in practice. Since the characteristics of such graphs are 
yet to be conclusively identified, however, even generating 
such test graphs remains an open problem. We hope that 
work such as [16] will shed light on this issue. 

6 Finding bounded connective paths 

To our knowledge, the Bounded Connective Paths (BCP) 
problem of Section 3 has not been considered from the al- 

landom 

avg 

I 1 0 

I 0 

I 0 

1.000 1 
1.000 1 
1.000 1 

1.000 1 
1.007 2 
1.006 2 
1.011 2 
1.019 2 
1.019 2 
1.017 2 
1.028 3 
1.030 3 
1.062 3 

G, b, 8, Wli’4 
max = max(,,q&bdp(G, b, 8, t) - A(G, b, 8, t)) 

gorithmic and complexity-theoretic viewpoints in the past. 
Given its close relationships to BDP [5,14], we might be in- 
clined to think that analogs of the results and techniques for 
BDP in the previous section could be developed for BCP. In 
fact, this is somewhat true, and in this section we summarize 
these results and techniques. 

Let bcp(G, b, s, t) denote the k-connectivity from s to 
t in G. With regards to complexity, computing whether 
bcp(G, b, s, t) 1 k for some given k is coNP-complete (see 
Appendix A), which, like NP-completeness, is widely be- 
lieved to imply that bcp(G, b, s, t) cannot be computed in 
polynomial time [6]. This complexity also has other impli- 
cations that we care about. Following the widely-held belief 
that NP # coNP, it implies that there is no polynomial- 
time (m the size of G) algorithm for verifying that there is 
a set of k-connective k-bounded paths from s to t, even if 
k and the set of paths (or any other information) is given. 
For a service like PathServer, this means that clients that 
request bounded connective paths will either have to trust 
PathServer that the returned paths are k-connective (for the 
value k that it returns) or be prepared to perform a possi- 
bly exponential computation to verify this assertion. This is 
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1. Find a set D of disjoint k-bounded paths from s to t using 
one of the algorithms described in Section 5. If D = 0, 
then return <O, D>. 

2.Findapathp=s-+cr+...-+cr+t,l~e<b,inG 
such that @(p, D) is the minimum over all such paths. 

3. Set D = D U (p}. If termination condition 9 is not met, 
go to 2; otherwise go to step 4. 

4. Compute k such that the (3, t, b)-closure of D \ {s + t} is 
k-connective, and return <k, D>. 

Figure 4: Approximation algorithm for BCP on instance 

(G = (v, 3 h 314 

one of the main differentiators between bounded connective 
paths and bounded disjoint paths, the latter of which can 
be easily verified by clients. 

Below we describe the algorithm that we presently use to 
approximate a solution to BCP in PathServer. To describe 
it, we first introduce some concepts. For a set D of paths, 
the subgraph induced by D is the graph whose nodes and 
edges are those that occur on some path in D. The (3, t, b)- 
closure of a set D of paths from s to t (or just the b-closure 
when s and t are understood) is the set of b-bounded paths 
from s to t in the subgraph induced by D. 

Given G, b, s, and t, our algorithm returns a set D of 
b-bounded paths from s to t and the value k such that the b 
closure of D is k-connective. Note that the subgraph induced 
by D is identical to that induced by its b-closure, and thus 
D is indistinguishable from its b-closure when graphically 
displayed by PathServer. The set D of b-bounded paths 
is constructed in polynomial time, but finding k still takes 
time exponential in the size of the graph in the worst case. 
Fortunately, this exponential computation executes on the 
typically small subgraph induced by D, and so it almost 
always completes with brief delay. 

The algorithm is outlined in Figure 4. It begins by lo- 
cating a set D of disjoint b-bounded paths from s to t using 
one of the algorithms described in Section 5. The algorithm 
then repeatedly augments D with other b-bounded paths 
from s to t. At each step, the augmenting path is chosen 
to minimize some criterion @(p, D). The criterion that we 
presently use is based on the path degree pdeg(c, D) of node 
c with respect to D, which is the degree of c in the sub- 
graph induced by D. Our criterion is to choose the path 
that minimizes the sum of the path degrees of its nodes, i.e., 
G(p, D) = ‘&r pdeg(c, D). The repeated augmentation of 
D terminates on some condition 9. In our present imple- 
mentation, this condition is met when IDI = y, where d is 
the original size of D at the end of step 1 in Figure 4. This 
choice of Q is motivated by the fact that the b-connectivity 
from s to t is at most f times the size of a maximum set of 
disjoint paths from s to t [14]. 

