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Probabilistic Modeling of Dependencies
During Switching Activity Analysis

Radu Marculescu, Diana Marculescu, and Massoud Pedram

Abstract—This paper addresses, from a probabilistic point of
view, the issue of switching activity estimation in combinational
circuits under the zero-delay model. As the main theoretical
contribution, we extend the previous work done on switching
activity estimation to explicitly account for complex spatiotem-
poral correlations which occur at the primary inputs when the
target circuit receives data from real applications. More precisely,
using lag-one Markov chains, two new concepts—conditional
independence and signal isotropy—are brought into attention
and based on them, sufficient conditions for exact analysis of
complex dependencies are given. From a practical point of view,
it is shown that the relative error in calculating the switching
activity of a logic gate using only pairwise probabilities can be
upper-bounded. It is proved that the conditional independence
problem is NP-complete and thus, relying on the concept of
signal isotropy, approximate techniques with bounded error are
proposed for estimating the switching activity. Evaluations of the
model and a comparative analysis on benchmark circuits show
that node-by-node switching activities are strongly pattern depen-
dent and therefore, accounting for spatiotemporal dependencies
is mandatory if accuracy is a major concern.

Index Terms— Markov chains, power estimation, signal
isotropy, spatiotemporal correlations, switching activity analysis.

I. INTRODUCTION

CAD tools play a significant role in the efficient design
of the high-performance digital systems. In the past,

time, area, and testability were the main concerns of the CAD
community during the optimization phase. With the growing
need for low-power electronic circuits and systems, power
analysis and low-power synthesis have also become primary
concerns for the CAD community.

To calculate the average power consumption in a gate-
level implementation of a CMOS circuit, one can use the
well-known formula
where is the clock cycle frequency, is the supply
voltage, and represent the load capacitance and
the switching activity, respectively, at the output of any gate
in the circuit [1]. As we can see, the average switching activity
per node (gate) is a key parameter that needs to be correctly
determined because charging and discharging different load
capacitances is by far the most important source of energy
dissipation in digital CMOS circuits.
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Power estimation techniques must be fast and accurate to be
applicable in practice. Not surprisingly, these two requirements
interact and at some point conflict with one another. Existing
techniques for power estimation at gate and circuit-level can
be divided in two classes:dynamicand static [1]. Dynamic
techniques explicitly simulate the circuit under a “typical”
input stream. Because their results depend on the simulated
sequence, the required number of simulated vectors is usually
high. These techniques can provide a high level of accuracy,
but the run time is very high. A few years ago, the static tech-
niques came into the picture and demonstrated their usefulness
by providing sufficient accuracy with low computational over-
head. These techniques rely on probabilistic information about
the input stream (e.g., switching activity of the input signals,
temporal correlations, etc.) to estimate the internal switching
activity of the target circuit. From the very beginning, the
major concern in probabilistic power estimation approaches
was switching activity estimation because accounting for all
dependencies which relate to the sequence and the circuit
under consideration is by no means a trivial task.

Common digital circuits exhibit many dependencies; the
most known one is the dependency due to reconvergent fanout
among different signal lines, but even structurally independent
lines may have dependencies (induced by the sequence of
inputs applied to the circuit) which cannot be neglected.
To date, only some dependencies have been considered and
even then, only heuristics have been proposed. This is a
consequence of the difficulty in managing complex data de-
pendencies at acceptable levels of computational work. In
addition to the dependencies described above (called also
spatial correlations), another type of correlations, namely
temporal correlations, may appear in digital circuits.

Let us consider a simple case to illustrate these issues. The
circuit in Fig. 1 is fed successively by three input sequences,

, and ; is an exhaustive pseudorandom sequence,
is also an exhaustive sequence but it is generated by a 3-bit

counter, and is obtained from a “faulty” 3-bit counter.
All three sequences have the same signal probability on

lines , and , but are otherwise very different. There
are two other measures which differentiate these sequences,
namely transition and conditional probabilities. More intu-
itively, these sequences exercise the circuit such that the
number of transitions on each internal signal line (and hence
the total number of transitions) is quite different once we
feed , or To accurately compute the number of
transitions, we should undoubtedly account for the influence
of the reconvergent fanout (e.g., in Fig. 1,and cannot
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Fig. 1. The effect of spatiotemporal correlations.

