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Abstract - In this paper we present an effective technique for By moving the vector compaction problem from logic domain to
compacting a large sequence of input vectors into a much shortercircuit-level, we significantly improve on the accuracy of power
one so as to reduce the circuit-level simulation time by orders of estimates and then completely eliminate the limitations in accuracy
magnitude and maintain the accuracy of the power estimates. Inof power estimates that are typical for logic-level approaches.
particular, we model the effects of complex spatiotemporal As demonstrated by practical evidence, this new framework is
correlations and rise/fall time slopes on total power dissipation. As extremely effective in power estimation. The basic idea is illustrated
the results demonstrate, large compaction ratios of orders of in Fig.1a. To evaluate the total power consumption for a PWL input
magnitude can be obtained without significant loss (about 5%, on sequence (of lengthg), we first derive the Markov model of the
average) in the accuracy of power estimates input sequence and then, having this compact representation, we
Keywords: simulation efficiency, power estimation, input generate a much shorter sequence (of lehgth.q), equivalent with
dependencies, rise/fall time, vector compaction, Markov models  the initial one, which can be used with any available circuit-level
simulator to derive accurate power estimates (Fig.1b).

|. INTRODUCTION

Power dissipation has become an important design constraint for Markov

nowadays digital systems. Due to this trend, a significant amount of in out :> imee]

work has been devoted to accurate power estimation in CMOS E’}éﬁféﬁ:} inital $

circuits. To date, botldynamicand static approaches have been "Q\'}\';E' PWL - oll sequence]

considered, each one having its own advantages and limitations [8]. sequencel() aueNChgeneration | e ctad PWL
More precisely, the general simulation techniques provide sufficient @ B Seauencell«Lo)
accuracy, but are very costly. On the other hand, nonsimulative Fig.1: Data compaction for power estimation

approaches are much faster, but less accurate than those based 9ffe note that, as opposed to current circuit-level techniques that try
simulation. The reason for inaccuracy is the set of simplifying to improve on thecircuit model used for simulation, our technique
assumptions (zero riseffall times, zero-delay) used in calculations. s focusing only on modeling theWL sequencethat are fed to the
Another important issue is thlevel of abstractionwhere the  target circuit (simulator). This is a fundamental change which
power estimation techniques are applied. Generally speaking, thenakes our technique appealing in practice: by targeting only the
logic-level power estimation is far less accurate compared to theinput sequence and not the circuit itself, the approach becomes
circuit-level estimation. The circuit-level simulation can improve independent from the circuit modeling part. We also point out that
the accuracy of power estimates but, as a side effect, significantlyour techniquedoes notcompete with other circuit-level techniques
increase the computational cost of the estimation process. based on macromodeling [8]; we simply provide a tool for those
As a conclusion, a number of issues appear to be important forapproaches not only to speedup the characterization process but also
accurate power estimation. Thieput statistics (spatiotemporal  to improve on their accuracy by capturing actual spatiotemporal
correlations, rise/fall time slopes, etc.) which must be properly correlations and rise/fall time slopes.
captured and thdength of the input sequenceshich must be To conclude, both static and dynamic techniques for power
applied are two such issues. Generating a minimal-length sequencestimation may benefit from this research. The issues brought into
of input vectors that satisfies these statistics is not trivial. The attention in this paper are new and represent an important step
reason is the elaborate set of input statistics that must be preservedward reducing the gap between the static and dynamic techniques

reproduced during sequence generation for power simulators. commonly used in circuit-level power estimation.

The present paper addresses the problewirobiit-level power The paper is organized as follows: Section Il reviews the basic
estimatiorand improves the-state-of the art by providing an original concepts of Markov modeling technique. Section Il formalizes, at
solution under the paradigm wéctor compactiorHaving an initial  cijrcuit level, the power-oriented vector compaction problem. In

sequence (representative for a target circuit), we taftgesy  sections IV, we give some experimental results. Finally, we
compressiori2], i.e. the process of transforming an input sequence conclude by summarizing our main contribution.
into a shorter one, such that the new body of data represeusd
approximationas far as total power consumption is concerned. Il. BACKGROUND ON DYNAMIC MARKOV MODELS

l.The fo(;mdatlog of our apﬂrol_ach f'i.pmt\’;b'l'st'.c n ngtuwrlt_e; 't The foundation of our approach relies on the adaptive (dynamic)
relies onadaptive(dynamig modelingof PieceWise Linear (PWL) — qqeling of binary input streams as Markov sources of information.
input sequences as second-order Markov sources of informationgne Markov modeling technique [4] was recently extended to
The adaptive modeling technique itself (a.klynamic Markov — canrre not only correlations among adjacent bits, but also