Once the condition 9 is met, the algorithm determines 
k such that the (3, t, b)-closure of D is k-connective (ignor- 
ing the path s + t if it is present in D). This algorithm is 
essentially brute-force, iterating through sets of nodes and 
testing if a path in the b-closure of D would continue to 
exist if those nodes were removed. To optimize this algo- 
rithm, any path in D that is disjoint from all other paths 
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in D is removed before the search begins, as each such pnth 
contributes exactly one to the fhml value of k. In the other 
paths, only nodes with in-degree or out-degree greater than 
one in the subgraph induced by D need be included in sets 
whose removal is tested. 

At the time of this writing, we are less experienced with 
the BCP problem and this algorithm than we are with BDP 
and its approximation algorithms. Thus, presently we do 
not have sufficient data to report on the accuracy of thin 
algorithm, or to determine if our conditions %(p, D) and g 
can be improved. This algorithm seems to offer adequate 
performance in most cases, and especially when b is small, 
but also threatens to become intractable as the graph grows 
larger. The design of better algorithms to approximate BCP 
is a topic of ongoing work. 

‘7 Conclusion and future work 

In this paper we have introduced bounded independent 
paths as a tool for supporting high-assurance authentication 
in large distributed systems. We have focused on two flavor5 
of independent paths, namely disjoint and k-connective. For 
the former, we have developed algorithms for approximnt- 
ing the maximum number of bounded disjoint paths from a 
source to a target and evaluated their accuracy on graphs 
constructed from a PGP certification graph. We have nlno 

developed an approximation algorithm for the latter, though 
its evaluation is still forthcoming. We have demonstrated 
the utility of these notions in a useful application called 
PathServer. While at this point our empirical results ore 
relevant primarily to PGP applications, we believe that the 
bounded independent paths paradigm can improve authen- 
tication mechanisms for a wide range of systems, even those 
based on technologies other than public keys. 

A natural direction for future research is to find approx- 
imation algorithms that supersede ours in accuracy, efh- 
ciency, or both, and indeed one direction of ongoing work 
is the evaluation and refinement of our approximation al- 
gorithm for finding bounded connective paths. Regarding 
our algorithms for finding bounded disjoint paths, BCCU- 

racy testing of the algorithm due to Ronen and Per1 [17] 
on certification graphs would make for an interesting com- 

. David Johnson suggested computing a maximum 
~~s~~g., [12]) with capacity-constrained nodes for finding 
the number of disjoint paths from the source to the target. 
A maximum flow is not guaranteed to include only paths (or 
for that matter, any paths) of length at most the specified 
path bound, even if run on a restricted graph consisting of 
only those nodes that are within the path bound from the 
source or target. It remains to be seen, however, whether 
this would be a problem in practice. 

We are continuing to explore additional functions that 
PathServer could provide, e.g., allowing multiple EOUXC 

nodes, and allowing the user to constrain the noden uoed 
in the returned paths. Many such extensions are technically 
feasible, but pose challenges to maintaining a simple uacr in- 
terface. We welcome any suggestions that the reader might 
have regarding functions that he or she would End useful. 
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A Complexity of BCP 

In the body of the paper we claimed that determining 
whether bcp(G, b, s, t) 1 k for given G, b, s, t and k is coNP- 
complete. To our knowledge, this result has not appeared in 
the open literature, and we therefore include a proof of it, 
due to BollobSs, Brightwell, and Winkler, for completeness 
and archival purposes. This proof shows that determining 
whether bcp(G, b, s, t) < k is NP-complete (and thus that 
determining whether bcp(G, b,s,t) 2 k is coNP-complete) 
by a transformation from the following problem, called Max- 
imum 2-Satisfiabiity, which was proved NP-complete by 
Garey, Johnson, and Stockmeyer [7]. In the statement of 
this problem, a literal is a variable or its negation (e.g., z or 
Z), and a clause is a disjunction of literals. 

Maximum 2-Satisfiability (SSAT): 
Given: A set U of variables, a collection C of clauses 
over U such that each clause in C consists of two liter- 
als, and a positive integer k < ICI. 
Problem: Is there a truth ass&u.nent for U that simul- 
taneously satisfies at least k of the clauses in C? 

