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Abstract. In this paper we present a new class of attacks against RSA 
with low encrypting exponent. The attacks enable the recovery of plain- 
text messages from their ciphertexts and a known polynomial relation- 
ship among the messages, provided that  the ciphertexts were created 
using the same RSA public key with low encrypting exponent. 

1 Introduction 

In this paper we present a new class of attacks against RSA [8] with low encrypt- 
ing exponent. The attacks enable the recovery of plaintext messages from their 
ciphertexts and a known polynomial relationship among the messages, provided 
that the ciphertexts were created using the same RSA public key with low en- 
crypting exponent. Our attacks differ from the low-exponent attacks described 
by Moore [6] and Hastad [5] and the common modulus atlack identified by Sini- 
mons [lo], which pertain only to ciphertexts encrypted under dzfferent public 
keys. 

Given encryptions of k messages under the same RSA public key with ex- 
ponent e l  together with knowledge of a polynomial relation of degree 6 among 
the messages, the goal of the attacks is to recover all messages. Our results 
were influenced by an attack presented by Franklin and Reiter [4] for the case 
k = 2, e = 3, S = 1. Starting with this case, we generalize the exponent e in 
Section 2, the degree S in Section 3,  and the number of messages k in Section 4. 
Implications of the attack are considered in Section 5 .  

2 Generalizing the exponent e 

Suppose we have two messages ml and m 2  related by a known affine relation 

Suppose further that the messages are encrypted under RSA with an exponent 
of 3 using a single public modulus N.  

ci = m; mod N, i = 1 , 2  
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Then from 
c1, c2, a !  P, N 

we can calculate the secret messages mi algebraically as follows: 

The algebra is more transparent if we assume (without loss of generality) that 
a = p = 1 .  

(1) 
( m  + 
( m  + - m3 + 2 3m2+ 3m + 3 

+ 2m3 - 1 3m3 + 3m2 + 3m = m mod N .  - - 

So if the RSA exponent is e = 3 and we have k = 2 messages, satisfying a known 
polynomial relation of degree 6 = 1, we can recover the messages mi algebraically 
from the ciphertexts and the coefficients of the polynomial relation. 

When e = 5 ,  setting c1 = m5 mod N and c2 = (rn + 1)5  mod N ,  we can find 

For an arbitrary exponent e in the case of Ic = 2 messages subject to  a 
linear relation, it will always be possible to write down an equation analogous 
to (1). Specifically, there will exist polynomials P(m) and Q(m) such that each 
can be expressed as rational polynomials in me and ( m  + l)e,  and such that 
Q(m)  = mP(m). Already for e = 5, however, this is fairly complicated. As e 
grows, this explicit expression of rn as a ratio of two polynomials in c1 and c2 
requires O(e2) coefficients, and it is not immediately obvious how to calculate 
these coefficients efficiently. 

Fortunately there is an  easier method. Let z denote the unknown message 
m. Then z satisfies the following two polynomial relations: 

z5 - c1 = 0 mod N 
(2 + 1)5 - c2 = 0 mod N .  

where the ci are treated as known constants. Apply the Euclidean algorithm to 
find the greatest common divisor of these two univariate polynomials over the 
ring Z / N :  

gcd(z5 - c l ,  ( z  + 1)5 - c2) E Z / N [ z ] .  

This should yield the linear polynomial z - m (except possibly in rare cases'). 

We do not fully understand the cases m = (1 - w ' ) / ( w  - 1) E Z I P ,  2 5 j 5 e - 1, 
where p is a prime factor of N and w is a primitive eth root of 1 in some extension 
of Z/p. This condition seems to  imply that elp - 1, in contradiction to  the RSA 
requirement gcd(e,p - 1) = 1, but work needs to be done to  verify this. Other than 
these at  most ( e  - l)(e - 2)  possible exceptions, the gcd will in fact be linear. 
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The attack applies for any value of e l  but is limited by the cost of computing 
the gcd of two polynomials of degree e .  A straightforward implementation of 
Euclid's algorithm takes O(e2)  operations in the ring Z / N .  More sophisticated 
techniques can be used t o  compute the gcd in O(e log' e) time [la]. Using these 
methods, the attack may be practical for all exponents of length up to  around 32 
bits. For example, the attack will be very efficient against e = 2"+ 1, a popular 
choice in many applications. 