Chain or DMC modeling [4]) was introduced recently in the c,rejations between successive input patterns [9]. Indeed, for
literature on data compression and extended in [9] to handle gate-

. ) A ower estimation purposes, this is an essential feature because the
level spatiotemporal correlations. In this paper, we change the focu%

f level ircuitlevel = 4o ower consumption is very much dependent on the statistical
rom gate-level to circuit-level power estimation and give a New ,qsarties of the input patterns. In the remaining part of this section,
formulation to the vector compaction problem. Using this new

; . we briefly review the main issues in Markov modeling. For an in-
formalism, we are able to handle multiple symbols that are used todepth presentation the reader is referred to [9]
represent the PWL waveforms that arise in r8plcesimulations. '



Without loss of generality, we restrict our attention to finite [3][5][7]. More precisely, different rise/fall time slopes in signal
binary strings; that is, finite sequenceswbits consisting only of propagation can generate glitches within the circuit and these
0's and 1's. A particular sequen& consists of vectorsy, v,,..., V, glitches determine extra-power consumption. In addition, as the
(distinct or not), each having a non-zero occurrence probability. Signal rise and fall times increase, the contribution of short-circuit
Indices 1, 2,...n represent the discrete time steps when a particular Power consumption can also significantly increase [1][3]. To
vector is applied to a target circuit. Imposing a total ordering among illustrate this issue, we simulate the benchm@ik’, with Spiceat a
bits, such a sequence may be conveniently viewed as a binary tre€lock frequency of 10MHz. The circuit is fed with a 5-bit counted
(called DMT, from Dynamic Markov Tree of order zeravhere sequence whose signals have, in a first scenario, equal rise and fall
nodes at leve] correspond to bif (1 < j < b) in the original times of 1ns. In a second experiment, we change_ the rise and fall
sequence; each edge that emerges from a node is labelled with MeS t0 Sns. The total power consumption we obtain is 13\05n
positive count (and then a positive probability) that indicates how e first case and 18.12W for the latter, which shows a relative
many times the substring from the root to that particular node, difference of 40%.

occurred in the original sequence. TB#T, alone cannot capture Considering all these, we focus on tiwput problem in the

temporal correlations because the relative order of vectors in the>€Nse that we try to findndependentiyf the target circuit, a good

T . . roximation of the in nce. For circuit-level wer
initial sequence is irrelevant for its construction. For power approximation of the input sequence. For circuit-level powe

estimation this is a fundamental limitation so we consider a more ﬁ]StLTat;%n up;r:f:)gsses\;viltthls Vcé'rt'caldit]ff) e?éi?ngsu'gz aTOta?]gly tt;it]wce):eg
refined_structure by incorporatingrst-order temporal effects coprrelatioﬂs but also differe?;t values for t?le rise and fall IL:ime
(calledDMT, from Dynamic Markov Tree of ordd) [9]. T ; - ; ;

) . o slopes; this is especially true if we are interested in node-by-node
Examplel: For the following 4-bit sequence consisting of 8 non-

e ~ accurate power estimation usiggice
distinct vectors \y, vz, V3, Vi, Vs, Ve, V7, Vg) = (0000, 0001, 1001, To simplify the vector compaction problem, we restrict to a

1100, 1001, 1100, 1001, 1100), the 3T, is given in Fig.2. finite set of rise and fall time slopes that may characterize the 0/1
transitions in real applications. More precisely, we consider the set

of 2k rise/fall time slopel {s;,S,,...,5,} that characterize the set

of PWL input signals in &Spicesimulation. We assume that the
0-1/1-0 transitions can take place as shown in Fig.43.t{+1,

th+o represent three discrete time steps associated to the lag-2
Markov chain that characterizes the transition process.)

lower subtree

Fig.2: Structure oDMT,

The upper subtree (levels 1 to 4) represdbidT, while the lower

subtrees (levels 5 to 8), give the actual sequencing between any two

successive vectors. We note that any binary sequence can be

modeled as a first-order Markov source usDNIT;. The simple

structure of DMT,, can be further extended to capture temporal (@) (b)

dependencies of higher orders. For instance, if we define recursively Fig.4: Transitions 0.1 / 1- 0 with k rise andk fall time slopes