be considered independent signal lines). This problem can
be solved (albeit for small circuits only) by expressing the
function of each signal line in terms of the circuit inputs, but
even then, neglecting the correlations among circuit inputs
can lead to incorrect results. As we see, assuming input
independence for sequences and is unrealistic because
the patterns in each of them are temporally correlated (e.g.,
each pattern in sequence is obtained from the previous one
by adding a binary 1). Even more than this, transitions such
as or on apparently independent signal lines
(e.g., and in Fig. 1) are correlated and a detailed analysis
on these input streams can reveal a strong spatial relationship.
Consequently, to accurately compute the switching activity,
one has to account for both spatial and temporal dependencies
starting from primary inputs and continuing throughout the
circuit.

Addressing these issues, this paper proposes a new ana-
lytical model which accounts for spatiotemporal correlations
under the zero-delay model. Its mathematical foundation con-
sists of using lag-one Markov chains to capture different
kinds of dependencies in combinational circuits [2]. Temporal
correlations for any signal are considered through a Markov
chain with only two states whereas spatial correlations for
any pair of signals are modeled by a four-state Markov
chain. The basic assumptions used throughout the paper are:

• the target circuit is combinational and the logic value of
any signal line can only be 0 or 1;

• under the zero-delay model, any signal linecan switch
at most once within each time step.

Under these hypotheses, we present theoretical and practical
evidences showing thatconditional independenceis a con-
cept powerful enough to overcome difficulties arising from
the presence of structural dependencies and external input
dependencies [3]. More precisely, based on conditional inde-
pendence andsignal isotropy, we give a formal proof showing
that the statistics taken for pairwise correlated signals are
sufficient to characterize larger sets of dependent signals.

A detailed analysis presented here illustrates the impor-
tance of being accurate node-by-node (not only for the total
power consumption) and identifies potential drawbacks in
the previous approaches when patterns feeding the inputs

become highly correlated. To support the potential impact of
this research, experimental results are presented for common
benchmark circuits.

The paper is organized as follows. First, we review the prior
work relevant to our research. In Section III, we introduce
the analytical model for switching activity estimation which
accounts for spatiotemporal correlations. In Section IV, we
present global and incremental propagation mechanisms for
transition probabilities and transition coefficients calculation;
we also discuss the complexity of the proposed propaga-
tion mechanisms. In Section V, we improve the results in
Section IV by providing an enhanced propagation mechanism
based on conditional independence and signal isotropy. In
Section VI, we report our results on benchmark circuits.
Finally, we conclude by summarizing our main contribution.

II. PRIOR WORK

Most of the existing work in pseudorandom testing and
power estimation relies on probabilistic methods and signal
probability calculations. One of the earliest works in com-
puting the signal probabilities in combinational circuits is
presented in [4]. While the algorithm is simple and general,
its worse case time complexity is exponential. For tree circuits
which consist of simple gates, the exact signal probabilities can
be computed during a single post-order traversal of the net-
work [5]. An algorithm, known as thecutting algorithm, which
computes lower and upper bounds on the signal probability of
reconvergent nodes is presented in [6]. The algorithm runs in
polynomial time in the size of the circuit. Ercolaniet al.present
in [7] a procedure for propagating the signal probabilities
from the circuit inputs toward the circuit outputs using only
pairwise correlations between circuit lines and ignoring higher
order correlations. The signal probability of a product term
is estimated by breaking down the implicant into a tree of
2-input AND gates, computing the correlation coefficients of
the internal nodes and then the signal probability at the output.
Similarly, the signal probability of a sum term is estimated by
breaking down the implicate into a tree of 2-input OR gates.

People working in power estimation have also considered
the issue of signal probability estimation. An exact procedure
based on ordered binary-decision diagrams (OBDD’s) [8]
which is linear in the size of the corresponding function
graph (the size of the graph, of course, may be exponential
in the number of circuit inputs) can be found in [9]. Using an
event-driven simulation-like technique, the authors describe
a mechanism for propagating a set of probability waveforms
throughout the circuit. Unfortunately, this approach does not
take into account the correlations that might appear due to
reconvergent fanout among the internal nodes of the circuit.
The authors in [10] use symbolic simulation to produce exact
boolean conditions for switching at a particular node of the
circuit. However, this approach is expensive in terms of
computational cost (time and space requirements) and ignores
the correlations at the primary inputs.