3 Generalizing the degree 5 of the polynomial 

One generalization is immediate. Suppose we have two messages ml, niz satis- 
fying a known polynomial relation of the form 

m2 =  mi), deg(p) = 6, 

and we know p and the two ciphertexts c ; .  Then as before, the two equations 

ze - c1 = 0 mod N 
( ~ ( 2 ) ) ~  - c2 = 0 mod N 

are both satisfied by z = ml mod N so that 

will be divisible by t - ml, and except in rare cases we will have 

gcd(ze - ~ 1 ,  ( ~ ( 2 ) ) ~  - C Z )  = z - ml.  

(One of the exceptional cases, in which this procedure fails, is when p(t) is of 
the form p ( z )  = z h q ( z e ) ,  because then the ciphertext c2 is easily derived from 
the ciphertext c1 , namely 

c2 = C : ( q ( C l ) ) e ,  

and we gain no new information.) 
What if ml and m2 satisfy an implicit polynomial relation? 

p(m1, mz) = 0 mod N 

In this case we have three polynomials relating two unknowns modN:  

PI =p(rnl,rnz) = O m o d N  
P2 = mp - c1 = 0 mod N 
P3 = m; - c 2  = Omod N 

Now we need another algebraic tool: the resultant. The resultant of two mul- 
tivariate polynomials, with respect to  one of their variables 2, is a third mul- 
tivariate polynomial, in all the variables except the special variable z. For any 
setting of all the variables (including z) for which the two input polynomials are 
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si1nultaneously 0: the resultant is also 0. This gives us a means of eliminating x 
from a system of equations. 

In tshe example sbovc. si~bst~itute 2 and y for the unknowns rnl and m2, 
respect,ively. We can t8ake the  resultant of Pi (z, y )  and &(x) with respect to the 
variable z, over the ring Z/X. This will yield a polyiiorriial P4 in  y,  whose degree 
is at most 6e (the product of the total degrees of the original polynomials). Then 
we can take the  gcd of this new polynomial P4 with P3 (as univariate polynomials 
in y over 2,") to yield (hopefully) t,he linear polynomial y - m2. Substitut,e this 
value of r n 2  w h k h  wc: have discovered, back into PI I to find a polynomial in x 
alone, which we can combine with P2 by the gcd to find the correct value of 
2 = ml . The complexity of this attack is dominated by the computation of t h e  
resultant, i .e.,  the determinant of a ( 6  + e )  x (6 + e)  matrix whose elemcnt,s are 
iinivariate polyriornials of degree 6. This can naively bc done in O((5 + e)362) 
operatioris I 

The two operations, resultant and gcd, can be combined under the general 
heading of "Groebner basis." Indeed, fixing the  coefficients of p and the cipher- 
texts c; as constants, and computing the Grvebrier basis of Pl(x l  y), Pz(r),  P,(y), 
as polynomials over Z / N ,  will generally produce the result [(z - ml) ,  (y - r n z ) ] .  
In this paper, however, we work explicitly with the resiiltlantj and gcd, in order 
to better estimate t,he complexity of the attacks. 

4 Generalizing the number of messages E 

4.1 

Suppose we have k messages ml. . . . , mk, related by a polynoi-nialp(rnl,. . . , m k ) ,  

and that, W P  know thc  ciphertexts c, = mi mod N and the coefficients of the 
polynomial p .  As before, substitute variables x ,  for the unknown messages niz, 
and obtain the k + 1 polynomials 

Arbitrary polynomial relationship among messages 

I'"(z1,. . . , xk) = p(z1,. . . , zk) = 0 mod N 
Pi(zl) = z; - ~ ' 1  = 0 mod N 
P2(.c2) = z; - c2  = 0 mod IV 

4 ( z - A )  = xi - C t  = O m o d N  

which must be simultaneously satisfied. We can just  compute 

Gtoebner([Po, P I , .  . . Pk]) 

and generally obtain the dnswer 

[21 - m1,. . ., E h  - r n k ]  

Or, more explicitly, we can set 

Q o (  21, . . . , X I ; )  = Po 
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and iteratively evaluate 

Q i ( z i + i , . .  .,zk) = Resultant,,(Qi-l,Pi) 

until we find 
Qk-i (Xk). 

