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Probabilistic Modeling of Dependencies
During Switching Activity Analysis

Radu Marculescu, Diana Marculescu, and Massoud Pedram

Abstract—This paper addresses, from a probabilistic point of Power estimation techniques must be fast and accurate to be
view, the issue of switching activity estimation in combinational gpplicable in practice. Not surprisingly, these two requirements
circuits under the zero-delay model. As the main theoretical ;yieract and at some point conflict with one another. Existing

contribution, we extend the previous work done on switching techni f timati t gat d circuit-| |
activity estimation to explicitly account for complex spatiotem- echniques tor power estimation at gaie and circuii-level can

poral correlations which occur at the primary inputs when the be divided in two classesdlynamicand static [1]. Dynamic
target circuit receives data from real applications. More precisely, techniques explicitly simulate the circuit under a “typical”
using lag-one Markov chains, two new concepts—conditional jnput stream. Because their results depend on the simulated

independence and signal isotropy—are brought into attention qoqence. the required number of simulated vectors is usually
and based on them, sufficient conditions for exact analysis of

complex dependencies are given. From a practical point of view, Nigh. These techniques can provide a high level of accuracy,
it is shown that the relative error in calculating the switching but the run time is very high. A few years ago, the static tech-
activity of a logic gate using only pairwise probabilities can be niques came into the picture and demonstrated their usefulness
upper-bounded. It is proved that the conditional independence by providing sufficient accuracy with low computational over-

problem is NP-complete and thus, relying on the concept of : e .
signal isotropy, approximate techniques with bounded error are head. These techniques rely on probabilistic information about

proposed for estimating the switching activity. Evaluations of the the input stream (e.g., switching activity of the input signals,
model and a comparative analysis on benchmark circuits show temporal correlations, etc.) to estimate the internal switching
that node-by-node switching activities are strongly pattern depen- activity of the target circuit. From the very beginning, the
dent and therefore, accounting for spatiotemporal dependencies major concern in probabilistic power estimation approaches
is mandatory if accuracy is a major concern. S S . . )
was switching activity estimation because accounting for all
Index Terms— Markov chains, power estimation, signal dependencies which relate to the sequence and the circuit
isotropy, spatiotemporal correlations, switching activity analysis. ,nder consideration is by no means a trivial task.
Common digital circuits exhibit many dependencies; the
|. INTRODUCTION most known one is the dependency due to reconvergent fanout
among different signal lines, but even structurally independent

AD tools play a significant role in the efficient design; . .
of the high-performance digital systems. In the pas{nes may have dependencies (induced by the sequence of

. o . IAputs applied to the circuit) which cannot be neglected.
time, area, and testability were the main concerns of the C . X

. . Lo . . 10 date, only some dependencies have been considered and
community during the optimization phase. With the growin

need for low-power electronic circuits and systems, pow en then, only heuristics have been proposed. This is a

analysis and low-power synthesis have also become primgﬁlnsequgnce of the difficulty in managing Co”?p'ex data de-
concerns for the CAD community. pendencies at acceptable levels of computational work. In

To calculate the average power consumption in a ga@qd;.t'cin to tlh(ta_ depend?:]]ue.:, desc?bed albi)_ve (called Ialso
level implementation of a CMOS circuit, one can use th afial correlationy, another type of correlations, namely

well-known formula Payy = [(fon/2)V2] 5. C(x)sw(z) temporal correlationsmay appear in digital circuits.
where £y is the clockgcycle frequengdwdd is the supply  Letus consider a simple case to illustrate these issues. The
voltage, C(x) and sw(z) represent the load capacitance an(d‘ircuit in Fig. 1 is fed successively by three input sequences,

the switching activity, respectively, at the output of any gate Sl’_SQ’ and.Ss; 51 is an exhaustive pse_u_dorandom sequence,
is also an exhaustive sequence but it is generated by a 3-bit

in the circuit [1]. As we can see, the average switching activity? &. is obtained f “faultv” 3bi
per node (gate) is a key parameter that needs to be corre nter, andss IS obtained from a “faulty” 3-bit counter.

determined because charging and discharging different load\! three sequences have the same signal probability on

capacitances is by far the most important source of enerdifS #-¥» and ¢, but are otherwise very different. There
dissipation in digital CMOS circuits. are two other measures which differentiate these sequences,

namely transition and conditional probabilities. More intu-

) ) ) itively, these sequences exercise the circuit such that the
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become highly correlated. To support the potential impact of

xcy
(1)8(1) S this research, experimental results are presented for common
170/ 1 (random) benchmark circuits.
i # of trans. for $1/S,/S3 The paper is organized as follows. First, we review the prior
101 Fxcy N work relevant to our research. In Section lll, we introduce
010! 1000 (2/2/0) . L L . . .
000| | 00i x a the analytical model for switching activity estimation which
8191 'S5 (counted) 7 (2/412) accounts for spatiotemporal correlations. In Section IV, we
10| —> ¢ resent global and incremental propagation mechanisms for
xcy] 101 P g propag
ool [110 transition probabilities and transition coefficients calculation;
9 111 b (2/412) we also discuss the complexity of the proposed propaga-
011 y tion mechanisms. In Section V, we improve the results in
100 b
101 Section IV by providing an enhanced propagation mechanism
010] S3 (faulty) . p p .
101 based on conditional independence and signal isotropy. In
_ _ ' Section VI, we report our results on benchmark circuits.
Fig. 1. The effect of spatiotemporal correlations. Finally, we conclude by summarizing our main contribution.