Recently, a few approaches which account for correlations
have been proposed. Using an event-driven probabilistic simu-
lation technique, Tsuiet al. account in [11] only for first-order
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(a) (b)

Fig. 2. A lag-one Markov chain describing temporal effects on linex:

spatial correlations among probabilistic waveforms. Kapoor in
[12] suggests an approximate technique to deal with structural
dependencies, but on average the accuracy of the approach
is modest. In [13], Schneideret al. rely on lag-one Markov
chains and account for temporal correlations; unfortunately,
they assume independent transition probabilities among the
primary inputs and use global OBDD’s to evaluate switching
activity (thus limiting the size of the circuits they can process).

In what follows, we introduce a new model that improves
the state-of-the-art by taking into account spatiotemporal cor-
relations at the primary inputs of the target circuit and by
providing a general model for handling them inside the circuit.

III. A N ANALYTICAL MODEL FOR DEPENDENCIES

We adopt the conventional probability model which consists
of the triplet where represents the sample space,
denotes the class of events of interest, andis the probability
measure associated to

A. Temporal Correlations

Let us consider first a combinational logic module fed by
the input vectors [Fig. 2(a)]. While the input
vectors are applied to the primary inputs of the
circuit, at time steps 1, 2, the logic value of any internal
line may be 0 or 1. Hence, under the zero-delay model,
may switch at most once during each clock cycle. Letbe
a random variable which describes the state of lineat any
time If is modeled as a lag-one Markov chain
[Fig. 2(b)], then its behavior, over the state set
can be described through the transition matrix[14]

(1)

Every entry in the matrix represents the conditional
probability of signal line and may be viewed as the one-step
transition probability to state at step from state at step

Definition 1 (Conditional Probabilities):We define the
conditional probabilitiesof any signal line as

(2)

We note that is a stochasticmatrix, that is, every row adds
to unity

(3)

A lag-one Markov chain has the property that one-step
transition probabilities do not depend on the “history,” i.e,
they are the same irrespective of the number of previous steps.
The process is homogeneousandstationary: indeed,
because any combinational circuit is a memoryless device
(ignoring the floating nodes inside complex gates) having a
homogeneous and stationary distribution at the primary inputs
is a sufficient condition for homogeneity and stationarity to
hold throughout the circuit [14]. Because the process
is homogeneous and stationary,, the probability distribution
of the chain, may be expressed as

(4)

where is the transition matrix of the chain.
Proposition 11: The signal probabilities may be expressed

in terms of conditional probabilities as follows:

(5)

Definition 2 (Transition Probabilities):We define thetran-
sition probabilitiesof any signal line as

(6)

Signal, conditional, and transition probabilities associated
with any signal line are not independent measures. The
following two propositions describe quantitatively the rela-
tionship between them.

Proposition 2: Transition probabilities may be expressed in
terms of conditional probabilities as

(7)

Proposition 3: Conditional probabilities may be expressed
in terms of transition probabilities as

(8)

Example 1: Suppose that the signal line takes the fol-
lowing successive values: “aababaaabb,” where
Then we have:

and
As we can see, we need less information to compute the

signal probabilities, but the ability to derive anything else
is severely limited. On the other hand, once we get either
conditional or transition probabilities, we have all we need to
characterize that particular signal.

1Proofs are available from http://atrak.usc.edu/˜radu/tech/tech.html.
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(a) (b)

Fig. 3. A lag-one Markov chain describing spatial correlations between lines
x and y:

Definition 3 (Switching Activity):For any signal line the
switching activity is defined as

(9)

As we can see, the switching activity depends only on the
statistics for two consecutive time steps and thus, using lag-one
Markov chains is sufficient for estimating switching activity.

Note: We should point out that (9) reduces to the well-
known formula only
if the events aretemporally uncorrelated. As long as we
deal with temporally correlated signals, the exact relation
(9) should be used. For instance, in Example 1,

B. Spatial Correlations

These correlations have two important sources:

• structural dependenciesdue to reconvergent fanout in the
circuit;

• input dependenciesthat is, spatial and/or temporal cor-
relations among the input signals which result from the
actual input sequence applied to the target circuit.