Then evaluating 
gCd(Qk- I(Zk), Pk(.k 1) 

we hope to  find the linear polynomial (zk - m k ) ,  from which we discover n z k .  

Finally, repeatedly back substitute: 

gcd(Pi(si),Qi-l(2i,mi+l,mi+2,...,mk)) = (xi -mi), 

as i goes from k - 1 to 1, to  find all the messages mi. 
The complexity of this general attack is dominated by the computation of 

the resultants &I,. . . , Q k - l .  Each Q, is a polynomial of total degree ei6, in k - i 
variables. The number of monomial terms in each Q, is potentially as large as 
@(6k/2ek22/4). Thus, this attack may require 6° (k 'e0 (k2)  operations over Z I N .  

4.2 

As will be seen in Section 5.2, a special case of interest is that, in which Po = p 
is linear, say 

A special case: linearly related messages 

p ( ~ 1  l . . . , z k ) = z l + X 2 + . . . + x k - w  

with w some known constant. The special form of p allows us to make the com- 
putations more efficient. In addition, the success of the attack differs depending 
on whether w is zero or nonzero. 

Inhomogeneous case. In the inhomogeneous case w # 0, the attack proceeds 
as follows. Introduce unknowns 

satisfying 

Set h = [ k / 2 ] .  Introduce polynomials: 

Rl(Y1) = PI(Y1) 
&(yz) = Resultant,,(R,-l(y, - r z ) lPz (zz ) ) l  

Sz(yz) = Resultant,,(Sz+l(y, + G + I ) ,  Pz+~(zz+l ) ) ,  

i = 1 , 2 , .  . . , h  
S k - l ( Y k - 1 )  = Pk(W - Y k - 1 )  

i = k - 2, k - 3 , .  , h 



6 

Both Rh(Yh) and Sh(yh) are univariate polynomials in yh. Their gcd will hope- 
fully be the linear polynomial 

and we can proceed from there by divide-and-conquer. 
A shortcut to computing each Ri(yi) is to  evaluate Ri-l(yi -xi) by Homer’s 

rule, replacing each occurrence of xi“ by ci.  The complexity of the attack is dom- 
inated by the complexity of computing gCd(Rh(yh), Sh(Yh)). This is O(ek/ ’k2)  
since the degrees of Rh and s h  are both @ ( e k i 2 ) .  

Homogeneous case. A difficulty arises in the homogeneous case w = 0. Be- 
cause Po is homogeneous, and all the other polynomials are of thc form ze - 
c, given any solution ( x i ,  z 2 , .  . . , zk) and any eth root of unity 4, the tuple 
(4x1, 4 x 2 , .  . . , q ! m k )  is also a solution of all the Pi. Thus the attacker cannot 
solve for the individual xi; the most it can hope for is t o  be able to solve for all 
homogeneous polynomials of degree e in the zi.  In particular, when the attacker 
attempts to compute yh, the gcd yields a t  best something like 

rather than the desired linear polynomial. This is an inherent difficulty in our 
approach, and has a bearing on the application described in Section 5.2. 

However, there are occasions when the attack succeeds even in the homoge- 
neous case. For example, suppose 

where XI, X2, A3 are known, while m ,  ,i3 are unknown, and e = 3. Further suppose 
that, /7 is known to satisfy p3 < N .  This is a homogeneous case, because the three 
plaintexts are known to satisfy the linear relation 

From the three ciphertexts ci = ms mod N and the three coefficients X i ,  A2,  A 3 ,  

i t  is possible to solve for B = P3 mod N :  e.g., B - ,B3 = gcd(f, g) ,  where 

f = Resultant,((m + 
g = Resultant,((m + 

- ci , (m + A 2 P ) 3  - C z )  

- C i ,  (m + A 3 p ) 3  - C 3 )  

Then /7 can be recovered by computing the real cube root of B (i.e., without 
modular reduction), from which m can be recovered using previous techniques. 
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5 Implications 

Due to the widespread popularity of RSA with low encrypting exponent, our 
attacks potentially have implications to  the security of a wide range of current 
and future cryptographic protocols. In this section we show how our attacks 
reveal vulnerabilities in two protocols. 