be considered independent signal lines). This problem can
be solved (albeit for small circuits only) by expressing the
function of each signal line in terms of the circuit inputs, but Most of the existing work in pseudorandom testing and
even then, neglecting the correlations among circuit inpugdwer estimation relies on probabilistic methods and signal
can lead to incorrect results. As we see, assuming ingUpbability calculations. One of the earliest works in com-
independence for sequencés and Ss is unrealistic because puting the signal probabilities in combinational circuits is
the patterns in each of them are temporally correlated (e.presented in [4]. While the algorithm is simple and general,
each pattern in sequendg is obtained from the previous oneits worse case time complexity is exponential. For tree circuits
by adding a binary 1). Even more than this, transitions su¥hich consist of simple gates, the exact signal probabilities can
as0 — 1 or 1 — 0 on apparently independent signal linede computed during a single post-order traversal of the net-
(e.g.,z andc in Fig. 1) are correlated and a detailed analys¥ork [5]. An algorithm, known as theutting algorithm which
on these input streams can reveal a strong spatial relations§RnPutes lower and upper bounds on the signal probability of
Consequently, to accurately compute the switching activitigconvergent nodes is presented in [6]. The algorithm runs in
one has to account for both spatial and temporal dependend@yynomial time in the size of the circuit. Ercolegtial. present
starting from primary inputs and continuing throughout th [7] @& procedure for propagating the signal probabilities
circuit. from the circuit inputs toward the circuit outputs using only
Addressing these issues, this paper proposes a new di{[Wise correlations between circuit lines and ignoring higher
lytical model which accounts for spatiotemporal correlatiof§d€r correlations. The signal probability of a product term
under the zero-delay model. Its mathematical foundation cdfi-€Stimated by breaking down the implicant into a tree of
sists of using lag-one Markov chains to capture differedfinPut AND gates, computing the correlation coefficients of
kinds of dependencies in combinational circuits [2]. Tempord}€ inteérnal nodes and then the signal probability at the output.
correlations for any signat are considered through a Markovs'm”afrly' the S|gnal_prot_3abll|t.y of a sum term. is estimated by
chain with only two states whereas spatial correlations fglreaklng down.thellmpllcate mtg a t_ree of 2-input OR g.ates.
any pair of signalgz, ) are modeled by a four-state Markov People working in power estimation have also considered

chain. The basic assumptions used throughout the paper e issue of signal probability estimation. An exact procedure
o L ) ased on ordered binary-decision diagrams (OBDD’s) [8]
« the target circuit is combinational and the logic value

X ) hich is linear in the size of the corresponding function

any signal linex can only be O or 1; _ graph (the size of the graph, of course, may be exponential
* under the zero-delay model, any signal lin€an switch j, the number of circuit inputs) can be found in [9]. Using an

at most once within each time step. event-driven simulation-like technique, the authors describe
Under these hypotheses, we present theoretical and practicghechanism for propagating a set of probability waveforms
evidences showing thatonditional independencés a con- throughout the circuit. Unfortunately, this approach does not
cept powerful enough to overcome difficulties arising frorfake into account the correlations that might appear due to
the presence of structural dependencies and external inpgonvergent fanout among the internal nodes of the circuit.
dependencies [3]. More precisely, based on conditional indere authors in [10] use symbolic simulation to produce exact
pendence andignal isotropy we give a formal proof showing boolean conditions for switching at a particular node of the
that the statistics taken for pairwise correlated signals atiecuit. However, this approach is expensive in terms of
sufficient to characterize larger sets of dependent signals. computational cost (time and space requirements) and ignores

A detailed analysis presented here illustrates the impahe correlations at the primary inputs.
tance of being accurate node-by-node (not only for the totalRecently, a few approaches which account for correlations
power consumption) and identifies potential drawbacks have been proposed. Using an event-driven probabilistic simu-
the previous approaches when patterns feeding the inplatSon technique, Tsuét al. account in [11] only for first-order

Il. PRIOR WORK
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. px . A lag-one Markov chain has the property that one-step
:i —  Popo 1,0 Pi transition probabilities do not depend on the “history,” i.e,
= D X —> @-0‘ they are the same irrespective of the number of previous steps.
) — - The procesqz, }»>1 is homogeneouandstationary indeed,
Py.1 because any combinational circuit is a memoryless device

(ignoring the floating nodes inside complex gates) having a
homogeneous and stationary distribution at the primary inputs
is a sufficient condition for homogeneity and stationarity to
hold throughout the circuit [14]. Because the procgss},>1
spatial correlations among probabilistic waveforms. Kapoor ia homogeneous and stationafy, the probability distribution
[12] suggests an approximate technique to deal with structuedithe chain, may be expressed as

dependencies, but on average the accuracy of the approach

is modest. In [13], Schneidest al. rely on lag-one Markov P =P (4)
chains and account for temporal correlations; unfortunategﬁgp

@ (b)

Fig. 2. A lag-one Markov chain describing temporal effects on line

they assume independent transition probabilities among ereq IS thej;ransmop matrix of th_e' chain.
primary inputs and use global OBDD’s to evaluate switchin roposﬁ;on a_'_l’he Is|gnabl pk))rlc_)t_)abllltlefs”rnay.be expressed
activity (thus limiting the size of the circuits they can process). terms of conditional probabilities as follows:

In what follows, we introduce a new model that improves ¥,
the state-of-the-art by taking into account spatiotemporal cor- plez=0) = :
relations at the primary inputs of the target circuit and by
providing a general model for handling them inside the circuit. Definition 2 (Transition Probabilities):We define theran-

sition probabilitiesof any signal linex as

plo = 1) = o1 (5)

Pio+pii B Pio+Po1 .

Ill. AN ANALYTICAL MODEL FOR DEPENDENCIES . . .
_ N , o ping) =pllae =) N1 =19)] Vi, j=0,1.  (6)

We adopt the conventional probability model which consists
of the triplet(Q2, 2, p) where{2 represents the sample spake, Signal, conditional, and transition probabilities associated

denotes the class of events of interest, ansl the probability with any signal linex are not independent measures. The

measure associated 0. following two propositions describe quantitatively the rela-
tionship between them.
A. Temporal Correlations Proposition 2: Transition probabilities may be expressed in