Referring to the combinational module in Fig. 3(a), lines
and are obviously correlated due to the reconvergent

fanout; on the other hand, even independent signal lines like
the primary inputs of this module may also become correlated
due to a particular input sequence (as is the case for sequences

and in Fig. 1 when structurally independent linesand
become correlated).
To take into account the exact correlations is practically

impossible even for small circuits. To make the problem more
tractable, we allow onlypairwise correlated signals, which is
undoubtedly an approximation, but provides good results in
practice. Consequently, we consider the correlations for all 16
possible transitions of a pair of signals and model them
by a lag-one Markov chain with four states [denoted by 0, 1,
2, and 3 which stand for the encoding 00, 01, 10, and 11 of

in Fig. 3(b)].
Definition 4 (Pairwise Conditional Probabilities):We de-

fine the conditional probabilitiesof a pair of signals
as:

(10)

where being encoded as and as
Relation (10) basically describes the probability that the pair
of signals goes from state at time to state
at time step

Ercolani et al. consider in [7] structural dependencies be-
tween any two signals in a circuit, through thesignal corre-
lation coefficients (SC’s)

(11)

where Assuming that higher order correlations of
two signals to a third one can be neglected, the following
approximation is used:

(12)

Proposition 4: For every pair of signals the following
equations hold:

(13)

The set of four equations and four unknowns
is indeterminate; the matrix of the system has rank in

all nontrivial cases (i.e., when none of the signal probabilities
is 1).

Our approach is more general: to capture the spatial correla-
tions between signals, for each pair of signals and for all
possible transitions, we consider insteadtransition correlation
coefficients (TC’s).

Definition 5 (Transition Correlation Coefficients):We de-
fine the for any two signals as

(14)

where
Note: If the signals and in Fig. 1 are spatially correlated,

then based on defined above, we have

Definition 6: We define the among three signals
as

(15)

where
Neglecting higher order correlations, we therefore assume

that the following holds for any signals and any values
.

(16)
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Proposition 5: For every pair of signals the following
equations hold:

(17)

The above set of eight equations and 16 unknowns
is indeterminate; the matrix of

the system has rank in all nontrivial cases.
The last two propositions are very important from a practical

point of view. The set of equations involving may be
solved knowing only for example, and this was the
approach taken by Ercolaniet al. in [7] (although, no similar
analysis appeared in their original paper). In the more complex
case involving , we need to know at least nine out of 16
coefficients to deduce all other values.

IV. PROPAGATION MECHANISMS

Having already described the analytical model for depen-
dencies, we present subsequently the mechanism for prop-
agating spatiotemporal correlations from the primary inputs
throughout the target circuit. To this end, in what follows, we
ignore higher order correlations, that is, correlations between
any number of signals are expressed only in terms of pairwise
correlation coefficients.

Definition 6 and (16) may be easily extended to any number
of signals. Based on the above assumption, we use an OBDD-
based procedure for computing the transition probabilities and
for propagating the throughout the network. The main
reason for using the OBDD representation for a signal is that it
is a canonical representation of a Boolean function and it offers
a disjoint cover which is essential for our purposes. Depending
on the set of signals with respect to which we represent a node
in the boolean network, two approaches may be used.

• A global approach: for each node, we build the OBDD
in terms of the primary inputs of the circuit.

• An incremental approach: for each node, we build the
OBDD in terms of its immediate fanin and propagate the
transition probabilities and the through the boolean
network.

The first approach is more accurate, but requires much more
memory and run time; indeed, for large circuits, it is nearly
impractical. The second one offers good results whilst being
more efficient as far as memory requirements and running
time are concerned. However, the propagation mechanisms
we present subsequently are equally applicable to both global
and incremental approaches.

A. Computation of Transition Probabilities

Let be a node in the boolean network represented in
terms of (immediate fanin or primary input) variables

may be defined through the following two
sets of OBDD paths:

1) —the set of all OBDD paths in the ON-set of;
2) —the set of all OBDD paths in the OFF-set of.

Some of the approaches reported in the literature (e.g.,
[10]), use the XOR-OBDD of at two consecutive time steps
to compute the transition probabilities. We consider instead
only the OBDD of and through a dynamic programming
approach, we compute the transition probabilities more effi-
ciently. The probability of the event “switches from value
to value ” may be written as

(18)

where are the values of variable on the paths and
, respectively, (i.e., for the path for

the path where and 2 stands fordon’t
care values) for each In other words, this is
the probability of the event which represents theunion over
all possible switches from a path to a path

Applying the property of disjoint events (which is satisfied
by the collection of paths in the OBDD), the above formula
becomes

(19)

However, since the variables may not be spatially
independent, the probability of a path to “switch” from

to cannotbe simply expressed
as the product of the transition probabilities of the individual
variables. Instead, we will use the following result which
holds if we neglect higher order correlations.

