
How to Securely Replicate

MICHAEL K. REITER

AT& T Bell Laboratories

and

KENNETH P. BIRMAN

Cornell University

We present a method for constructing replicated services that retain their availability and

integrity despite several servers and clients being corrupted by an intruder, in addition to others

failing benignly. We also address the Issue of maintaining a causal order among client requests.

We illustrate a security breach resulting from an intruder’s ability to effect a violation of

causahty in the sequence of requests processed by the service and propose an approach to

counter this attack. An important and novel feature of our techniques is that the client need not

be able to identify or authenticate even a single server. Instead, the client is required to possess

only a single public key for the service We demonstrate the performance of our techniques with a

service we have implemented using one of our protocols.

Categories and SubJect Descriptors: C.2.O [Computer-Communication Networks]:
General—secwvty and protection; C.2.4 [Computer-Communication Networks]: Distributed
Systems; D.4.5 [Operating Systems]: Reliabihty-fazd~ -~olwcsnce:D.4.6 [Operating Systems]:
Security and Protection—au~lzen tzcation; cryptographic controls: K.6.5 [Management of Com-
puting and Information Systems]: Security and Protection—au~~en~tca~~on

General Terms: Reliability, Security

Additional Key Words and Phrases: Causality, replication, state machmes, threshold cryptogra-
phy

1. INTRODUCTION

Distributed systems are often structured in terms of clients and services. A

service exports a set of commands, which clients invoke by issuing requests to

the service. After executing a command, the service may return an appropri-

This work was supported by DARPA/NASA grant NAG2-593, DARPA/ONR grant NOOO14-92-J-

1866, grants from GTE, IBM, and Siemens, Inc., and a National Science Foundation Graduate

Fellowship Any conclusions or recommendations expressed in this document are those of the

authors and do not necessarily reflect the views of the National Science Foundation or the
Department of Defense.

Authors’ addresses: M. K. Reiter, AT&T Bell Laboratories, Room 4F-637, 101 Crawfords

Corner Road, Holmdel, NJ 07733-3030; email: reiter@research.att.tom; K. P Birman, Depart-

ment of Computer Science, Ithaca, NY 14853; email: ken@cs.cornell. edu,

Permission to copy without fee all or part of this material is granted prowded that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is ~ven that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and\or

specific permission.

01994 ACM 0164-0925/94/0500-0986 $03,50

ACM Transact,.m on Progamm,ng Languages and Systems, Vd 16, No 3, May 1994, Pages 9S6-1009

© ACM, 1994. This is the authors' version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version is available at http://doi.acm.org/10.1145/177492.177745.

How to Securely Replicate Services . 987

ate response to the client that invoked the command. In the simplest case,

the service is implemented by only one server. If this server is not sufficiently

reliable, however, then the service must be replicated.

In hostile environments, replication can introduce security risks. In partic-

ular, it is often more difficult, or at least requires more resources, to protect

many distributed servers from corruption by an intruder than it is to protect

only a single server [Herlihy and Tygar 1988; Lampson et al. 1992; Turn and

Habibi 1986]. To compensate for this, a replicated service could be designed

to remain available and correct despite several servers being corrupted by an

intruder (in addition to others failing benignly). One way to do this employs

the state machine approach [Schneider 1990] to replicating the service, in

which each server individually computes each response and sends it to the

client. If the client authenticates the response from each server and accepts

the response sent by a majority of servers, then it obtains the correct

response if a majority of servers are correct.

This approach, however, requires more from clients—in ability, computa-

tion, and storage—than not replicating the service. First, each client must

always know how many servers comprise the service and must be able to

authenticate each of the servers individually. This may be difficult if the set
of servers can change over time or if there is no trustworthy source from

which the client can obtain the identities or authentication information of the

servers. Second, if there are n servers, then each client must perform 0(n)

additional cryptographic computations to authenticate replies than if the
service were not replicated. Third, each client must possess a public key for

each server or a secure channel to each server, with an n-fold cost k storage.

Finally, in cases in which a client must forward the (digitally signed) replies

of the servers to other parties, as is the case, e.g., in many cryptographic

protocols (see the “push” technique of Lampson et al. [1992]), the client must

store and forward 0(n) replies, instead of only one as if the service were not

replicated.

In this article we propose a solution to these problems using a modification

of state machine replication. In its full generality, our approach can be used

to implement a service with n servers so that clients accept responses

computed by correct servers, and no other responses, provided that n > t + b

where t is the maximum number of faulty servers, and b is the maximum

number of these faulty servers that behave maliciously. A novel feature of our

approach is that unlike “normal” state machine replication described above,

each client possesses exactly one public key for the service (as opposed to one

for each server) and can treat the service as a single object for the purposes of

authentication. This enhances application modularity and significantly sim-

plifies the service interface for clients, because each client is insulated from

internal security policies of the service and details of what or how many

servers comprise the service. We emphasize that the client need not be able to

identify or authenticate a single server to authenticate the response of the
service. Moreover, the client incurs no additional cryptographic computation

or storage costs than if the service were not replicated.

ACM TransactIons on Programming Languages and Systems,Vol. 16,No 3, May 1994

988 . M. K. Reiter and K. P. Birman

Even if clients accept only responses computed by correct servers, clients

may still accept improper responses if an intruder has caused the correct

servers to process improper requests or to process requests in an incorrect

order. In this article we also discuss this issue. We focus on an attack in

which an intruder effects and exploits a violation of causality in the sequence

of requests processed by the service. We describe a method to avoid this

attack that again requires that n > t + b and that each client possess only a

single public key for the service.

We have used our techniques to implement an authentication service in a

security architecture for fault-tolerant systems [Reiter 1993; Reiter et al.

1992]. In our security architecture, this authentication service securely and

fault tolerantly supports the distribution of cryptographic keys for secure

communication in open networks. In this article we use this service to

illustrate how one of our protocols can perform in practice.

The remainder of this article is structured as follows. In Section 2 we give a

brief overview of state machine replication; for more detail, the reader should

see Schneider [1990]. In Section 3 we enumerate our assumptions about the

system. In Section 4 we present a method of implementing services that

provides the availability and integrity guarantees outlined above. In Section

5, we discuss the importance of maintaining causality among client requests

and a method to counter an intruder’s attempts to exploit violations of

causality. We conclude and discuss future and related work in Section 6.

2. STATE MACHINE REPLICATION

A state machine consists of a set of state variables and exports a set of

(possibly parameterized) commands. The state variables encode the state of

the state machine, and the commands transform that state. Each command is

implemented by a deterministic program and is executed atomically (i.e.,

indivisibly) with respect to other commands. A client of the state machine

invokes a command by issuing a request to the state machine. Requests

should be processed by a state machine in an order that is consistent with

Lamport’s [1978b] causality relation. That is, requests from the same client

should be processed in the order they were issued, and if one request could

have caused another from a different client, then a state machine should

process the former before the latter. Processing each request results in some

response (i.e., output), which we assume is returned to the client that issued

the request. Responses of a state machine are completely determined by its

initial state and the sequence of requests it processes.
State machine replication is a general method of implementing a replicated

service by simultaneously employing many state machine servers and coordi-

nating client interactions with them. 1 If all servers are initialized to the same

state, and if all correct servers process the same sequence of requests, then

1While the state machine servers must satisfy the same specification, they need not be identical

replicas of one another. In fact, it may be desired that they not be identical, to avoid a (possibly

deliberate) design flaw affecting all of them Employing nonidentical replicas is similar to the use

of n-uersion programming as applied m Joseph [1987].

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 3. May 1994

How to Securely Replicate Services . 989

all correct servers will give the same response to any given request. By

properly combining the responses of the servers to form the response of the

service, where “properly” depends on the number and type of failures being

considered, the service can retain its availability and integrity despite some

server failures.