Let us consider first a combinational logic module fed bg/ermS of conditional probabilities as

the input vectorsVy, Vs, -- -, V,, [Fig. 2(a)]. While the input i 0P80 i 0P81

vectorsVy, Vs, - -+, V,, are applied to the primary inputs of the p(xo—0) = Pt Pt p(zo—1) = ot (7)
circuit, at time steps 1, 2; -, n, the logic value of any internal ’2 ,;0’1 1’2 ,;0’1
line z may be 0 or 1. Hence, under the zero-delay model, p(z1—0) = M plzi_y) = M. O
may switch at most once during each clock cycle. kgtbe P10t Pos P1o Tt Pot

a random variable V_VhiCh describes the state of linat any . Proposition 3: Conditional probabilities may be expressed
time n. If {z,}»>1 is modeled as a lag-one Markov chalr]n terms of transition probabilities as
[Fig. 2(b)], then its behavior, over the state set= {0,1}

can be described through the transition maéi314] e p(zo—0) e p(zo—1)
= = Poo = p(zo—0) + p(zo-1) 0.1 p(xo—0) + p(xo—1)
Q= Mo . ® ®
Plo- i r p(r1-0) » p(r1-1)
Every entryp?; in the @ matrix represents the conditional PLo = ) +p@i—y) P T plri—o) + plai—1)’
probability of signal liner and may be viewed as the one-step O
transition probability to statg at stepn from state: at step
n — 1. Example 1: Suppose that the signal line takes the fol-
Definition 1 (Conditional Probabilities):We define the lowing successive valuesaababaaably wherea,b € {0, 1}.
conditional probabilitiesof any signal linez as Then we havep(z = a) = 6/10,p(x = b) = 4/10,p7 , =
3/6,])271) = 3/67]722(, = 1/47pf7a = 3/47p($a—>b) = p(.’L’ =
pij =pl(@n = j)[(Tn—1 = 9] a)p?, = 3/10, and p(zp—q) = 3/10.
pl(zn =7) N (2,1 =19)] As we can see, we need less information to compute the

- : Vi,i=0,1. (2)
p(xn—l = Z)

signal probabilities, but the ability to derive anything else
is severely limited. On the other hand, once we get either
We note that is a stochasticmatrix, that is, every row adds conditional or transition probabilities, we have all we need to
to unity characterize that particular signal.

Poo+Po1=1 piotpii=1 3 LProofs are available from http://atrak.usc.edu/ radu/tech/tech.html.
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wherea,b = 0,1,2,3,a being encoded agj and b as k.
Relation (10) basically describes the probability that the pair
of signals(x,y) goes from staté; at timen — 1 to statek!
at time stepn.

Ercolani et al. consider in [7] structural dependencies be-
tween any two signals in a circuit, through thignal corre-
lation coefficients (SC's)

oddd

gory _ PlE=1Ny=7)
(] ;

plz = i)p(y = j) )

(@) (b)

Fig. 3. Alag-one Markov chain describing spatial correlations between line .. . . .
. %nd ’. g 9sp Wherei, j = 0,1. Assuming that higher order correlations of

two signals to a third one can be neglected, the following

o o o ) ) approximation is used:
Definition 3 (Switching Activity):For any signal linec the
switching activity is defined as plr=iNy=jjnNz=k)

plx =i)ply = j)p(z = k)
) (12)

SC¥¥* =

gk

o :SCZ”SC%SC%.
P1,0P0,1

sw(z) =p(xo—1) + p(T1—0) = 2———7—.
(0 = plrom) +pin—o) =2 S,

As we can see, the switching activity depends only on ﬂé Proposition 4: For every pair of signal&z, i) the following

I o . uations hold:
statistics for two consecutive time steps and thus, using lag-on
Markov chains is sufficient for estimating switching activity. zy . .

i SC¥ply=j4)=1 Vi=0,1
Note: We should point out that (9) reduces to the well- Zo:l * ) ' ’

known formulasw(z) = 2p(z = 1)[1 — p(x = 1)] only = oy . .
if the events areemporally uncorrelated As long as we Y SCHEp(x=i)=1 Vj=0,1 (13)
deal with temporally correlated signals, the exact relation i=0,1

(9) should be used. For instance, in Examplesiz) = The set of four equations and four UnknowSE™Y(i, j
- _0) =3/10 +3/10 # 2 x (6/10) x (4/10). >€ _ _ i \bJ =
P(zo—1) + P(w1-0) /104 3/10 7 2> (6/10) x (4/10) 0,1) is indeterminate; the matrix of the system hajs rank in

) , all nontrivial cases (i.e., when none of the signal probabilities
B. Spatial Correlations

is 1). O

These correlations have two important sources: Our approach is more general: to capture the spatial correla-
« structural dependenciedue to reconvergent fanout in thetions between signals, for each pair of sigrialsy) and for all
circuit; possible transitions, we consider insteeghsition correlation

« input dependenciethat is, spatial and/or temporal cor-coefficients (TC's)
relations among the input signals which result from the Definition 5 (Transition Correlation Coefficients\e de-

actual input sequence applied to the target circuit.  fine the7’C’s for any two signalsz,y as
Referring to the combinational module in Fig. 3(a), lines (@imr O y50)
z and y are obviously correlated due to the reconvergent TijﬁyM = P\iok 1 Yi=l (14)
fanout; on the other hand, even independent signal lines like (@i )p(yi—1)
the primary inputs of this module may also become correlat@\ﬁ_.erei"i’ k=01

due to a pgrugular Input sequence (a; is the case f.or SEQUENCRYote: If the signalsz andb in Fig. 1 are spatially correlated,
S» andSs in Fig. 1 when structurally independent linesand then based of’C"s defined above, we have
¢ become correlated).
To take into account the exact correlations is practically
impossible even for small circuits. To make the problem more
tractable, we allow onlyairwise correlated signajswhich is Definition 6: We define theTC’s among three signals
undoubtedly an approximation, but provides good results &ny » as
practice. Consequently, we consider the correlations for all 16”7
possible transitions of a pair of signdls, ) and model them

plag—1bi—o) = p(ao—d)p(bl—@)TCgf,m-

p(xi—ﬂ N Yj—m N Zk—)ﬂ)

by a lag-one Markov chain with four states [denoted by 0, 1, Tcijyk:lmn - (=) P(Yj—m )P (Z—n) (15)
2, and 3 which stand for the encoding 00, 01, 10, and 11 of
(z,y) in Fig. 3(b)]. wherei, j,k,l,m,n = 0,1.