Proposition 6: If (16) is true for any three signals in the set
, then the transition probability of a signal

from state to state is

(20)

Although this expression seems to be very complicated, its
complexity is within reasonable bounds. We will show that it
is not necessary to enumerate allpairs of paths in the OBDD
(which would provide a quadratic complexity in the number of
paths in the OBDD), but for a fixed path in the computation
may be done in linear time in terms of the OBDD nodes.

While for the global approach (20) can be applied knowing
only the of the primary inputs, for the incremental
approach we need a mechanism not only for computing the
transition probabilities, but also for propagating the
through the boolean network. For a given node in the circuit,
it is only necessary to propagate the of the output with
respect to the signals on which the inputs depend.

B. Propagation of Transition Correlation Coefficients

Let be a node with immediate inputs and
a signal on which at least one of the inputs

depends. Since the transition probabilities forand are
already computed, the only problem now is to compute the
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probability of both and switching from to and from
to , respectively. We have the following result.

Proposition 7: The between signals and for any
values may be expressed as in (21) located at
the bottom of the page. In the incremental approach, (20) and
(21) are applied in a recursive manner until all probabilities
and become known.

C. Complexity Issues

To assess the complexity claimed in Section IV-A, let us
define such that

( and are the values of variable
on paths respectively). Using the disjointness property

of the paths in the OBDD, the corresponding probability is

(22)

Since the path is fixed, the above probability may be
computed using the OBDD in the same way as a signal
probability. Using Shannon decomposition, the above prob-
ability may be computed in linear time in the number of
OBDD nodes. Indeed, may be written as

where are the cofac-
tors with respect to and respectively. Based on this
recursive decomposition, we may write a similar relation for
the corresponding probabilities, taking also into account all
possible existing correlations

(23)

Having computed this probability for each path we
immediately get the corresponding transition probabilities and
hence the switching activity. Thus, for a fixed path, the
complexity is where is the number of variables and

is the number of nodes in the OBDD. (The factor comes
from keeping track of the involved on each path. There
is a number of factors in the product, thus the complexity
is quadratic in the number of variables.) Hence, for all paths in

, the time complexity is where is the number
of paths in the OBDD. In the incremental approach, this is
within reasonable limits since usuallydoes not exceed three
or four variables in the immediate fanin of the node.

Example 2: Let us consider the following function:
and its OBDD representation in Fig. 4. Suppose

and is a fixed path in the OFF-set
of We can compute the probability given in (23) by using
a bottom-up parsing of the OBDD from the leaf labeled with

Fig. 4. Probability calculations forf = x1 � x2 � x3:

“1” to the root. We adopt a dynamic programming approach in
which at each level we use the results computed at the lower
levels. Some partial results are shown in Fig. 4. For instance,
in the case of node , the variable must change from 1
to 0, and therefore node is labeled with At node

there are two alternatives: either switches from 1 to 1
and from 1 to 0, or switches from 1 to 0 and from
1 to 1. These transitions are not independent; thus, for each
alternative we use the corresponding as shown in Fig. 4.
The same operations are performed for any other path in
A similar approach can be further used to propagate the
between and any other signal

V. AN AXIOMATIC APPROACH TOCONDITIONAL PROBABILITY

In this section, we discuss some practical limitations re-
garding the propagation mechanism described in Section IV.
In particular, we introduce two new concepts: conditional
independence and signal isotropy, which will help us to
overcome these limitations.

A. Issues in Performance Management

In real examples, we may have to estimate power consump-
tion in large circuits such as C6288, C7552, 32-bit multipliers,
etc. where global approaches are totally impractical. In such
cases, incremental approaches based on correlation coefficients
are applicable, although they may require large running times
for switching activity analysis [2]. Surprisingly enough, there
are other circuits, much simpler in terms of their gate count
and internal structure, which create a lot of problems in
terms of running time. For example, for tree circuits, the
incremental approaches need a large number of backtracks
to compute the correlations among different signals and they
almost “degenerate” to global approaches (as far as the running
time is concerned).