3. THE SYSTEM MODEL

Our system consists of a set of processes, n of which are servers, and the

remainder of which are clients. All processes communicate exclusively by

passing messages over a network. We assume nothing about this network

other than what is required to implement the communication protocols on

which our schemes rely; we give specifications of these protocols later in this

section.

A process is correct in a run of the system if it always satisfies its

specification. A process may fail in an arbitrary (Byzantine) manner, limited

only by the (conjectured) properties of the cryptosystems and signature

schemes we employ. In order to capture the notions of a “benign” failure

versus a purposeful corruption by an intruder, we partition the faulty pro-

cesses into two sets: the honest processes and the corrupt processes. For-

mally the only property that this partitioning must have is that any process

that ever suffers “truly Byzantine” failures—i.e., failures that cannot be

classified as crash, omission, or timing failures [Cristian et al. 1985] —must

be classified as corrupt. We assume that there exist known constants t and

b, b < t,such that in any system run, at most t servers fail, and of these at

most b are corrupt. We assume that n > t + b.

Although processes fail as a single unit, it is convenient to view each

process as consisting of logically separate modules (see Figure 1). More

precisely, each server consists of a communication module and an applica-

tion module. The application module of a server is simply a state machine as

described in Section 2. The communication module delivers a request m to

that state machine by executing deliuer(m). Requests are delivered strictly

sequentially, i.e., deliver is not executed until all previous executions of

deliuer have completed. The state machine processes requests in the order

they are delivered. The communication module also implements a primitive

respond(c, m) by which the application module can send a response m to a
client c. This response m is of the form (c, m’, m“), where this response

resulted from processing the request, m’ and m“ are the “contents” of the

response. (Alternatively, the response could include only an identifier for the

request, instead of the entire request.) For simplicity, we assume that each

request contains information sufficient for each server to determine (to

whatever degree of certainty the application requires) the client that issued

it, and that the resulting response is sent to that client.

Servers’ communication modules make use of network communication to

coordinate request deliveries and to communicate responses to clients. One
type of network communication is of particular interest in this article: we

assume that the network supports an authenticated broadcast primitive

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

990 . M. K. Reiter and K. P. Birman

Application Module

I Communication Module

[h h beast(m)

receive((s, m)) t

Application Module

~cc!!;t-;)--- -n?:-’(m)---- - ~- --

Communication Module

h.,

Network

(a) Server

Fig. 1. Structure of processes

v
Network

(b) Client

beast(m) by which the communication module of a server s can broadcast a

message (s, m) to all servers. A server’s communication module receives a

message (s, m), with contents m and (apparently) from server s, by execut-

ing receiue((s, m)). Messages are received according to a protocol that satis-

fies the following specification.

—Receipt Validity: If a correct server s executes bcast(m), then

receiue((s, m)) is executed at all correct servers.

—Receipt Authentication: If server s is correct or honest, then a correct or

honest server executes receiue((s, m)) only if s previously executed

beast(m).

A client also consists of an application module and a communication

module. The application module of a client is some client program that can

issue a request m to the service by executing request(m). Processes’ commu-

nication modules implement an atomic broadcast protocol by which requests

are delivered to servers’ application modules. This atomic broadcast protocol

satisfies the following specification.

—Delivery Validity: If a correct client executes request(m), then deliver(m)

is executed at all correct servers.

—Delivery Order: If deliuer(m) is the ith execution of deliver at a correct or

honest server, then deliuer(m) is the ith execution of deliver at all correct

servers. That is, all correct servers deliver the same sequence of requests,

and the sequence of requests delivered by an honest server is a prefix of
the sequence of requests delivered by a correct server.

Assuming that each server is initialized to the same state, Delivery Order

implies that all correct and honest servers will produce the same response (or

no response) to a given request. Options for implementing atomic broadcast

are discussed in Section 6.1.1. Here we simply note that there already exist

protocols in the literature that satisfy this specification in various models and

for various definitions of honest. Our protocols do not rely on any bounds on

message transmission times or the execution speeds of processes, and so the

ACM Transactions on Programming Languages and Systems,Vol. 16, No. 3. May 1994.

How to Securely Replicate Services . 991

Table I. Summary of Notation

Notation Definition

system parameters

n total number of servers
t I maximum number of faulty servers in any system run
b I maximum number of corrupt servers in any system run

(the corrupt servers are a s;bset of the faulty servers; so, b < t)

server routines
deliver(m) delivers client request m to application module

respand(c, m) app~cation module responds to c with m
receive((s, m)) receives (authenticated) broadcast (s, m)

bcas~(m) when executed at s, broadcasts s, m to servers
client routines

accept(m) accepts response m for application module
request(m) issues request m to service

only such bounds required for our results, if any, are those required by the

particular atomic broadcast protocol used.

A client’s communication module accepts a response m for its application

module by executing accept(m). Responses are accepted strictly sequentially;

i.e., accept is not executed until all previous executions of accept have

completed. The protocol by which responses are communicated to clients

satisfies the following property.

—Acceptance Validity: If a correct server executes respond(c, m) and c is

correct, then c executes accept (m).

4. PRESERVING lNTEGRITy AND AVAILABILITY

Recall from Section 1 that our first goal is to ensure that each client accepts a

response computed by a correct server, and no other responses, for each of its

requests. We satisfy these requirements by replacing the respond(c, m) and

accept (m) routines of servers and clients, respectively, with two new routines,

respond (c, m) and accept’(m), that will ensure this. Thus, the new structures

of processes will be as pictured in Figure 2. While we have replaced the

respond routine with respond’ at the interface provided to the application

module of each server, respond will be used in the implementation of
respond to send a response to a client. Similarly, accept will be used in the

implementation of accept’ to accept a message at a client. As desired, the

respond and accept’ routines will ensure that the following hold.

—Integrity: A correct or honest client c executes accept(m) only if a correct

server executes respond (c, m).

—Availability: If a correct client c executes request(m), then c executes

accept((c, m, m’)) for some m’.

4.1 Threshold Signature Schemes

The respond’ routine at the servers will employ a (k, n)-threshold signature

scheme. A (k, n)-threshold signature scheme is, informally, a method of

ACM Transactions on Programming Languages and Systems, Vol. 16, No, 3, May 1994

992 . M K. Relter and K. P. Blrman

Application Module

Co:m::l::t::t::v) -

Application Module

---- - ---- -
del,ver(m)

. .

::2:!:t::~::~ ---

. .

A A bca-st(m) h
receive((s, m)) i

Network Network

(a) Server (b) CLient
1

Fig. 2. New structure of processes.

generating a public key and n shares of the corresponding private key in such

a way that for any message m, each share can be used to produce a partial

result from m, where any k of these partial results can be combined into a

signature for m that can be verified with the public key. Moreover, knowl-

edge of k shares should be necessary to sign m, in the sense that without the

private key it should be computationally infeasible to (i) create a signature

for m without k partial results for m, (ii) compute a partial result for m

without the corresponding share, or (iii) compute a share or the private key

without k other shares.

Crytanalytic attacks on threshold signature schemes differ from those

against conventional signature schemes in that the cryptanalyst may possess

some number of shares and be able to acquire partial results, in addition to

message\ signature pairs. For our purposes, we will say, informally, that a

(k, n)-threshold signature scheme is secure if it satisfies the following proper-

ties.

(1) Possession of only k – 1 or fewer shares and of partial results for various
messages does not facilitate signing new messages. That is, if a possessor

of such information can sign a new message, then it could also sign that

message without knowledge of any shares or partial results for any

messages. This property, which is formalized in Frankel and Desmedt

[19921, says that the threshold signature scheme is as secure as the

conventional signature scheme on which it is built.

(2) The conventional signature scheme on which the threshold signature
scheme is built prevents selective forgery under known-signature attacks.

That is, a cryptanalyst cannot manage to sign messages of its choice even

though it can see signatures for various other messages (not of its choice).