Definition 4 (Pairwise Conditional Probabilities)We de- Neglecting higher order correlations, we therefore assume
fine the conditional probabilitiesof a pair of signals(x,y) that the following holds for any signals y, z and any values
as: i, 7,k 1,mmn =0,1.

Pty =PlEn =k N yn =Dl(zn—1 =1 N ya—1 =j)] (10) TCamn = TCim TR i TCH - (16)
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Proposition 5: For every pair of signal&z, i) the following Some of the approaches reported in the literature (e.g.,

equations hold: [10]), use the XOR-OBDD off at two consecutive time steps
oy . to compute the transition probabilities. We consider instead
Z TChp(yj—) =1 Vi, k=01 only the OBDD of f and through a dynamic programming
9,1=0,1 approach, we compute the transition probabilities more effi-
> TCH i) =1 Vi l=0,1. (17) ciently. The probability of the eventf*switches from valué
i,k=0,1 to valuej” (¢,j = 0,1) may be written as
The above set of eight equations and 16 unknowns n
TCH (4,5,k1 = 0, '1) is indet_e_rminate; the matrix of p(finj) =p U U ﬂ Th,, (18)
the system has rank 7 in all nontrivial cases. O #ell; 7/€ll; k=1

The last two propositions are very important from a practical .. .
point of view. The set of equations involvin§C’s may be W,herez’“’j’“. are the values of variable; on the pathsr and
solved knowing onlySCTY for example, and this was the” + '€SPectively, (i.e.z, = iy for the path,z, = jy for
approach taken by Ercolast al. in [7] (although, no similar the pathn’ whereix,jy = 0,1,2, and 2 stands fodon't

analysis appeared in their original paper). In the more compl%?re values) for eaclk = 1,2, ---,n. In other words, this is

case involvingl’C’s, we need to know at least nine out of 16"€ prob_ability (.)f the event which represents tgon over
coefficients to deduce all other values. all possible switches from a patfiy, iz, ---,in) 10 a path

(jlvj?v T 7Jn)

Applying the property of disjoint events (which is satisfied
by the collection of paths in the OBDD), the above formula
Having already described the analytical model for depebecomes

IV. PROPAGATION MECHANISMS

dencies, we present subsequently the mechanism for prop- n
agating spatiotemporal correlations from the primary inputs p(fiy) = Z Z p ﬂ Tr - (19)
throughout the target circuit. To this end, in what follows, we peTi i, \k=t

ignore higher order correlations, that is, correlations between . . .
any number of signals are expressed only in terms of pairwisel [CWEVer, since the variables, may not be spatially
correlation coefficients. independent, the probability of a path _to “switch” from
Definition 6 and (16) may be easily extended to any numbg 2>~ *»in) 10 (j1,j2, -, jn) cannotbe simply expressed

of signals. Based on the above assumption, we use an OBD’ﬁ-Fhe product of the tran_smon probabllltles_ of the |nd|V|d_uaI
based procedure for computing the transition probabilities aﬁﬁ”ab'.es- Instead, we will use the follpwmg result which
for propagating the'C"s throughout the network. The main"'0ldS if we neglect higher order correlations.

reason for using the OBDD representation for a signal is that it
is a canonical representation of a Boolean function and it offe
a disjoint cover which is essential for our purposes. Dependi

Proposition 6: If (16) is true for any three signals in the set
1,Z2, ", &y}, then the transition probability of a sign4l
am state: to statej (¢,7 = 0,1) is

on the set of signals with respect to which we represent a node n
in the boolean network, two approaches may be used. p(fimj) = Z Z H P(ﬂfkiﬁjk,) H TCI,
« A global approach for each node, we build the OBDD €l ©/ €M1 k=1 1<k<i<n
in terms of the primary inputs of the circuit. (20)

¢ An incremental approachfor each node, we build the ) ) ) )
OBDD in terms of its immediate fanin and propagate the Although this expression seems to be very complicated, its

transition probabilities and tHEC”s through the boolean complexity is within reasonable bounds. We will show that it
network. is not necessary to enumerate @lirs of paths in the OBDD

The first approach is more accurate, but requires much méWah'Ch would provide a quadratic complexity in the number of

memory and run time; indeed, for large circuits, it is nearl aths in the OBDD), but for a fixed path I; the computation

. 4 . .may be done in linear time in terms of the OBDD nodes.
impractical. The second one offers good results whilst being.” " ; .

. . . ~While for the global approach (20) can be applied knowing
more efficient as far as memory requirements and runnin

. . . only the TC’s of the primary inputs, for the incremental
time are concerned. However, the propagation mechanisms . ;
. roach we need a mechanism not only for computing the

we present subsequently are equally applicable to both glo?g i s . )
and incremental approaches ransition probabilities, but also for propagating t#&’s

' through the boolean network. For a given node in the circuit,
it is only necessary to propagate ¢ s of the output with
respect to the signals on which the inputs depend.
Let f be a node in the boolean network represented in

terms of n» (immediate fanin or primary input) variablesg. propagation of Transition Correlation Coefficients
L1, T2, i | may.be defined through the following two Let f be a node with immediate inpuis, zs, - - -, z,, and
sets of OBDD paths: : . .

z a signal on which at least one of the inputg x>, - -, z,

1) II,—the set of all OBDD paths in the ON-set ¢f depends. Since the transition probabilities forand = are
2) Illp—the set of all OBDD paths in the OFF-set 6f  already computed, the only problem now is to compute the

A. Computation of Transition Probabilities
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probability of bothf andx switching fromi to j and fromp
to ¢, respectively. We have the following result.
Proposition 7: The T’C between signalg and =, for any

XaX:
valuesi, j,p, ¢ = 0,1 may be expressed as in (21) located at plxy, )p(xs )TCp o
the bottom of the page. In the incremental approach, (20) and o T .
(21) are applied in a recursive manner until all probabilities PFx55) = Py = Pl )

and 7’C’s become known.