The second issue is related to the degree in which signals
are correlated. In general, large values of the correlation
coefficients cause a lot of problems in the propagation of the
coefficients due to the approximate formulas used throughout
the calculations. As a consequence, the accuracy of computing
the switching activity gets worse for highly correlated signals.

(21)
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These two limitations, namely excessive running time and
accuracy degradation for highly correlated signals, stimulated
us to further investigate stronger concepts able to overcome
these drawbacks.

B. Conditional Independence and Signal Isotropy

Definition 7 (Conditional Independence):Given the set of
signals and an index ,

we say that the subset is
conditionally independentwith respect to if the following
holds:

(24)

Note: We note that if the set
is conditionally independent with respect to, it might

not be conditionally independent with respect to However,
the corresponding set in whichany variable (or subset of
variables) is complemented, is still conditionally independent
with respect to if the conditions in Definition 7 are met.

Using the notion of support of a boolean function (i.e., the
set of variables on which the function depends), we give the
following definition.

Definition 8 (Logic Independence):Two boolean functions
and are logically independent(denoted by if and

only if ; if they are not logically
independent then and must share at least one common
input variable.

Note: It can be seen from the above definition that logic
independence is afunctional concept and does not use any
information about the statistics of the inputs.

For boolean functions, we give the following property.
Proposition 8: Let and be two boolean functions and

the cofactors of and with respect to a common
variable ; if and the variables in their support sets
are independent, then and are conditionally independent
with respect to , that is

(25)

Example 3: In the circuit in Fig. 1, signals are
conditionally independent with respect to because

and

It is worthwhile to note that, to compute , if
and are conditionally independent with respect to, we
may use only pairwise signal probabilities. Indeed,

which
reduces the problem of evaluating the probability of three
correlated signals to the one of considering only pairwise
correlated signals.

As a conclusion, the concept of conditional independence
can lead to efficient computations even in very complex
situations. In fact, Proposition 8 gives us asufficientcondition
for conditional independence and this is very useful from a
practical point of view. However, the general problem to de-
termine a variable from a set of signals

such that the remaining set of signals is conditionally
independent with respect to is a NP-complete problem.

Proposition 9 (Conditional Independence Problem):Given
a set of boolean functions , an index and

, deciding whether there are at leastsignals from
the remaining subset conditionally independent with respect
to is a NP-complete problem.

Hint: We prove that conditional independence problem
(CIP) is NP-complete using a reduction from the set packing
problem [15].

Because CIP is NP-complete, we need another concept to
make the conditional independence relationship applicable in
practice. To this end, we introduce the concept ofsignal
isotropywhich can be used in an approximate form as it will
be shown subsequently.

Definition 9 (Signal Isotropy):Given the set of signals
, we say that the conditional independence

relation is isotropic if it is true for all signals .
More precisely, taking out all ’s one at a time, the subset
of the remaining signals is conditionally independent
with respect to the taken

Returning to our circuit in Fig. 1, given the set of signals
, we have that is conditionally independent with

respect to but the sets or are not conditionally
independent with respect toor , respectively; conditional
independence is not isotropic in this particular case.

The concept of isotropy defined above is restrictive by its
very nature. To make this concept more practical, we propose
the following approximation.

Definition 10 ( -Isotropy): The property of conditional in-
dependence for a set of signals is called -
isotropic if there exists some such that

for any

(26)

Differently stated, -isotropy is an approximation of pure
isotropy within given bounds of relative error. A natural
question is then, how often is it appropriate to consider-
isotropy as an approximation of pure isotropy? To answer
this question, we consider in Fig. 5 three common situations
involving the set of signals and the relative position
of their logic cones (each cone illustrates the dependence of
signals on the primary inputs). Whilst the isotropy
is completely satisfied only in , the -isotropy concept is
applicable in all other cases. More precisely, the conditional
independence relation is partially satisfied in with respect
to and in with respect to and

Based on the previous definition, we get the following result.
Proposition 10: Given an -isotropic set of signals

, the probability of the composed signal
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Fig. 5. An example to illustrate pure and"-isotropy.

may be estimated within-relative error as

(27)

This proposition provides us with a strong result: given
that signals are -isotropic, the probability of their conjunc-
tion may be estimated within-relative error using only the
probabilities for pairs of signals, thus reducing the problem
complexity from exponential to quadratic.