Our respond’ routine is not dependent on any particular implementation of

a (k, n)-threshold signature scheme. For concreteness, however, we describe

respond in terms of an implementation proposed in Frankel and Desmedt

[1992] (which is a slight variation of one proposed in Desmedt and Frankel

[1992]). That implementation begins with an RSA [Rivest et al. 1978] public

ACM Transactmns on Programmmg Languages and Systems, Vol 16, No 3, May 1994

How to Securely Replicate Services . 993

key (e, N) and private key d, where N is the product of two safe primes, and

the Carmichael function A is used in place of Euler’s totient function ~ to

create e from d. That is, ed - 1 mod A(N), where A(N) is the smallest

positive integer such that x ‘(~) = 1 mod N for all x = Z;. The n shares

{K,}l ~, ~ ~ are generated from d in such a way that for any set T c {1,..., n}
of size k, Z ,. ~(K, “p,,~) - d – 1 mod A(N), where the integers {p,, T},. ~ are
fixed a priori and public. (Each of the integers p,, ~ for all i and T are

computed from a fixed set of n integers, each of binary length O(log n), with

O(n) integer multiplications and additions.) By defining the ith partial result

for a message m to be am,, - m~’ mod N, it follows that for any T c {1,n}
ofsizek, A~~= m-~ ,. T(am,,)P’, T mod N is the proper RSA signature for
m, i.e., md mod N. Variations of this scheme have been proved to be as secure

as RSA, in the sense of property 1 above [Frankel and Desmedt 1992].

For reasons of security and efficiency, it is often preferable to sign a

message digest of a message, as opposed to the message itself [Denning 1984].

A message digest function f has the properties that the message digest f(m)

for any input m can be computed efficiently, but it is computationally

infeasible to produce two distinct inputs m and m’ such that f(m) = f(m’) or

to produce any input m such that f(m) = D for some prespecified message

digest D. Several efficient implementations of message digest functions have

been proposed (e.g., Rivest [1991]). We henceforth use f to denote such a

function.

4.2 The Protocol

Suppose that a public key (e, N) and corresponding shares {K,}l ~, ~ ~ are

created as above, with the threshold parameter k = b + 1,and distributed so

that for all i, 1< i < n, the ith server s, is the sole possessor of K, and any

process can reliably obtain (e, N), the public key of the service. We do not
discuss methods for distributing this information, although we note that all

public-key systems require similar steps. The (information for computing the)

integers pt T for all i and T can be “hardwired” into the servers. Then, the

respond’ (c, ‘m) and accept’(m) routines are implemented as follows.

Routine respond’ (c, m) at server s,:

(1) Execute bcast((f(m), a~t~),,)), where a~(~j,, - (f(m))~’ mod N is St’s
partial result for f(m).

(2) Wait until a set of messages {{ s~, (f(m), a~))}~ ~ T, ITI = k, has been

received such that A ~f~~,T = f(m)” ~ ~. T(aj)P~,T mod N is a valid signa-

ture for f(m) (i.e., such that (A~(~), T)’ - f(m) mod N).2

2Here we assume that messages can be received during the execution of respond’. This implies,

for example, that locks required to receive messages must not be kept by threads waiting in step
2 of respond. More generally, we assume that the replacement of respond and accept with

respond’ and accept’ does not result in the violation of Receipt Validity or Authentication,

Delivery Validity or Order, or Acceptance Validity (with accept replaced by accept’).

ACM Transactions on Programming Langaages and Systems, Vol. 16, No. 3, May 1994.

994 . M. K. Reiter and K, P. Birman

(3) Execute respond(c, (m, Af(mj, ~)).

Routine czccept’(m) at client c:

(1) If m is not of the form ((c, m’, m“), S), then return to the calling routine.

(2) If accept((c, m’, m’”)) for some m’” was previously executed at c, then

return to the calling routine.

(3) If S is a valid signature for f’((c, m’, m“)) (i.e., if S’ = f((c, m’, m“))

mod lV), then execute a,ccept((c, m’, m“)) and return to the calling rou-

tine only after it has completed.

THEOREM 1. If the threshold signature scheme is secure, then this protocol

satisfies Integrity.

PROOF. Suppose that the threshold signature scheme is secure. Then,

because at most b < k servers are corrupt and because each correct or honest

server produces partial results only for message digests of responses that it

computes, corrupt servers can generate signatures only for message digests of

responses computed by correct servers (and possibly for other, presumably

useless, message digest values). So, the corrupt servers cannot generate an

improper response that a client will accept, and any response that is accepted

by a correct or honest client must have been computed by a correct server. ❑

THEOREM 2. This protocol satisfies Availability,

PROOF. Because n > t + b, at least b + 1 = k correct servers broadcast

their partial results for (the message digest of) each response. Thus, by

Receipt Validity, each correct server eventually receives k correct partial

results for each of its responses, and so each correct server can correctly sign

each of its responses. Since each request issued by a correct client c is

delivered at all correct servers (by Delivery Validity), and since an execution

of respond(c, m) at a correct server results in an execution of accept’(m) at c

(by Acceptance Validity with accept replaced by accept’), it follows that a
correct client will accept a response for each of its requests. ❑

4.3 Discussion

In theory, the most computationally expensive part of this protocol is step 2 of

the respond’ routine, in which the server sorts through the partial results it

receives until it finds a T of size k such that A ~(m),T is a valid signature. The
server must examine at most the first k + b = 2 b + 1 partial results re-

()
ceived (from k + b unique servers), and at most ~ ~ b subsets of partial

results, because in k + b partial results are at least k correct ones. While

this search is exponential in b in the worst case and could be costly if b is

large and the actual number of corrupt servers is close to b, in most systems

n (and thus b) and the actual number of corrupt servers will typically be

small. (For example, our experience with the Isis system [Birman et al. 1991]

suggests that fault-tolerant services are sometimes implemented by three to
five servers, but rarely more.) Thus, while we are pursuing optimizations to

ACM TransactIons on Programming Languages and Systems, Vol. 16, No 3, May 1994.

l-low to Securely Replicate Services . 995

make this search less costly as a function of b (see Section 6.1.2), we view

them to be primarily of theoretical interest.

In terms of communication complexity, in a failure-free run the replace-

ment of respond with respond results in n executions of beast, which can be

executed concurrently. Therefore, the entire protocol that begins when a

client issues a request and ends when it accepts a response consists of three

communication “phases” that must be executed roughly sequentially: the

request by the client, the dissemination of partial results (n concurrent

executions of beast), and the sending of the responses (n concurrent execu-

tions of respond).

Because a client needs to obtain only one correctly signed response for each

request for Availability to be satisfied, this communication could be optimized

by having only t + 1 servers respond to any given request. Additionally, the

partial results for the response would need to be broadcast only to that set of

servers. The broadcast of partial results could be optimized for the common

case in most systems (i.e., when there are no corrupt processes) by employing

a protocol that satisfies only Receipt Validity. However, when there are

corrupt processes, this would allow these processes to disseminate incorrect

partial results on behalf of correct or honest servers, further complicating

each server’s search for partial results that form a correct signature.

In this protocol, each server must know 0(n log n) bits of public informa-

tion (in order to compute the p,, *’s), in addition to the public key for the

service and its share of the private key. Each client needs to know only the

public key of the service and must verify only one (correctly signed) response

per request. While additional correctly signed responses may arrive at the

client, they are discarded in step 2 of accept’ without performing any

cryptographic computation on them.

In comparison to “normal” state machine replication, where clients authen-

ticate each server individually, the primary practical weakness of our ap-

proach is that by trading client burden for server burden, we limit the ability

of our services to scale to very large systems with many clients. Our approach

was motivated primarily by the need for a highly secure and available service

—the authentication service of Reiter [1993, Ch. 3] —where alternatives for

dealing with issues of scale previously existed and would often be necessary

anyway.3 In this case, our approach has yielded substantial benefits by

insulating clients from the implementation details and internal security

policies of the service (e.g., the value of b), and by minimizing overhead on

client processors and the latencies of client protocols that use the responses of

the service. Our approach should be an attractive alternative for systems

with similar requirements.