C. Complexity ISSUes Fig. 4. Probability calculations fof = x1 ® x2 @ 3.
To assess the complexity claimed in Section IV-A, let qsl,,

define f, ., = Upen, Nj_, ox, ., , such thatf; .; = to the root. We adopt a dynamic programming approach in

Urert, fa—y (1,7 = 0,1 andiy, ji, are the values of VariableWhlch at each level we use the results computed at the lower

23, on pathsr, = respectively). Using the disjointness propertlevels' Some patrtial results are shown in Fig. 4. For instance,

. ; o Yn the case of node4, the variablexs must change from 1
of the paths in the OBDD, the corresponding probability is 0 0, and therefore nods is labeled withp(zs, ). At node
p(frmy) = Z

n B there are two alternatives: eithes switches from 1 to 1
p ﬂ Tk g |
~€Il; \k=1

(22) and x3 from 1 to 0, orzs switches from 1 to 0 ands from
1 to 1. These transitions are not independent; thus, for each
Since the pathr is fixed, the above probability may pedlternative we use the correspondifig’s as shown in Fig. .4.
computed using the OBDD in the same way as a signﬁh? same operations are performed for any other patfyin
probability. Using Shannon decomposition, the above prof-Similar approach can be further used to propagateftfies
ability may be computed in linear time in the number opétweenf and any other signat.

OBDD nodes. Indeedf,_.; may be written asf,—.; =
= Tk where f7* . gre the cofac- V- AN AXIOMATIC APPROACH TOCONDITIONAL PROBABILITY

Lhiy o :k—y +$kikﬂ1 T—j r—jrdm—j

tors with respect tar, and zx, respectively. Based on this |n this section, we discuss some practical limitations re-
recursive decomposition, we may write a similar relation fojarding the propagation mechanism described in Section IV.
the corresponding probabilities, taking also into account ali particular, we introduce two new concepts: conditional

possible existing correlations independence and signal isotropy, which will help us to
), _ overcome these limitations.
p(frmi) =p(on, _o)p(fisy) T 7O,
hetzn A. Issues in Performance Management
Lk L Ty
+p(wk, . )p(f755) kll TC i (23) In real examples, we may have to estimate power consump-
c<{Sn

tion in large circuits such as C6288, C7552, 32-bit multipliers,
Having computed this probability for each path we etc. where global approaches are totally impractical. In such
immediately get the corresponding transition probabilities amases, incremental approaches based on correlation coefficients
hence the switching activity. Thus, for a fixed path the are applicable, although they may require large running times
complexity isO(n?N) wheren is the number of variables andfor switching activity analysis [2]. Surprisingly enough, there
N is the number of nodes in the OBDD. (Thé factor comes are other circuits, much simpler in terms of their gate count
from keeping track of th@'C’s involved on each path. Thereand internal structure, which create a lot of problems in
is a number of(;”) factors in the product, thus the complexityterms of running time. For example, for tree circuits, the
is quadratic in the number of variables.) Hence, for all paths incremental approaches need a large number of backtracks
11;, the time complexity i€D(n? N P) where P is the number to compute the correlations among different signals and they
of paths in the OBDD. In the incremental approach, this Eimost “degenerate” to global approaches (as far as the running
within reasonable limits since usuallydoes not exceed threetime is concerned).
or four variables in the immediate fanin of the node. The second issue is related to the degree in which signals
Example 2: Let us consider the following functionf = are correlated. In general, large values of the correlation
1 D z2 G x3 and its OBDD representation in Fig. 4. Supposeoefficients cause a lot of problems in the propagation of the
t=0,j=1andw = (01 1) is afixed path in the OFF-s&l, coefficients due to the approximate formulas used throughout
of f. We can compute the probability given in (23) by usinghe calculations. As a consequence, the accuracy of computing
a bottom-up parsing of the OBDD from the leaf labeled witthe switching activity gets worse for highly correlated signals.

n

Z Z H Tcg;f;jkqp(xkikﬂjk) H Tcikij:,{jka
ell;n’ ell; k=1 1<k<I<n
role == d == (1)
1,349 p(f7_)1)




MARCULESCU et al.. PROBABILISTIC MODELING OF DEPENDENCIES 79

These two limitations, namely excessive running time arsiich that the remaining set ¢f — 1) signals is conditionally
accuracy degradation for highly correlated signals, stimulatedlependent with respect tg is a NP-complete problem.
us to further investigate stronger concepts able to overcoméroposition 9 (Conditional Independence Problen@iven

these drawbacks. a set ofn boolean functiondz, z2,- -+, %, }, an index: and
k < n — 1, deciding whether there are at ledassignals from
B. Conditional Independence and Signal Isotropy the remaining subset conditionally independent with respect

to z; is a NP-complete problem.

Definition 7 (Conditional Independence}Given the set of Hint: We prove that conditional independence problem

n signals {vy, za, -+, z, } and an indexi (1 < 4 < n), (CIP) is NP-complete using a reduction from the set packing
we say that the subsefzi,zz, -+, z—1,zix1, -, 2n} IS problem [15] .
conditionally independentith respect tax; if the following Because éIP is NP-complete, we need another concept to
holds: make the conditional independence relationship applicable in
practice. To this end, we introduce the conceptsignal
D ﬂ xjla; | = H p(zjlz;).  (24) isotropywhich can be used in an approximate form as it will
1<j<n,j#i 1<j<n,j#i be shown subsequently.
) Definition 9 (Signal Isotropy):Given the set ofn signals
Note: We note that if the Se{xl,_xz,---,xi_l,xiﬂrlvj"v {x1,72,--+,7,}, We say that the conditional independence
a,} is conditionally independent with respectg, it might  o|ation isisotropic f it is true for all signalszy, za,- - - , .

not be conditionally independent with respectto However, 150 precisely, taking out alk;'s one at a time, the subset

the corresponding set in whicany variable (or subset of ¢ the remainingn — 1) signals is conditionally independent

variables) is complemented, is still conditionally independeqf;, respect to the takem;.