C. Computation of Transition Probabilities
Using -Isotropic Signals

If the property of -isotropy is satisfied, Proposition 10
may be easily extended to boolean functions represented
by OBDD’s. Let be a boolean function of variables

which may be defined through the ON- and
OFF-sets as in Section IV. In the global approach,is
represented in terms of the primary inputs, while in the
incremental approach it depends only on its immediate fanin
variables. Based on this representation, we have the following
result.

Proposition 11: Given , a boolean function of variables
, the following hold.

a) If the set (where every variable is either
direct or complemented) is-isotropic, then thesignal prob-
ability (with may be expressed within
-relative error as

(28)

where is the value taken by the variable in the cube

b) If the set is -isotropic, then the
transition probability (with may be
expressed within -relative error as

(29)

where are the values taken by the variable in cubes
and

The above result may be reformulated using signal and
transition correlation coefficients; it can be used in signal
probability and switching activity estimation if the-isotropy
conditions are met.

Corollary 1: Given a set of signals as in Propo-
sition 11 and a boolean function of variables ,
the following relations hold within -relative error:

(30)

For the incremental approach, this result can also be
extended to the calculation of correlation coefficients

between any two signals in the circuit. In
practice, this becomes an important piece in the propagation
of probabilities and coefficients through the boolean network.

D. Computation of TC’s Using-Isotropic Signals

Proposition 12: Given a set of signals , a
boolean function of variables and a signal
from the circuit, if is a set as in Proposition
11, then the correlation coefficients and can be

a

b (31)
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Fig. 6. The experimental setup.

expressed within -relative error2 (as in (31) at the bottom of
the previous page), where where

These results lead to a new heuristic algorithm for signal
and transition probability estimation under input streams which
exhibit spatiotemporal correlations. We may thus see (30) as
the improvement of (20) by using the concepts of conditional
independence and signal isotropy. Compared to the heuristic
proposed in Section IV, this new approach based on condi-
tional independence has also the advantage that it supplies
bounds for error estimation provided that the input signals
are -isotropic. This bounding value could not be provided
using the spatiotemporal hypothesis alone. Finally, in the
incremental approach, the model introduced above provides
a way to improve the run time requirements.

Proposition 13: If is a correlation coefficient or
at level (given by a topological ordering from the

inputs to the outputs of the circuit), then it is related to
by a proportionality relationship having the

form where represents the aver-
age fan-in value in the circuit. Moreover, if then

(the signals on level behave as
uncorrelated).

In other words, we do not need to compute the coefficients
which are beyond some levelin the circuit; instead, we may
assume them equal to 1 without significantly decreasing the
level of accuracy. Also,the larger the average fanin of the
circuit, the smaller value for may be used. It is worthwhile
to note that the conditional independence relationship, more
specifically the concept of -isotropy, is essential for this
conclusion. The approach presented in [2], basedonly on
spatiotemporal correlations, does not provide a rationale for
using such a limit. This is a very important heuristic to use in
practice and its impact on the run time is huge; limiting the
number of calculations for each node in the boolean network
to a fixed amount (which depends on the value set as threshold
for ) reduces the problem of coefficients estimation from
quadratic (in the worst case) tolinear complexity in the size
of the circuit.

2This " is the maximum over all values that occur during the incremental
propagation process.

VI. EXPERIMENTAL RESULTS

All experiments were performed using the SIS environment
on an Ultra SPARC 2 workstation with 64 Mbytes of memory.
The working procedure is shown below in Fig. 6.

As input sequences, we use highly correlated vector streams
produced by different strategies: modified LFSR generators,
generating pseudorandom vectors at the inputs of some circuit
A and then cascading A with the target circuit B, using the
state bit lines of different types of counters. For large circuits,
we tried to keep time/space requirements of the simulation at
a reasonable level and used up to input vectors during the
actual logic simulation.

As standard measure for power estimation, we use the
average switching activity at each node of the circuit calculated
as in (9). We are interested in measuring the accuracy of the
model in estimating the switching activity locally (at each
internal node) and globally (for the entire circuit) given a set of
inputs with spatiotemporal correlations. To report error, we use
the standard measures for accuracy: maximum error (MAX),
mean error (MEAN), root-mean square (RMS), and standard
deviation (STD); we deliberately excluded the relative error
from this picture due to its misleading prognostic for small
values.