DMT,, we can capture second-order temporal correlations. For anyin this representation, every transition. @0/1-. 0 takes place with a

sequence where, v, v are 3 consecutive vectorg (- Vi V), the particular slopes; (i = 1.k); moreover, the glitches that have the

treeDMT, looks like in Fig.3 width below a certain threshold are automatically filtered out. We
note that, this modeling scheme can be easily extended to also

7 accommodate 01/1-.0 transitions with infinite slopes, narrow
p(v) 7 *DMT" . glitches, and incomplete transitions (symb@s g, gz, 94 in
! Fig.4b). However, we restrict our subsequent presentation only to
By M) > DMT, the case illustrated in Fig.4a.

The two-step transition process in Fig.4a can be described
using the (&+2) by (Z+2) transition matrix in equation (1). In this
representation, a probability "0" denotes an impossible transition
——— while an entry "*" represents a valid transition (with the probability

Fig.3: A second-order Markov tree value within the [0,1] interval). For instance, starting with symbol
More generally, a structur®MT, can be constructed)MT, "0" it's possible either to go to any symbol within the set

completely captures spatial and temporal correlations of qrfir {5,,5,,...,8} ortoremain in the same state symbolized by "0". On

the other hand, for any (i = 1.K), the process will move
deterministically to symbol '1’. We also note that, beca@és a

p(vilvivy)

11l . POWER-ORIENTED DATA COMPACTION
A. Problem Formulation
Input pattern dependencies (i.e. spatial and temporal correlations)
have a dramatic impact on power dissipation estimates [10]. More 1 o )
than this, it was shown that the real rise/fall time slopes in signal S1, Sp.... ¢ @re rise-time symbols whilg, Sz, Spcare fall-
propagation can have a significant effect on total power dissipation time symbols.




stochastic matrix, the elements in every row add to 1. also those statistics that correspond to pairs of consecutive vectors

the (viva}l, (VoVa),.., WnoVnahs (VnaVn)), we grow simultaneously the

t, ><§1 Sy SSketSp 0 1 tree DM_TZ. We continue to grOV\_DMTz as long as the number of
$s 00..00 ..0 0O 1 nodes in the Mark(_)v model is smaller than a user-specified
$ 00. 00 o 01 threshold and we didn't reach the end of the sequence. If the

Markov model becomes too large, we just generate the new
sequence up to that point and discard (flush) the model. A new
Markov model is started again and the process is continued up to the
end of the original sequence.

1\ m /M—\_,\__ Initial Spice Sequence

$%(00..00 ..0 10 ’ PWL Linearizatio
* % * *

0 ..*0 ...0 0 S (lengthL)

) T

o

Q= %[0 ..00 ..0 O
%+1/00...00 ..0 10

@

Using this compact notation, the vector compaction problem

can be formulated as follows: for any PWL sequence of lethgth 0 § 150gl1ls 00...
(consisting of vectorsiy, as,...,d,), find another PWL sequence of Vb Binary Selq”enceos
lengthL < L (consisting of the subséd, Bo,..., By, of the initial 000 011 001 100 000 . . .
sequence), such that theverage transition probabilityon the
primary inputs of the target circuit is preserveardwise.

More formally, for any generic input value(that is, O, 1, or \L

any slopes, ,s,,...,S,, ), the following condition should hold: Compacted Sequencg’s

000011001 ...

2 2
HQ*HPi_(Q*UPi) = 0(¢) @ Postprocessin
whereP; (P;)' is the (column) state probability vector of the input 05,15,05,18,0 S (lengthL)
valuei, Q*2 i and(Qf“)' represent the two-step transition matrices PWL Constructio
that correspond to the original and compacted sequences, T /) /_\ _ \
respectively.O(e) (read aszero of epsilon) represents any power a5 The f h Final StP'Ce Sequence
_ 5 ig.5: The flow of the compaction process
seriesk,€ + kg™ + ... (convergent for small Once the Markov model is built, to generate a new sequence, we