with respect tag; if the conditions in Definition 7 are met.  patyming to our circuit in Fig. 1, given the set of signals
Using the notion of support of a boolean function (i.e., the, 4, 1 '\we have thafa, b} is conditionally independent with

set of variables on which the function depends), we give t'?@spect to: but the sets(a, ¢} or {b,¢} are not conditionally

following definition. _ independent with respect foor a, respectively; conditional
Definition 8 (Logic Independencejlwo boolean functions i,yenendence is not isotropic in this particular case.

f andg arelogically independenfdenoted byf L ¢) if and  1he concept of isotropy defined above is restrictive by its

only if Sup(f) N Sup(g) = @; if they are not logically yery nature. To make this concept more practical, we propose
independent therf and g must share at least one common,o following approximation.

input variable. Definition 10 ¢-Isotropy): The property of conditional in-

Note: It can be seen from the above definition that |°gi8ependence for a set of signals {z;},<;<, is called e-
independence is &nctional concept and does not use aNYsotropic if there exists some (e > O)JsuE;]_t?\at

information about the statistics of the inputs.
For boolean functions, we give the following property.
Proposition 8: Let f and g be two boolean functions and
¢, ¢¢ the cofactors off and g with respect to a common H JACHED
variablec; if f¢ L ¢° and the variables in their support sets | |25 ;2

are independent, thefi and ¢ are conditionally independent —lj<e foranyi=1,2,---,n.
with respect toe, that is P ﬂ 5|
p(fale) = p(fle)p(gle). (25) s

(26)
Example 3:In the circuit in Fig. 1, signalsa,b are
conditionally independent with respect t@ because
p(able) = playc)/p(c) = p(x)p(y) andp(a|c)p(blc) = p(xc) Differently stated,e-isotropy is an approximation of pure
(ye)/p?(c) = p(z)p(y). isotropy within given bounds of relative error. A natural
It is worthwhile to note that, to computg(abc), if a question is then, how often is it appropriate to consieer
and b are conditionally independent with respect dpowe isotropy as an approximation of pure isotropy? To answer
may use only pairwise signal probabilities. Indegfybc) = this question, we consider in Fig. 5 three common situations
plablo)p(c) = plale)p(b|c)p(c) = plac)p(be)/p(c) which involving the set of signal$«, v, w} and the relative position
reduces the problem of evaluating the probability of threaf their logic cones (each cone illustrates the dependence of
correlated signals to the one of considering only pairwisggnals«,v,w on the primary inputs). Whilst the isotropy
correlated signals. is completely satisfied only i), the e-isotropy concept is
As a conclusion, the concept of conditional independenegplicable in all other cases. More precisely, the conditional
can lead to efficient computations even in very complerdependence relation is partially satisfied(i) with respect
situations. In fact, Proposition 8 gives usufficientcondition to w and in (¢) with respect tox andv.
for conditional independence and this is very useful from a Based on the previous definition, we get the following result.
practical point of view. However, the general problem to de- Proposition 10: Given an e-isotropic set of signals
termine a variable:; from a set ofn signals{z,z2,---,z,} {z;}1<j<n, the probability of the composed sigqﬁh};l xj)
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where ¢, is the value taken by the variable, in the cube
“ u 7 € 1I;.
w w >W b) If the set{x,, ,}1<j<nri1=01 IS e-isotropic, then the
v v transition probability p (fi—,) (with ¢, = 0,1) may be
expressed withire-relative error as

s

<

Fig. 5. An example to illustrate pure anmdisotropy. f Z Z
ZA)‘]
7CIl; =/ C11;
may be estimated withia-relative error as 2/n
2/n
H p(xkik"jk N xlfzﬂjz)
H p(zix;) 1<k<i<n

n

(29)

1<i<j<n (n=2)/n
P ﬂ z; | = - R Yo (27) <Hp )
J=1 Fiy—ix
(pr)

hereLk,Jk are the values taken by the variahig in cubes
II; and#’ € II,. O

The above result may be reformulated using signal and
transition correlation coefficients; it can be used in signal
probability and switching activity estimation if theisotropy
conditions are met.

Corollary 1: Given a set of signaléz, }1<,<, as in Propo-
sition 11 and a boolean functiofi of variables{x;}1<;<n,
the following relations hold withire-relative error:

This proposition provides us with a strong result: given
thatn signals ares-isotropic, the probability of their conjunc- "
tion may be estimated withia-relative error using only the
probabilities for pairs of signals, thus reducing the problem
complexity from exponential to quadratic.

C. Computation of Transition Probabilities
Using e-Isotropic Signals

If the property of e-isotropy is satisfied, Proposition 10

may be easily extended to boolean functions represented S A

by OBDD's. Let f be a boolean function of, variables — p(f =i)=>_ I[ scie ] plan =
1,%2, -, L, Which may be defined through the ON- and mell; \1<k<i<n

OFF-sets as in Section IV. In the global approagh,is 2/n

represented in terms of the primary inputs, while in the J—
incr:)remental approach it depengs onl)y on IC;ts immediate fanin ¥ pfivg) = Z Z H TC i
variables. Based on this representation, we have the following el mclly \tsh<tsn
result

Proposition 11: Given f, a boolean function of variables Hp ngk (30)
T1,%a, -, Ty, the following hold.

a) If the set{z,}1<;<» (where every variable is either For the incremental approach, this result can also be
direct or complemented) is-isotropic, then thesignal prob- extended to the calculation of correlation coefficients
ability p (f = 4) (with ¢ = 0,1) may be expressed within (SC’s,TC’s) between any two signals in the circuit. In

e-relative error as practice, this becomes an important piece in the propagation
2/n of probabilities and coefficients through the boolean network.
I plar=ix 0o =di) . . o
1<k<i<n D. Computation of TC’s Using-Isotropic Signals
plo=1) = Z n (n=2)/n Proposition 12: Given a set of signals{z;}i<;<,, a
metl <Hp Ty = i ) boolean functionf of variables{z;}:<;<, and z a signal
from the circuit, if{x,z2,- - -, z,, 2} is a set as in Proposition

(28) 11, then the correlation coefficien{§C’s andT'C’s) can be

2/(n+1)
S I] seise H< Ty = ir) SCZi"f)Q/(M))
wcll; \1<k<I<n k=1
p(f=1)

2/(n+1)

Z Z H TCZTZZIJUI H< ki i TCikf;fjkp)Q/(n—i_l))

b) cha; _WEH{TC’EHJ' 1<k<i<n

iP,Jq (f7_)1 )

fo _
a) SCI =

(31)
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Input sequence
generation

VI. EXPERIMENTAL RESULTS

All experiments were performed using the SIS environment
on an Ultra SPARC 2 workstation with 64 Mbytes of memory.
The working procedure is shown below in Fig. 6.