3Having one authentication service for a very large system can be administratively impractical,

and there may not be a single authority trusted by everyone to protect it [Lampson et al. 1992].
Approaches using multiple authentication services (e.g., one per administrative domain) have

been employed in systems to remedy these problems (e.g., Lampson, et al. [1992] and Steiner et

al. [1988]).

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

996 . M, K, Reiter and K, P. Birman

4.4 Performance: An Example

As an example of how the protocol of Section 4.2 might perform in practice, in

this section we discuss the performance of the public-key authentication

service of Reiter [1993]. This service was a primary motivation for this work

and has been implemented using the protocol of Section 4.2. It has been

constructed as part of a larger effort to integrate mechanisms into Isis, a

system for building fault-tolerant applications [Birman et al. 1991]. The

security architecture we have developed is presented in Reiter [1993] and

Reiter et al. [1992].

In our security architecture, the authentication service is the trusted

authority as to which public key belongs to which principal (e.g., computer,

user). To exercise this authority, the service produces public-key certificates

for principals. Each certificate contains a principal’s identifier and the public

key for that principal (among other things), bound together with the signa-

ture of the authentication service. Because requests for certificates commute,

clients issue requests to the service with an unordered multicast (i.e., Deliv-

ery Order is not enforced).

The performance of our prototype service is illustrated in part (a) of Figure

3. The line indicates the mean response time in seconds as a function of n,

the number of servers. For each n, we assumed that t = b = \(n– 1)/2]. We

have illustrated the curve for up to nine servers, although we expect that few

services will be implemented by more than five, as mentioned in Section 4.3.

In these tests the RSA modulus iV was 512 bits. These tests were executed

between user processes over SunOS 4.1.1 on moderately loaded 33 MHz Spare

ELC workstations. The workstations spanned two 10 Mbit/s ethernets con-

nected by a gateway. Each data point is the mean of 40 consecutive trials.

The cost of performing exponentiation modulo iV is the direct cause of the

poor response times in part (a) of Figure 3 and, in general, is the limiting

factor in the performance of our authentication service. Exponentiation mod-

U1O N is required to construct a partial result from a share and a message,

and k exponentiations modulo N (but with exponents much smaller than N)

are used to construct a signature from k partial results. Moreover, none of

these modular exponentiations lend themselves to well-known optimizations

using the Chinese Remainder Theorem (see Shand and Vuillemin [1993]),

since a server cannot be allowed to know the factorization of N. Part (a) of

Figure 3 reflects the cost of performing these modular exponentiations in

so ftware,4 and we expect that hardware support for modular exponentiation

will generally be required at the servers to achieve satisfactory performance
with the protocol of Section 4.2. Even with most presently available hardware

4In these tests we used the C implementation of modular exponentiation provided with the

RSAREF toolkit, licensed free of charge by RSA Data Security, Inc The RSAREF toolkit was

developed to support privacy-enhanced electronic mail, not interprocess communication, and

faster software implementations of modular exponentiation are available from RSA Data Secu-

rity, Inc. and others. However, with any software Implementation of which we are aware, the cost

of modular exponenti ation would continue to be the primary factor limitmg performance in our

service.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994,

How to Securely Replicate Services . 997

3.8-

3.7-

3.6-

3.5-

S 3.4-

3.3-

3.2-

3“’~
3 5 7 9

‘n
(a)

90

80
1

70
i

‘Si!:se
u-

20-
I I I 1
3 5 7 9

n
(b)

Fig. 3. Response times of an example service.

[Brickell 1990], the cost of modular exponentiation will continue to be the

primary factor limiting performance in our protocol. However, advances that

promise, e.g., modular exponentiation with a 512-bit exponent and modulus

in a few milliseconds or less [Orup et al. 1991; Sedlack 1988; Shand and

Vuillemin 1993], will make this less and less the case.

In our prototype implementation of the authentication service, we have not

invested in hardware to support modular exponentiation at the servers. To

compensate for its poor response time, we have designed our security archi-

tecture so that interactions with the authentication service always occur in

the background, off the critical path of any other protocol or computation.

Nevertheless, to gain insight into the potential performance of our service

with such hardware, we have tested the performance of our prototype with

the (software) modular exponentiation routines removed from the servers.

This is obviously an optimistic simulation of hardware performance. How-

ever, in light of the recent advances in modular exponentiation hardware just

mentioned, these tests could be indicative of the potential performance of our

service.

The results of these tests are illustrated in part (b) of Figure 3. The solid

line indicates the mean service response time in milliseconds as a function of

n. For comparison purposes, we also modified our authentication service to

simulate its performance if it used “normal” state machine replication, where

each server individually computes, digitally signs, and sends its reply to the

client, and the client authenticates h of these replies. (Again, all modular

exponentiations were removed from the servers.) The performance of this

approach is shown by the dashed line.
As illustrated in part (b) of Figure 3, state machine replication performed

slightly better than our approach in most cases. This is due to the round of

server communication in our approach to disseminate partial results. In the

ACM Transactions on Programming Languages and Systems, Vol. 16, No 3, May 1994

998 . M, K Reiter and K. P. Blrman

tests of Figure 3, partial results were communicated between servers using

authenticated point-to-point channels; the cryptographic mechanisms used

for authentication were implemented entirely in software. Given our assump-

tion of hardware for modular exponentiation, this dissemination could possi-

bly be optimized by exploiting this hardware. For instance, each server could

be initialized with its own RSA private key and the public keys of the other

servers, and partial results could be authenticated using RSA digital signa-

tures. Moreover, this opens the possibility of using hardware multicast to

disseminate partial results, since the same digitally signed partial result

could be multicast to all servers at once.

While the increase in response times as a function of n in our approach

stems from server communication, the increase for state machine replication

results from the client having to verify multiple signatures. In these tests, all

public RSA exponents were set to three (i.e., e = 3) for maximum efficiency in

verifying signatures. With the RSA software we employed, signature verifica-

tion then cost approximately 10 ms per verification. This increased cost on

the client processor gives us the opportunity to make an important point:

while the response time of our service is slightly worse, the client processor is

free for all but the time required to make a request and to verify one

signature. In settings in which client processors tend to be heavily loaded and

in which equipping all clients with modular exponentiation hardware is

prohibitively expensive, this could be an important feature.

It is risky to conclude too much from part (b) of Figure 3. We reiterate that

the single most important factor in the performance of both our approach and

normal state machine replication, namely, the speed of modular exponentia-

tion at the servers, was removed from these tests. Moreover, there are several

other factors—including the optimizations on the dissemination of partial

results described above and the existence of faster software implementations

of signature verification with e = 3 (which will cause the dashed curve to

flatten somewhat) —that could impact these tests. Additionally, the service

used in these tests is atypical in that it does not require that client requests

be delivered by an atomic broadcast protocol. (However, since atomic broad-

cast is generally a requirement of both our approach and normal state

machine replication, the impact on both should be the same.)

Nevertheless, part (b) of Figure 3 does indicate that with efficient hardware

support for modular exponentiation at the servers, the protocol of Section 4.2

may provide acceptable response times for many services. This, combined

with the additional features of our scheme (e.g., insulating clients from the

service implementation and removing burden from client processors), sup-
ports the hypothesis that our approach can be a reasonable alternative to

normal state machine replication in some situations.

5. PRESERVING INPUT CAUSALITY

One guarantee provided in the previous section is that any response accepted

at a correct or honest client was computed by a correct server. Even the

output of a correct server, though, may not reflect the way things “should be”

ACM Transactions on Programming Languages and Systems, VOI 16, No 3, May 1994

How to Securely Replicate Services . 999

if an intruder has caused the service to process improper requests or to

process requests in an incorrect order. In general, ensuring proper responses

from a correct server requires mechanisms to authenticate client requests

and to enforce access controls on what state variables clients can write,

because responses computed from state variables that can be written (directly

or indirectly) by corrupt clients cannot be trusted. Approaches for authenti-

cating client requests and enforcing access controls are well known (e.g.,

Lampson et al. [1992]) and will not be discussed further here.