5.1 The TMN protocol 

In [13], Tatebayashi, Matsuzaki and Newman proposed a key distribution pro- 
tocol. In this protocol, a passive eavesdropper sees rp mod N ,  r5 mod N ,  and 
r1 + 7-2 mod N exchanged among the protocol participants, where e = 3 and 
7-1, T:, are randomly generated values. The techniques of the previous sections 
enable a passive eavesdropper to learn the shared session key 7-2 distributed in 
the protocol. 

Simmons [ll] previously found an active attack on this scheme (requiring two 
conspirators), for which three counter measures were suggested in [13]. The first 
two countermeasures-incorporating structure into r1 and r 2 ,  and prepending 
timestamps to 7-1 and 7-2-do not prevent our passive attack. The third, which 
assumes a shared secret key between the server and each party, appears to with- 
stand our attack. Park et .  al. [7] exploited the use of e = 3 in TMN to show that  
after the same two parties exchange a session key three times, each has enough 
information to impersonate the other in future protocol executions. In contrast, 
our attack enables any eavesdropper t o  recover the session key exchanged in any 
run of the protocol. Nevertheless, our attack does not immediately apply to  the 
fix proposed in [7]. 

5.2 Verifiable signature sharing 

In [3], Franklin and Reiter presented a scheme to efficiently share an RSA sig- 
nature of a known message among R 2 51 + 1 servers so that the servers could 
verify the signature relation, despite the malicious misbehavior of up t o  t of the 
servers. As part of this protocol, the holder of the signature shares the signature 
using Shamir's secret sharing scheme [9], i.e., by choosing a t  random a univariate 
polynomial 

t 

j =O 

over Z / N  such that bo is the secret signature, and privately sending the share 
B(i) to the i-th server for 1 5 i 5 R. The intention is to  ensure that  a subset of 
t + 1 servers can use their shares to  recover B (by Lagrange interpolation), but 
to  prevent t or fewer malicious servers from doing so. However, the holder of the 
signature also publishes the RSA encryption of each share under the same RSA 
public key with exponent e = 3 ,  i.e., { B ( i ) e  mod N}l<i<,. 

The techniques of this paper enable one server S;, knowing its share B(i0) 
and the ciphertexts B(i1.)" mod N ,  . . . , B(ik)e mod N of a t  least k = t + 1 other 



a 

shares (i.e., i o  # i j  for any 1 5 j 5 k ) ,  to  compute the secret polynomial B. 
Specifically, because the shares B(io) ,  . . . , B( ik )  are linear combinations of the 
unknowns bj with known coefficients, Si, can conipute a linear relation that 
holds among the shares: 

k 

x p j R ( i j )  = 0 mod N .  (2) 
j =O 

Since server Si, knows poB(io), which is nonzero with high probability, it can 
learn an inhomogeneous linear relation among the other k terms { p j B ( z j ) } l < j < k :  

c p j  B ( i j )  = -poB(io) mod N .  

Using this information, and the easily computable ciphertext p;B(zj  )" mod N 
of each term, it can use the techniques described before to  recover each term 
p j B ( i j )  arid hence B ( i j ) .  Using Lagrange interpolation, it can then recover the 
secret polynomial B and the signature bo. 

It is interesting to note that this attack fails for a passive eavesdropper that 
is not one of the n servers. Such an eavesdropper sees only the published RSA 
encryptions of each share, i.e., {B( i ) "  mod N}li isn.  The eavesdropper can again 
find a linear equation of the form (2)  among any k + 1 of the shares. However, 
since this equation is homogeneous, it can recover only homogeneous polynomials 
of degree e in the terms p j B ( i j )  (see Section 4.2). 

- -  
k 

j = 1  

6 Conclusion 

We have identified a new class attacks against RSA with low encrypting expo- 
nent, which exploit known polynomial relationships among the encrypted mes- 
sages. This can lead to weaknesses in protocols for which such relationships can 
be inferred. When the relationships are essential to  the correctness of a protocol, 
as in the case of Section 5.2, the only repair seems to  be increasing the size of 
the encrypting exponent. If the polynomial relationships are not essential, then 
another repair might be to  transform the plaintexts so that those relationships 
no longer hold. Possible transformations are applying a public permutation, such 
as DES with a fixed key, or padding the plaintext with random bits (though this 
may not always suffice; see [ a ] ) .  Such transformations are discussed, e.g., in [l]. 
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