Theorem 2 Determining whether bcp(G, b, s, t) < k is NP- 
complete for any fixed b 14. 

Proof : We prove the result only for b = 4; the extension to 
larger tied b is straightforward. Given an instance (U, C, k) 
of ZSAT, we construct a graph G with distinguished nodes 
s and t and positive integer k’ such that there is a set of 
k’ - 1 nodes whose removal eliminates all paths from s to t 
of length four or less if and only if there is a truth assign- 
ment to the variables of U that satisfies at least k of the 
clauses in C. Let c = ICI and n = IUl. We construct the 
graph as follows. For each variable x, the subgraph showed 
in Figure 5(a) is included witbin G. An additional subgraph 
is added (superimposed) per clause, where the subgraph de- 
pends on the number of negative literals in the clause. If 
there is one negative literal in the clause, say x Vjj, then the 
subgraph shown in Figure 5(b) is added. If there are zero 
negative literals in the clause, say m V y, then the subgraph 
shown in Figure 5(c) is added. Finally, if there are two nega- 
tive literals in the clause, say EVTj, then the subgraph shown 
in Figure 5(d) is added. In the last two cases, i.e., zero or 
two negative literals, we say the clause is monotonic. Let m 
denote the number of monotonic clauses. 

We claim that there is a truth assignment for U that 
satisfies at least k of the clauses in C if and only if all paths 
from s to t of length at most b = 4 can be eliminated by 
removing cn+m+c-knodes (i.e., k’ = cn+m+c-k+l). 
First suppose that there is a truth assignment for U that 
satisfies at least k of the clauses in C. For each variable 
x E U, if x is true then remove nodes ml,. . . , xc from G; 
otherwise remove El,. . . ,?&. In total, this removes cn nodes. 
Now partition the clauses into the satisfied monotonic C,,,,, 
unsatisfied monotonic C,,,, satisfied nonmonotonic C.,,, and 
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(4 

Figure 5: Component graphs for proof of Theorem 2 

unsatisfied nonmonotonic CL. For each member of C,, of 
the form m V y, if a: is true then remove fzvv and otherwise 
remove gEvV. For each element of C,, of the form ZVfj, if m 
is false then remove f-y and otherwise remove 9~~5. Thus, 
C,, contributes IC,,l removals. For each element of CL,, 
say x V y (resp., V V jj), remove both fzvmr and gEvIl (resp., 
fzvv and ~~5) for a total of 21CUml removals. Fiially, for 
each element of C,,, say x V jj, remove davF, for a total of 
IC,,l removals. Summing these removals, we get 

1 cn + ICml + ZlCuml+ lCunl 
= 

1 
c)1+ (psml+ pzmal) + (pml+ ptml) 

5 cn+m+(c-k) 
N 
I It is simple to verify by inspection of Figure 5 that we have 

I I 
disconnected all paths from s to t of length at most four. 

Now suppose that it is possible to eliminate all paths from 
/ s to t of length at most four by removing cn + m + c - k 

/ nodes from G. In order to eliminate all such paths, either all 
I ( nodesxr,..., 

- 
z:c or all nodes zr , . . . ,Z$ must be removed for 

each variable x, which accounts for a total of crz removals. 
For each monotonic clause, say x V y (resp., B V g), it is 
necessary to remove at least one of d,var, ezvy, fag, and 
gEvy (resp., da,, e-F, ~EVF and ssv5) to eliminate all paths 
of length four from s to t. Thus, we now can characterize 
where cn + m of the removals must be. For each variable 
x, set x to true if all of xl,. . . , xCe are removed and to false 
if all of&,..., ?& are removed. (Not all of both ml,. . . , xc 
and&,..., EC could be removed, as this would imply cn + 

m+c> cn+m+c- k removals in total.) If there are fewer 
than k clauses satisfied, then more than c - k additional 
removals would be required to eliminate all paths from n to 
t of length at most four, namely one per unsatisfied clau5c 

in the subgraph corresponding to the clause. Thus, at least 
k clauses must be satisfied. 

Finally, deternum . ‘ng whether bcp(G, b, s, t) < k io in NP, 
since given a set of k - 1 nodes, it is possible to verify in 
polynomial time that their removal eliminates all paths from 
s to t of length at most b. •I 