In this section we address the issue of ensuring that requests are delivered

in a correct order by correct and honest servers. Because we assume an

atomic broadcast protocol to disseminate client requests, we concern our-

selves only with the requirement that correct servers deliver requests in an

order consistent with causality (see Section 2). A common method of attempt-

ing to preserve a causal order among client requests is for each client to

refrain from communicating between the time it issues a request to the

service and the time at which the request is delivered at some honest or

correct server [Schneider 1990]. While this suffices to ensure that requests

from the same client are delivered in the order issued, this does not suffice to

ensure a causal delivery order for all requests. In particular, consider the

case in which a correct client issues a request to the service, and after seeing

the request, a corrupt server sends a message to a corrupt client. If the

corrupt client subsequently issues a request, then there is a causal relation-

ship between the two requests. However, it is not clear how this relationship

can be detected by correct servers.

To illustrate why this may be important, we borrow an example from

Reiter et al. [1992]: suppose that the service is a trading service that trades

stocks, and that a client issues a request to purchase shares of stock through

this service. After discovering the intended purchase, a corrupt server could

collude with a corrupt client as described above to issue a request for the

same stock to the service. If the correct servers deliver this request before

that of the correct client, this request may adjust the apparent demand

for the stock and raise the price offered to the correct client. Thus, by

allowing the causally subsequent request of the corrupt client to be delivered

before the request of the correct client, a type of “insider trading” may occur.

Moreover, access controls alone cannot naturally avoid this problem, since

the intent is that any client can request to purchase stock at any time.

In the rest of this section, we present new routines request’(m) and

deliver’(m) that replace request(m) and deliver, respectively. Thus, if

these are used with the respond’ and accept’ routines of Section 4.2, pro-

cesses would be structured as in Figare 4. These new routines protect clients

from the type of attack described above, in the sense that any request based

on information obtained from a correct or honest client’s request m can be

delivered at correct or honest servers only after m. As before, we will use

deliuer to deliver a request in our implementation of deliver’, and we will use

request to issue a request in request’.
In the implementation of request’(m), the client c encrypts m under the

public key of the service before issuing the request to the service. Then, c is

ACM Transactions on Programming Languages and Systems, Vol 16, No. 3, May 1994

1000 . M. K, Reiter and K, P. Birman

Application Module Application Module

---- -

co:m:i:~:r:v) -

---- -
deh ve# (m)

. . C::f!xt:::!:::)- -,.

A 4 beast(m) h

receive((s, m)) i

Network Network

(a) Server (b) Client

Fig. 4, New structure of processes.

provided the following guarantee if it is correct or honest. The reader should

verify that this guarantee prevents the aforementioned problem.5

—Causality: If deliver is executed at a correct or honest server s when

deliuer(m) has not yet been executed at s, then m’ was issued before m

was decrypted anywhere (other than c).

To guarantee that servers’ states remain consistent, request’ and deliuer’

must also ensure that client requests continue to be delivered according to

the specification of atomic broadcast—i.e., that Delivery Validity (with re-

quest replaced by request’) and Delivery Order still hold.

5.1 Threshold Cryptosystems

Our deliver’ routine at the servers will employ a (k, n)-threshold cryptosys-

tem. A (k, n)-threshold cryptosystem is, informally, a method of generating a

public key and n shares of the corresponding private key in such a way that

for any message m encrypted under the public key, each share can be used to

produce a partial result from the ciphertext of m, where any k of these
partial results can be combined to decrypt m. Moreover, knowledge of k

shares should be necessary to decrypt m, in the sense that without the

private key it should be computationally infeasible to (i) decrypt m without k

partial results for m, (ii) compute a partial result for m without the corre-

sponding share, or (iii) compute a share or the private key without k other
shares.

As with threshold signature schemes, cryptanalytic attacks against thresh-

old cryptosystems differ from those against conventional public-key cryp-

tosystems in that they may involve the use of partial results and some

number of shares, in addition to plaintext/ciphertext pairs. For our purposes,

5We do not consider traffic analysis attacks [Voydock and Kent 1983] or attacks that exploit the

malteabdity of the cryptosystem [Dolev et al. 1991],

ACM Transactions on Programmmg Languages and Systems, Vol. 16, No 3, May 1994.

How to Securely Replicate Services . 1001

we will say, informally, that a (k, n)-threshold cryptosystem is secure if it

satisfies the following properties.

(1) Possession of only k – 1 or fewer shares and of partial results for various

ciphertexts does not facilitate decrypting new ciphertexts. That is, if a

possessor of such information can decrypt a new ciphertext, then it could

also decrypt that ciphertext without knowledge of any shares or partial

results for any ciphertexts. This property, which is formalized in Frankel

and Desmedt [1992], says that the threshold cryptosystem is as secure as

the conventional cryptosystem on which it is built.

(2) The conventional cryptosystem on which the threshold cryptosystem is

built is resistant to known-plaintext attacks. That is, the cryptanalyst

cannot manage to decrypt given ciphertexts even though it can see the

plaintext corresponding to various other ciphertexts (but not correspond-

ing to ciphertexts of its choice, as would be possible in a chosen-ciphertext

attack).

As we will see in Section 5.2, we would actually prefer a threshold cryptosys-

tem that is based on a conventional cryptosystem able to tolerate chosen

ciphertext attacks. However, the above definition is in accordance with the

security of all implementations of threshold cryptosystems thus far proposed,

in the sense that all proposed implementations are based on conventional

cryptosystems that are known to be vulnerable to chosen-ciphertext attacks.

Because the acts of signing a message and decrypting a message are

operationally identical in the RSA signature scheme and cryptosystem, one

implementation of a (k, n)-threshold cryptosystem can be obtained directly

from the (k, n)-threshold signature scheme described in Section 4.1. Mes-

sages would be encrypted under the public key (e, IV) in the usual manner,

and the ith partial result for an encrypted message m = (m’)’ mod IV would

be defined precisely as in Section 4. l—i.e., am,, - mK’ mod IV. Then, m’ =

A =m.n ,. T(an,,)PZ, T mod IV for any T of size k. Other implementa-

ti~n~ of threshold cryptosystems have been proposed, based on both the RSA

and EIGamal [1985] cryptosystems [Desmedt and Frankel 1990; Laih and

Ham 1991].

5.2 The Protocol

Suppose that we are using the RSA threshold cryptosystem described above

and that we have the initial conditions assumed in Section 4.2: the ith server

s, is secretly given sole possession of K,; the cryptosystem threshold parame-

ter k = b + 1; any process can reliably obtain the public key (e, IV) of the

service; and all servers know (a priori) p,, T for all i and T. The basic idea of

our protocol is that each client encrypts each of its requests m with the

public key of the service, in an attempt to force k servers to cooperate to

decrypt it. Then, each correct or honest server refrains from broadcasting its
partial result for the ciphertext of m until the delivery sequence through m

is fixed locally. In this way, once a corrupt server collects k partial results for

the ciphertext of m, the delivery sequence through m is fixed at some correct

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

1002 . M. K. Reiter and K. P. Birman

or honest server, and thus at all correct servers, and no requests can be

placed before m in the delivery sequence at correct or honest servers.

This protocol preserves Causality only if each server requires k partial
results for the ciphertext of m to decrypt that ciphertext. Even under the

assumption that this cryptosystem is secure, however, this unfortunately is

not the case with this or any implementation of a (k, n)-threshold cryptosys-
tem proposed thus far. The problem is that our protocol as described above

allows a corrupt server to mount chosen-ciphertext attacks, against which

neither the RSA nor the EIGamal cryptosystem (nor any proposed threshold

cryptosystem based on them) is resistant. In our setting, a corrupt server can

see at any time how any ciphertext m of its choosing is decrypted, by simply

requesting that a corrupt client issue m as an apparently legitimate request

to the service. The corrupt server can then collect k partial results for m to

see the plaintext to which m decrypts.