Input seq. analysis Zero-delay gate-level X .
(input cor. extraction) simulation As input sequences, we use highly correlated vector streams
produced by different strategies: modified LFSR generators,
__\ __ generating pseudorandom vectors at the inputs of some circuit
Switching activity| | Switching activity A and then cascading A with the target circuit B, using the
estimation extraction s . . .
state bit lines of different types of counters. For large circuits,
/ we tried to keep time/space requirements of the simulation at

a reasonable level and used u2t input vectors during the
actual logic simulation.
As standard measure for power estimation, we use the
Fig. 6. The experimental setup. average switching activity at each node of the circuit calculated
as in (9). We are interested in measuring the accuracy of the
expressed withir-relative errof (as in (31) at the bottom of model in estimating the switching activity locally (at each
the previous page), where wheig, p,q =0, 1. O internal node) and globally (for the entire circuit) given a set of
These results lead to a new heuristic algorithm for signgiputs with spatiotemporal correlations. To report error, we use
and transition probability estimation under input streams whi¢he standard measures for accuracy: maximum error (MAX),
exhibit spatiotemporal correlations. We may thus see (30) a=an error (MEAN), root-mean square (RMS), and standard
the improvement of (20) by using the concepts of conditiondkviation (STD); we deliberately excluded the relative error
independence and signal isotropy. Compared to the heuridtiam this picture due to its misleading prognostic for small
proposed in Section IV, this new approach based on cong&lues.
tional independence has also the advantage that it suppliego illustrate the impact of correlations, we consider the
bounds for error estimation provided that the input signalenchmarkf51m3 and generate the inputs using the state lines
are e-isotropic. This bounding value could not be providedf an 8-bit counter. The estimated values of the switching
using the spatiotemporal hypothesis alone. Finally, in tleetivity are compared against the exact values obtained by
incremental approach, the model introduced above providegic simulation; all internal nodes and primary outputs have
a way to improve the run time requirements. been taken into consideration. The results are reported in Fig. 7
Proposition 13: If C; is a correlation coefficientSC or where, on ther axis, we plot the absolute error of switching
TC) at level j (given by a topological ordering from theactivity, that iS|swexact — SWestimated|-
inputs to the outputs of the circuit), then it is related to As the results show, the level of correlation on the primary
Cimi(0<i<y) by a proportlonahty relationship having theinputs strongly impacts the quality of estimation. Specifically,
it makes completely inaccurate the global approach based on
input independence (despite the fact that internal dependencies
: due to reconvergent fanout are accounted by building the
(ijl)Q/(nH) — 1 (the signals on levelj — [ behave as global OBDD). This is visible in the topmost diagram in
uncorrelated). O Fig. 7, where less than 20% of the nodes are estimated with a
In other words, we do not need to compute the coefficientsecision higher than 0.1. On the other hand, even if temporal
which are beyond some levelin the circuit; instead, we may correlations are taken into account, but the inputs are assumed
assume them equal to 1 without significantly decreasing thgbe spatially uncorrelated (as in [13]), only 80% of the nodes
level of accuracy. Alsothe larger the average fanin of the are estimated with an error less than 0.1 (middle diagram).
circuit, the smaller value fof may be used. It is worthwhile Accounting for spatiotemporal correlations provides excellent
to note that the conditional independence relationship, masults for highly correlated inputs; in the lowest diagram,
specifically the concept ot-isotropy, is essential for this 100% nodes are estimated with a precision better than or equal
conclusion. The approach presented in [2], basetly on to 0.1 and for 90% of the nodes the error is even less than 0.05.
spatiotemporal correlations, does not provide a rationale forThese results clearly demonstrate that power estimation is a
using such a limit. This is a very important heuristic to use istrongly pattern dependent problem, therefore accounting for
practice and its impact on the run time is huge; limiting th@ependencies (at the primary inputs and internally, among the
number of calculations for each node in the boolean netwatiifferent signal lines) is mandatory if the accuracy is important.
to a fixed amount (which depends on the value set as threshpl@m this perspective, considering spatiotemporal correlations
for ) reduces the problem of coefficients estimation frorand using signal isotropy seems to be the best candidate to
guadratic (in the worst case) ttinear complexity in the size date.
of the circuit. Using some ISCAS’85 benchmarks, we further performed
the following types of experiments:

Comparison
(node-by-node)

form C; « (C; )2/("+1) where n represents the aver-.
age fan-in value in the circuit. Moreover, if — oo then

2This ¢ is the maximum over all values that occur during the incremental 3To compare our approach with techniques that use global OBDD’s, we
propagation process. had to choose a small circuit.
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TABLE |
HiGHLY CORRELATED INPUTS (fene = 20 MHz; Vg = 5 V)