To illustrate the impact of correlations, we consider the
benchmark 3 and generate the inputs using the state lines
of an 8-bit counter. The estimated values of the switching
activity are compared against the exact values obtained by
logic simulation; all internal nodes and primary outputs have
been taken into consideration. The results are reported in Fig. 7
where, on the axis, we plot the absolute error of switching
activity, that is

As the results show, the level of correlation on the primary
inputs strongly impacts the quality of estimation. Specifically,
it makes completely inaccurate the global approach based on
input independence (despite the fact that internal dependencies
due to reconvergent fanout are accounted by building the
global OBDD). This is visible in the topmost diagram in
Fig. 7, where less than 20% of the nodes are estimated with a
precision higher than 0.1. On the other hand, even if temporal
correlations are taken into account, but the inputs are assumed
to be spatially uncorrelated (as in [13]), only 80% of the nodes
are estimated with an error less than 0.1 (middle diagram).
Accounting for spatiotemporal correlations provides excellent
results for highly correlated inputs; in the lowest diagram,
100% nodes are estimated with a precision better than or equal
to 0.1 and for 90% of the nodes the error is even less than 0.05.

These results clearly demonstrate that power estimation is a
strongly pattern dependent problem, therefore accounting for
dependencies (at the primary inputs and internally, among the
different signal lines) is mandatory if the accuracy is important.
From this perspective, considering spatiotemporal correlations
and using signal isotropy seems to be the best candidate to
date.

Using some ISCAS’85 benchmarks, we further performed
the following types of experiments:

3To compare our approach with techniques that use global OBDD’s, we
had to choose a small circuit.
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TABLE I
HIGHLY CORRELATED INPUTS (fclk = 20 MHz; Vdd = 5 V)

Fig. 7. The impact of the correlation level inf51m:

1) experiments to validate the model with conditional in-
dependence and-isotropy;

2) experiments to assess the impact of the limiting tech-
nique based on Proposition 13.

Once again, the switching activity values and power con-
sumption were estimated ateach internal node and primary

output and compared with the exact values obtained from
logic simulation. We found that power estimation for the
entire circuit is not a real measure to use in low-power design
where the switching activity ateachnode has to be accurately
estimated.

1) Accuracy Results:The experiments were performed on
large examples using highly correlated inputs obtained from
counted sequences of length To report the error, all
estimations were verified against logic simulation performed
with SIS. To show the impact of conditional independence, in
the high-correlation scenario in Table I, we also present the
results obtained if the conditional independence is not used.
More specifically, the results in columns 3–8 are obtained as
in Section V (i.e., applying (30), (31) recursively as many
times as needed), while columns 9–14 are calculated as in
Section IV [using (20), (21)].

As we can see, by using conditional independence and signal
isotropy, the accuracy in node-by-node analysis improves on
average by an order of magnitude; on the other hand, by
not using conditional independence at all, the total power
consumption for highly correlated inputs is overestimated by
100% on average.

2) Run Time Improvement:The heuristic proposed in
Section V-C is important in practice not only for achieving
a level of accuracy similar to that when the threshold limit
is set to infinity, but also for substantially reducing the run
time. We present in Table II4 the results obtained for some
benchmarks using the limit in calculation (that
is, the allowed number of recursive calls of (31) is limited to
4). By comparing these results with those obtained for
in Table I (columns 3–8), we can see that the quality of the
estimates remains basically the same while the run time is
significantly improved.

We can see in Fig. 8 that the speed up is about three to five
times for less complex circuits, but it may become 15 to 20
times for large examples.

VII. CONCLUSION

We have proposed an original approach for switching activ-
ity estimation in combinational logic modules under pseudo-

4Similar results have been obtained for pseudorandom inputs.
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TABLE II
HIGHLY CORRELATED INPUTS WITH LIMIT l = 4 (fclk = 20 MHz; Vdd = 5 V)

Fig. 8. The speed-up factor versus circuit complexity.

random or highly biased input streams. Using the zero-delay
hypothesis, we have derived a probabilistic model based
on lag-one Markov chains which supports spatiotemporal
correlations among the primary inputs and internal lines of
the circuit under consideration. From this perspective, the new
concepts of conditional independence and signal isotropy are
used in a uniform manner to fulfill practical requirements
for fast and accurate estimation. Under general assumptions,
the conditional independence problem has been shown to be
NP-complete; consequently, efficient heuristics have been pro-
vided for probabilities and correlation coefficients calculation.
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