Methods of using chosen-ciphertext attacks against the RSA and EIGamal

cryptosystems are well known. Here we present one method, originally due to

Moore (see Denning [1984]), by which a corrupt server can decrypt the RSA

ciphertext m = (m’)’ mod N of a client’s request m’ without waiting to

receive k partial results for m.

(1) The corrupt server chooses an arbitrary x and computes y - x’ mod N;
i.e., x = yd mod N.

(2) Via a corrupt client, the corrupt server issues the request ym mod N to
the service.

(3) The corrupt server collects k partial results for ym mod N and forms

(ym)~ mod N.

(4) The corrupt server computes x-1 = y-d mod N, and then

x-’(ym)~ =y-dydmd = md = (m’)ed = m’ mod N.

(NB: If x does not have an inverse mod N, then the corrupt server can
factor N and break the cryptosystem, because gcd(x, N) is a prime factor

of N.)

Similar attacks are possible with the threshold cryptosystems described in

Desmedt and Frankel [1990] and Laih and Ham [1991].

Ideally, we would like to find a threshold cryptosystem based on a conven-

tional public-key cryptosystem that is tolerant of chosen-ciphertext attacks.
To our knowledge, however, no such threshold cryptosystem has been pro-

posed, and even conventional public-key cryptosystems that are tolerant of

such attacks (e.g., Dolev et al. [1991]) are impractical. Therefore, such attacks

must be preuented. A simple way to prevent these attacks is to authenticate

client requests and have each client use a separate public encryption key for

the service. This would prevent chosen-ciphertext attacks against the keys

and ciphertexts of correct and honest clients, because a request from a

corrupt client would be decrypted using the shares of the key for that client,

and not a correct or honest one. However, this approach complicates key

ACM Transactions on Programming Languages and Systems, Vol 16, No, 3, May 1994

How to Securely Replicate Services . 1003

management, requires more storage at the servers to store a share per client,

and requires that clients be authenticated.

An alternative method, which we adopt here, is to prevent chosen-cipher-

text attacks using a cryptographic technique introduced in Lim and Lee

[1994]. With this approach each server can determine (with a high probabil-

ity), prior to creating its partial result for a request, whether the request was

properly created from a plaintext. If not, then the server discards the request

and does not create its partial result for the ciphertext.

In the technique of Lim and Lee [1994] as applied to RSA, the ciphertext

for a message m consists of three parts. The first part ml is the RSA

ciphertext of a secret, random seed q to a cryptographically strong pseudo-

random bit generator G; i.e., ml = q e mod N where e and N are the public

RSA exponent and modulus, respectively. The Iml-bit output G(1 ml, q) of G

with seed q, where Im I is the bit length of m, is exclusive-ored with m to form

the second part mz. The third part m~ is computed as m~ = q ~(mlll~zj mod N,

where f is a message digest function (of a certain form), and II denotes

concatenation. (See Section 4.1 for a description of message digests.) Under

the assumption that inverting RSA encryption or f is not possible, the

recipient of (ml, mg, ma) can verify that this ciphertext was properly con-

structed from a plaintext by checking that (m~)e - (ml)~(~lllm z) mod N [Lim

and Lee 1994].

Then the request’ and deliver’ routines execute as follows.

Routine request’(m):

(1) Generate a new, random seed q, O < q < N, and encrypt m as in Lim and
Lee [1994], i.e.,

where “o” denotes bitwise exclusive-or.

(2) Execute request((ml, m2, m~)).

Routine deliver’(m) at server s,:

(1) If m is not of the form (ml, m2, m~), then return to the calling routine.

(2) If (m~)e # (ml)f(~ll~2) mod N, then return to the calling routine (because
this may be a chosen-ciphertext attack).

(3) If this is the hth execution of deliver’, then execute bcast((h, anl,,)),

where cz~l,l - (ml)~z mod N is S,’S partial result for ml.

(4) Wait until a set of messages {(SJ, (h, a~))}J. ~, IT I = k, has been received
such that A~l,~ = ml . ~j. T(a~)PJ, T mod N is the correct decryption of
ml (i.e., such that (A~l,~)’ - ml mod N).

(5) Execute deliuer(G(lm21, A~l,T) o m2) and return to the calling routine
only after it has completed.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994

1004 . M. K, Relter and K, P, Birman

THEOREM 3. This protocol satisfies Delivery Validity with request replaced

by request’.

PROOF. Suppose that deliuer’(m,) is the ith execution of deliver’ at a

correct or honest server, and suppose that each correct server completes its

(i – l)th execution of deliver’. By Delivery Order with deliz~er replaced by
deliver’, deliver’(m) is the ith execution of deliver’ at all correct servers.

Thus, all correct servers either return to the calling routine in step 1 or 2 of

deliver’(m) or broadcast their partial results in step 3. Because n > t + b, in

the latter case at least k correct partial results for ml are broadcast by and
thus received at all correct servers, ensuring that each correct server will

deliver a request and return to the calling routine. Thus, by induction it

follows that each execution of deliver’ at correct servers completes.

Delivery Validity with deliver replaced with deliver’ then implies that if a

correct client c executes request’(m), then deliver’((ml, m2, m ~)) is executed

at all correct servers, where (m ~, m2, m3) is as created in request’(m). Since

any k partial results for ml from k correct and honest servers enables m ~ to

be decrypted, m will be delivered. ❑

THEOREM 4. This protocol satisfies Delivery Order.

PROOF. By Delivery Order with deliver replaced by deliver’, if deliver’(m)

is the ith execution of deliver’ at a correct or honest server, then deliver’(m)

is the ith execution of deliver’ at all correct servers. Suppose a correct or

honest server executes deliver(m) for some m in its ith execution of deliver’.

Then, the ith execution of deliver’ must be of the form deliver’((m ~, rnz, m~)).

Consider this execution of deliver’((ml, m2, m3)) at a different correct or

honest server s’. Because there is only one seed q, O < q < ~, such that

q’ = m ~ mod N, it is not possible for s’ to execute deliver(m’) for some

m’ # m. If s’ is correct, then eventually k partial results from k correct and

honest servers will be received at s’, which will enable it to decrypt and

deliver m. Ifs’ is honest and does not deliver m, then deliver’ ((ml, m~, m ~))

does not complete and s’ never again executes deliver’ (or deliver). ❑

THEOREM 5. If the threshold cryptosystem is secure, then this protocol

satisfies Causality.

PROOF. Suppose that a corrector honest client c executes request’(m). If c

makes progress for sufficiently long, then c executes request((ml, m2, m3)),

where ml, mz, and m3 are as created in reqztest’(m). If the threshold
cryptosystem is secure, then the earliest point at which m could be decrypted

anywhere is sometime after some correct or honest server broadcasts its

partial result for ml, in deliver’((ml, m ~, m~)). If no correct or honest server
ever broadcasts its partial result for m ~, then Causality is trivially satisfied.

Otherwise, let s be the first correct or honest server to broadcast its partial

result for m ~.

Suppose that deliuer(m’) for some m’ # m is executed at a correct or

honest server s’ when deliver(m) has not yet been executed at s’. Then,

deliver(m’) must be executed at s’ when deliver’((ml, m ~, m ~)) has not been

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 3, May 1994

How to Securely Replicate Services . 1005

executed at s’, because otherwise deliver(m) would have been executed in

deliver’((ml, mz, m~)) prior to deliver. So, deliver must be executed

at s before deliuer’((ml, mz, m~)). Because ml cannot be decrypted before s

broadcasts its partial result for ml in deiiuer’((ml, ma, m~)), m’ is delivered

(and thus was issued) before m is decrypted anywhere. ❑

5.3 Discussion

In a failure-free run, the replacement of deliuer with deliver’ results in an

additional n executions of beast, which are executed concurrently. Thus,

when this protocol is used to deliver client requests, and the protocol of

Section 4.2 is used to sign responses, a request results in one atomic broad-

cast, two sets of n. concurrent executions of beast to disseminate partial

results, and the responses to the client. The storage requirements at the

clients and servers in this protocol are the same as in the protocol of Section

4.2. The computation costs in this protocol, however, are slightly higher due

to the mechanisms for preventing chosen-ciphertext attacks.