WITH conditional independence (g-isotropy) WITHOUT conditional independence
Circuit| Exact MAX | MEAN | RMS STD | Estimated | Time | MAX | MEAN | RMS STD Estimated | Time
power [UW] power [uW]| [sec] power [UW]| [sec]
Cc432| 39550 | 02234 | 00133 | 0.0448 [ 0.0432 [ 35137 | 57.03 | 0.8499 | 0.1058 | 0.2274 | 02032 | 1390.07 | 48.75
Cc499 | 2378.86 | 0.1552 | 0.0391 | 0.0692 | 0.0572 | 2260.24 | 81.77 | 0.4254 | 0.0387 | 0.0933 | 0.0851 | 254399 | 72.22
c880| 24875 | 00103 | 0.0009 | 0.0024 | 0.0022 | 24328 | 64.18 | 0.7853 | 0.0471 | 0.1630 | 0.1571 | 482.60 | 53.32
c1355( 191244 | 02603 | 0.0293 | 0.0665 | 0.0599 | 1813.74 | 84.42 | 0.4722 | 0.0516 | 0.1252 | 0.1144 | 2561.76 | 64.50
C1908| 2821.10 | 0.3155 | 0.0236 | 0.0575 | 0.0525 | 2831.73 | 96.28 | 0.4903 { 0.0459 | 0.1000 | 0.0892 { 3201.10 | 88.10
c3540[ 16955 | 0.0268 | 0.0002 | 0.0025 | 0.0025 | 167.32 | 550.15 | 0.5463 | 0.0280 | 0.0365 | 0.0365 | 207.38 | 495.49
6288 6753.63 | 0.1366 | 0.0154 | 0.0154 | 0.0275 | 6800.83 |769.37 ] 0.5639 | 0.1092 | 0.1995 | 0.1685 | 19428.91 | 666.33
mull6]| 28221.04 | 0.2942 | 0.0356 | 0.0607 | 0.0492 | 30018.84 [4111.93] 0.9863 | 0.2198 | 0.3048 | 0.2112 | 47996.24 |3968.76
» Global/No spatiotemporal corr. output and compared with the exact values obtained from
logic simulation. We found that power estimation for the
20 | entire circuit is not a real measure to use in low-power design
8 where the switching activity atachnode has to be accurately
Sis ] estimated.
E 1) Accuracy ResultsThe experiments were performed on
210 e . 1 large examples using highly correlated inputs obtained from
L counted sequences of leng?°. To report the error, all
N _ o : | estimations were verified against logic simulation performed
ﬂmﬂn ﬂ_ﬂm 14_' with SIS. To show the impact of conditional independence, in
0 005 01 015 02 025 0.3 03504 04505 the high-correlation scenario in Table I, we also present the
a ] Global/Temporal corr. results obtained if the conditional independence is not used.
More specifically, the results in columns 3-8 are obtained as
23 in Section V (i.e., applying (30), (31) recursively as many
,;-f,zo times as needed), while columns 9-14 are calculated as in
5 Section IV [using (20), (21)].
8'9 1 As we can see, by using conditional independence and signal
2 isotropy, the accuracy in node-by-node analysis improves on
average by an order of magnitude; on the other hand, by
5 not using conditional independence at all, the total power
nﬂﬂ : o consumption for highly correlated inputs is overestimated by
0 005 O-Jbsolute Srtor 02 02s 100% on average.
45 Incremental/Spatiotemp. corr /lsotropy 2) Run Time ImprovementThe heuristic proposed in
0f] Section V-C is important in practice not only for achieving
35 a level of accuracy similar to that when the threshold limit
%30 is set to infinity, but also for substantially reducing the run
B25) . time. We present in Table4lthe results obtained for some
gzo benchmarks using the limit = 4 in T'C’s calculation (that
RE : is, the allowed number of recursive calls of (31) is limited to
19 ; R S R R S 4). By comparing these results with those obtained feroc
5 —‘Hﬂﬂnﬂﬂrﬂ"lﬂn S in '_I'able I (columns 3—8), we can see that_the quality qf th_e
ok BRI E S T estimates remains basically the same while the run time is

absolute error’

Fig. 7. The impact of the correlation level jf51m.

significantly improved.

We can see in Fig. 8 that the speed up is about three to five
times for less complex circuits, but it may become 15 to 20
times for large examples.

1) experiments to validate the model with conditional in-
dependence anghisotropy;
2) experiments to assess the impact of the limiting tech-
nigue based on Proposition 13.

Once again, the switching activity values and power con?
sumption were estimated a&achinternal node and primary

VIl. CONCLUSION

We have proposed an original approach for switching activ-
ity estimation in combinational logic modules under pseudo-

4Similar results have been obtained for pseudorandom inputs.
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TABLE I
HiGHLY CORRELATED INPUTS WITHLIMIT I = 4 (foe = 20 MHZ; Vg =5 V)
Circ. | MAX | MEAN| RMS | STD Power | Time
[uW] | [sec]
C432 | 0.2342 | 0.0141 | 0.0465 | 0.0447 | 368.97 | 10.40
C499 | 0.1566 | 0.0421 | 0.0760 | 0.0634 | 2283.03 | 8.18
C880 | 0.2478 | 0.0265 | 0.0591 | 0.0529 | 263.13 | 13.16
C1355( 0.0068 | 0.0009 | 0.0021 | 0.0019 | 1865.81 | 5.01
C1908] 0.3157 | 0.0251 | 0.0613 | 0.0561 | 2826.10 | 8.11
C3540( 0.0250 | 0.0002 | 0.0024 | 0.0024 | 168.33 | 42.17
C62881{ 0.0741 | 0.0138 | 0.0268 | 0.0232 | 7360.98 | 22.54
multl6{ 0.2943 | 0.0445 | 0.0720 { 0.0566 |31143.68 | 23.74
mult32{ 0.3648 | 0.0531 | 0.0918 | 0.0749 |145263.44] 103.87
5 . : Spegd—up'vs. cir'cuit co'mplexlity

6l.... ; S : T

4 ; ; ; ; ; ; ; ;
7000 2000 3000 4000 5000, 5000 7000 8000 9000

Fig. 8. The speed-up factor versus circuit complexity.

(5]

(6]
(7

(8]

El

[20]

(11]

[12]

[13]

[14]

[15]

2!

random or highly biased input streams. Using the zero-delay
hypothesis, we have derived a probabilistic model based
on lag-one Markov chains which supports spatiotemporal

correlations among the primary inputs and internal lines
the circuit under consideration. From this perspective, the n¢
concepts of conditional independence and signal isotropy
used in a uniform manner to fulfill practical requirement
for fast and accurate estimation. Under general assumptic
the conditional independence problem has been shown to
NP-complete; consequently, efficient heuristics have been p
vided for probabilities and correlation coefficients calculation.
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