A more general discussion of the importance of detecting causal relation-

ships in hostile environments can be found in Reiter and Gong [1993]. In the

framework presented there, the attack addressed by the protocol of Section

5.2 is termed causal denial. That work also presents another class of attacks

called causal forgery, although in the context of this article, preventing

causal denial is sufficient to satisfy the causal requirements on the delivery

of requests to the servers. While the protocol of Section 5.2 does not fully

prevent denial in the sense of Reiter and Gong, we believe that the Causality

guarantee should suffice for virtually all applications. The interested reader

should consult Reiter and Gong [1993] for a more detailed description of these

attacks and measures to prevent them in some situations.

6. CONCLUSION

We have presented a method for securely replicating services using a modifi-

cation of the state machine approach. With our technique, a service can be

replicated as n servers, where n > t + b, so that clients will accept responses

computed by correct servers and will not accept other responses. We have

also addressed the issue of maintaining a causal order among client requests.

We illustrated a security breach resulting from an intruder’s ability to violate

causality in the sequence of requests processed by the service, and we

presented an approach to counter this problem. An important feature of our

methods is that they free the client of the responsibility of authenticating

servers. This is achieved by employing two recent advances in cryptography,

namely, threshold cryptosystems and threshold signature schemes. We have

implemented a prototype authentication service using one of our protocols,

and preliminary data indicate that our techniques can yield efficient service
implementations if the servers are equipped with high-performance hardware

for modular exponentiation.

ACM Transactions on Programming Languages and Systems, Vol 16, No 3. May 1994

1006 . M. K. Reiter and K. P. Birman

6.1 Future Work

6.1.1 Atomic Broadcast. At the present time, one of the primary factors

limiting the general usefulness of our techniques, and indeed of state ma-

chine replication, is that they rely on an atomic broadcast protocol (see

Section 3). It is well known that it is impossible to find a deterministic

solution to consensus, and thus atomic broadcast, in distributed systems that

can suffer even a single crash failure [Fischer et al. 1985]. We believe that an

important direction for future research is to find practical ways to circumvent

this impossibility result in our system model.

One approach to circumventing this impossibility result has been to con-

sider only synchronous systems, in which there are known bounds on mes-

sage transmission times and execution speeds of processes. Deterministic

atomic broadcast protocols that suffice for various definitions of honest have

already been devised for synchronous systems (e.g., Cristian et al. [1985],

Gopal et al. [19901, and Schneider [1990]) and have been implemented in

some efforts (e.g., Shrivastava et al. [1992]). With such a protocol, only

the subsystem of servers must be synchronous, because an atomic broadcast

protocol for client requests can be implemented using an atomic broadcast

protocol for the servers alone by having the servers atomically broadcast

requests on behalf of clients. One drawback of protocols that rely on a

synchronous system is that such systems can be difficult to build and

maintain.

A second approach to circumventing the result of Fischer et al. [1985] is to

employ randomization techniques. While there are several randomized solu-

tions to the consensus problem in asynchronous systems (see Chor and

Dwork [1989]), there has been much less research on randomized atomic

broadcast protocols. In a private communication in May, 1992, T. D. Chandra

described a method to transform any solution to consensus into a solution to

atomic broadcast, which automatically yields randomized atomic broadcast

protocols for asynchronous systems from randomized consensus protocols.

Unfortunately, the protocols produced by this translation are impractical for

general use.

Many real systems circumvent the impossibility of deterministic, asy-

nchronous atomic broadcast in more benign failure models by employing an

appropriate membership protocol (e.g., Ricciardi [1992]). A membership proto-

col is used to remove a process from participation in the atomic broadcast

protocol if it appears to be faulty. While this risks the exclusion of a correct

process from the broadcast protocol, it eliminates the factor that makes
atomic broadcast impossible in asynchronous systems, namely, that is is

impossible to determine whether a process has actually failed or is only very

slow. We have designed and are presently implementing a membership

protocol for use in our system model that enables us to achieve a variation of

atomic broadcast that is sufficient for our purposes [Reiter 1994].

Finally, we should note that for services for which requests commute,

atomic broadcast is not necessary. For instance, this was the case for the

authentication service discussed in Section 4.4.

ACM TransactIons on Programming Languages and Systems, Vol 16, No 3, May 1994.

How to Securely Rephcate Services . 1007

6.1.2 Verifiable Threshold Signature Schemes and Cryptosystems. A sec-

ond direction for future work is the development of verifiable threshold

signature schemes and cryptosystems, which were initially suggested to us by

Yair Frankel. In addition to the properties discussed in Sections 4.1 and 5.1, a

verifiable threshold signature scheme or cryptosystem would enable the

servers to detect whether partial results from other servers were created

correctly (cf., verifiable secret sharing schemes such as in Feldman [1987]).

To our knowledge, no implementation of such a signature scheme or cryp-

tosystem has been proposed. However, in principle this detection capability

could enable us to eliminate the (worst-case) exponential growth as a function

of b of the time to search for partial results that decrypt a request in deliuer’

or sign a response in respond’. Thus, the development of verifiable signature

schemes and cryptosystems may help to improve the efficiency of our proto-

cols.

6.2 Related Work

This work was largely inspired by Gong [1989], which presents a replicated,

shared-key authentication service. The authentication service described there

allows two principals to establish a secret, shared encryption key provided

that n > t + 6. The method discussed in the present work cannot immedi-

ately be applied to construct such a service, because of the additional secrecy

requirements. However, as discussed in Section 4.4, our method has been

used to construct an analogous public-key authentication service. Moreover,

unlike our scheme, the scheme of Gong requires each client to authenticate

each server individually.

Using the state machine approach to construct services tolerant of arbi-

trary failures with authentication was first considered in Lamport [1978a].

Since then, other authors have focused on secure replication of data. Secure

data replication using quorum methods was discussed in Herlihy and Tygar

[1988] for the case in which both data integrity and secrecy are important. In

these schemes, however, clients are again expected to be able to authenticate

data repositories individually. In Rabin [1989], a space-efhcient information

dispersal algorithm was developed to make data highly available. The scheme

decomposes a file F into pieces, each of size lF1/1, such that any 1 pieces

suffice to reconstruct F. This scheme was extended in Krawczyk [1993] to

defend against modification of these pieces.

ACKNOWLEDGMENTS

This work benefited from discussions with and information provided by Matt

Blaze (AT & T Bell Laboratories), Tushar Chandra (Cornell University), Yair

Frankel (GTE Laboratories), Li Gong (SRI International), Jack Lacy (AT&T

Bell Laboratories), Tom London (AT & T Bell Laboratories), Andrew Odlyzko

(AT & T Bell Laboratories), and Sam Toueg (Cornell University). We also
gratefully acknowledge the suggestions of the anonymous referees.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.

1008 . M. K. Reiter and K. P. Birman

REFERENCES

BIRMAN, K. P., SCHIPER, A., AND STEPHENSON, P. 1991. Lightweight causal and atomic group

multlcast. ACM Trans. Comput. Syst. 9, 3 (Aug.), 272–314.
BRICKELL, E. 1990. A survey of hardware implementations of RSA. In Advances in Cryptology

—CRYPTO ’89 Proceedings. Lecture Notes in Computer Science, vol. 435. Springer-Verlag,
New York, 368-370.

CHOR, B., AND DV?OFW,C 1989. Randomization in Byzantine agreement. Adu. Comput Res. 5,

443-497.

CRISTIAN, F., AGHILI, H., STRONG, R., AND DOLEV, D. 1985. Atomic broadcast: From simple

message diffusion to Byzantine agreement. In Proceedings of the 15th InternatLona 1 Sympo-

swm on Fault-Tolerant Computing. 200–206. A revised version appears as IBM Res. Lab.
Tech, Rep. RJ5244 (April 1989), IBM, Armonk, N.Y.

DENNING, D. E. 1984. Digital signatures with RSA and other public-key cryptosystems. Com -

mun. ACM 27, 4 (Apr.), 388–392.
DESMEDT Y., AND FRANKEL, Y. 1992 Shared generation of authenticators and signatures. In

Aduances m Cryptology —CRYPTO ’91 Proceedings, Lecture Notes in Computer Science, vol.
576 Springer-Verlag, New York, 457-469.

DE SMEDT, Y., AND FRANKEL, Y. 1990. Threshold cryptosystems. In Aduazzces zn

Cr.yptology—CRYPTO ’89 Proceedings. Lecture Notes in Computer Science, vol. 435.
Springer-Verlag, New York, 307-315.

DOLEV, D., DWOR~, C., AND NAOR, M. 1991. Non-malleable cryptography. In Proceedings of the
23rd Annual ACM Symposium on Theory of Computmg. ACM, New York, 542-552.

ELGAMAL, T. 1985. A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE Trans. Inf. Theory. IT-31, 4 (July), 469-472.
FELDMAN, P. 1987. A practical scheme for non-interactive verifiable secret sharing. In Pro-

ceedings of the 28th Annual Symposium on Foundations of Computer Science. IEEE, New
York, 427-437.

FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S. 1985. Impossibility of distributed consen-

sus with one faulty process. J. ACM 32, 2 (Apr.), 374–382.
FRANKEL, Y., AND DESMEDT, Y. 1992. Distributed reliable threshold multislgnature. Tech. Rep.

TR-92-04-02, Dept. of EE & CS, Univ. of Wisconsin at Milwaukee
GONG, L. 1989. Securely replicating authentication services In 1%-oceedmgs of the 9th Interna-

tional Conference on DwtrZbuted Computmg Systems. 85–91.

GOPAL, A., STRONG, R., TOUEG, S., AND CRISTL+N, F. 1990. Early-delivery atomic broadcast. In

Proceedings of the 9th Annual ACM Symposium on Prlnclples of Dwtnbuted Computmg. ACM,

New York, 297-309.
HERLIHY, M. P,, AND TSGAR, J, D. 1988. How to make replicated data secure, In Aduances m

Cryptology —C’RYPTO ’87 Proceedings. Lecture Notes in Computer Science, vol 293.

Sprmger-Verlag, New York, 379-391.

JOSEPH, M. K. 1987. Towards the elimination of the effects of malicious logzc: Fault tolerance

approaches. In Proceedings of the 10th NBSINCSC Na t~ona 1 Computer Security Conference.
NBS/NCSC, Washington, DC., 238-244.

KrwwrzyK, H. 1993. Distributed fingerprints and secure information dispersal. In Proceedings

of the 12th Annual ACM Symposium on Principles of Distributed Computing. ACM, New York,
207-218.

LAIH, C. S. AND HARN, L. 1991, Generalized threshold cryptosystems In Pre-Proceedings of

ASIACRYPT ’91.

LAMPORT,L. 1978a. The implementation of rehable distributed multiprocess systems. Comput.

Netw. 2, 95–114.

LAMPORT, L. 1978b. Time, clocks, and the ordering of events in a distributed system. Commun.

ACM 21, 7 (July), 558-565,

LAMPSON, B., ABADI, M., BURROWS, M., AND WOBBER, E. 1992, Authentlcatlon in distributed

systems: Theory and practice. ACM Trans. Compzst, Syst. 10, 4 (Nov.), 265–310.

LIM, C. H., ANDLEE, P, J. 1994. Another method for attaining security against adaptively

chosen ciphertext attacks, In Advances zn Cryptology —CRYPTO ’93 Proceedings. Lecture

Notes in Computer Science, vol. 773. Springer-Verlag, New York, 420-434.

ACM Transactions on Programmmg Languages and Systems, VOI 16, No 3, May 1994

How to Securely Replicate Services . 1009

ORUP, B., SVENDSEN, E., AND ANDREASEN, E. 1991. VICTOR: An efficient RSA hardware

implementation. In Advances in Cryptology —EUROCRYPT ’90 Proceedings. Lecture Notes in

Computer Sciencej vol. 473, Springer-Verlag, New York, 245-252.

RABIN, M. O. 1989. Efficient dispersal of information for security, load balancing, and fault

tolerance. J. ACM 36, 2 (Apr.), 335-348.
REIT~R,M. K. 1994. A secure group membership protocol. In Proceedings of the 1994 IEEE

Symposium on Research in Securcty and Priuacy. IEEE, New York. To be published.

REITER, M. K. 1993. A security architecture for fault-tolerant systems. Ph.D. thesis, Cornell
Univ., Ithaca, N.Y.

REITER, M. K., AND GONG, L. 1993. Preventing denial and forgery of causal relationships in
distributed systems. In Proceedings of the 1993 IEEE Symposium on Research in Security and

Prwacy. IEEE, New York, 30-40.
REITER, M. K., BIRMAN, K. P.j AND GONG, L. 1992. Integrating security in a group oriented

distributed system. In Proceedings of the 19921EEE Symposium on Research m Security and

Priuacy. IEEE, New Yorkj 18-32.

RICCIARDI, A.M. 1992. The~oup membership problem inasynchronous systems. Ph. D. thesis,

Cornell Univ., Ithaca, N.Y.
RIVEST, R.L. 1991. The MD4message digest algorithm. In Aduar~ces in Cryptology -CRYPTO

’90 Proceedings. Lecture Notes in Computer Science, vol. 537. Springer-Verlag, New York,
303-311.

RIVEST, R. L., SHAMIR, A., AND ADLEMAN, L. 1978. A method for obtaining digital signatures
andpublic-key cryptosystems. Commun. ACM21, 2 (Feb.), 120–126.

SCHNEIDER, F. B. 1990. Implementing fault-tolerant services using the state machine ap-
preach: A tutorial. ACM Comput. Suru.22, 4(Dec.), 299-319.

SEDLAK, H. 1988. The RSAcryptography processor. In Advances in Cryptology : Proceedings of

EUROCRYPT ’87. Lecture Notes in Computer Science, vol. 304. Springer-Verlag, New York,

95-105.

SHAND, M., ANIIVUILLEMIN, J. 1993. Fast implementations of RSAcryptography. In Proceed-

ings of the llth IEEE Symposium on Computer Arithn~etic. IEEE, New York.

SHRIVASTAVA,S. K., EZHILCHELV~, P. D., SP~IRS, N. A., TAO, S.jmDTULLY, A. 1992. Principal
features of the VOLTANfamily ofreliable node architectures for distributed systems. IEEE

Trans. Comput. 41, 5 (May), 542-549.

STEINER, J. G., NEU MAN, C., AND SCHILLER, J. I. 1988. Kerberos: An authentication service for

open network systems. In Proceedings of the USENIX Winter Conference. USE NIX Associa-
tion, 191-202.

TURN, R., AND HABIBI, J. 1986. Ontheinteractions ofsecurity and fault-tolerance. in Proceed-

ings of the 9th NBS\NCSC National Computer Security Conference. NBS/NCSC, Washington
D. C., 138-142.

VOYDOCK, V. L., AND KRNT, S. T. 1983. Security mechanisms in high-level network protocols.
ACM Comput. Surv, 15, 2 (June), 135-171.

Received June 1992; revised May 1993; accepted July 1993

ACM Transactions on Programming Languages and Systems, Vol 16, No. 3, May 1994