We note that the above two-step transition probabilities are use a modified version of traynamic weighted selection algorithm
needed to ensure that we preserve the appropriate (valid) set of6]. To ensure a minimal level of error, we implementedearor
triplets (thatis, 3. s;— 1 or 0~ s,- 1, etc.) which define the non-  controlling mechanisnin a greedy fashion. More precisely, at each
ideal (valid) 0-1 and 1- O transitions. Furthermore, this bit-level level in the lower Markov tree, to decide whether a zero or one has

formulation can be extended to any number of bits. to be generated, we compute the transition probabilities for both
alternatives and choose the one that minimizes the absolute error
B. A DMC-based Approach accumulated up to that point. Simultaneously, the upper tree is

The compaction process of the PWL sequences can be realize@arsed from the root to the leaves, according to the bits generated in
using the DMC model in Section Il. To this end, all we need to do is the lower subtree. The procedure is then resumed until the needed
to encodethe PWL information irbinary formatand then apply the ~ number of vectors is generated.

DMC compaction procedure at bit-level. For example, for a PWL  This strategy does note introduce ‘forbidden’ vectors that is,

sequence that contains symbols from the set £9,%,,55.5, } (i.e. those input patterns that did not occur in the original sequence, will
. . . .__not appear in the compacted sequence either. This is an essential
0, 1, two rise, and two fall time slopes), one can usea3-b|tencod|ngcapabi|ity to avoid ‘hang-up’ (forbidden’) states of the circuit

to generate the binary sequence. The overall flow is given in Fig.5. 4,ring simulation process for power estimation. We also note that,

Starting with a realSpice sequence, we first linearize it by . construction, it does not introduce forbidden transitions either.
considering the full transitions between 0 and 1 with different rise/

fall time slopes. After that, using an encoding scheme with IV. EXPERIMENTAL RESULTS

Llog(2k+2) ] bits, we preprocess the PWL sequence (of length The overall strategy is given in Fig.6. In our current implementation,
Lo) into a binary one (§in Fig.5) which is taken as input in the  the input data is obtained from re8lpice simulations by doing
compaction module. The resulting compacted sequence @)eisS ~ Piecewise linearization and representation of the resulting
decoded and transformed back into a PWL sequence (of langth Waveforms with six symbols (i.e. 0, 1, and,s,s;s,  that
which is used as stimulus at the primary inputs of the target circuit. correspond to two different rise and two different fall slopes). Then,
The compaction process in Fig.5 is based on the second-ordeencoding the PWL of length, (represented with symbols in {0,1,
dynamic Markov tree@®MT, in Fig.3) which actually implements $,.5,,54,5,}) with 3 bits, we transform the original input stream

relation (2) at word-level. A practical procedure to construct the |

DMT, and generate the compacted sequence works as follows!ntod"’} binary inputhSﬁqusnce which is sent to the ?ompaction

: - module. Starting with this binary input sequence, we perform a one-
during a one-pass traversal of the original sequence (when we - . ;
extragt the bit-IgveI statistics of each indi\?idual vegtng...vrf and pass traversal of the original sequence and simultaneously build the

basic treedDMT,



Table 1: Power estimates and simulation times for the original and compacted sequences

Initial Sequences Ideal Sequences Compacted Sequences<5) Compacted Sequences<10)
(non-zero riseffall timeg) ~ (zero rise/fall times) (non-zero rise/fall times) (non-zero rise/fall times)
Circuit | Inputs| Gated PowepWV] |time [sec]| Power|iw] Diff.[%)] Power [uW] | Error [%] time [sec] PowenfW] | Error [%] time [sec]
cu 14 44 34.36 110.52 25.26 26.48 37.12 8.03 20.29 36.94 7.20 9.78
add16 33 80 280.78 944.07 211.20 24.78 277.30 1.2 179.4p 26189 6.0 80.77
rdg4 8 125 257.89 817.50 205.08 20.47 241.06 6.57 116.3 227|75 11168 50.7p
9symml 9 145 219.13 971.13 191.34 12.68 230.1y 5.03 192.1 212(61 2.97 82.5p
my_addeqq 33 173} 311.02 978.71 284.24 8.59 318.97 2.55 185.9B 323.83 411 86.494
mul4 16 189 337.65 2030.14 284.88 15.62 341.6p 1.18 381.3p 32687 3.19 179.11
alu2 10 277 319.71 1919.3 293.18 8.29 317.64 0.64 397.7 305(83 4.34 176.81
C1355 41 292 557.16 4017.79 446.09 19.94 568.38 2.01 789.3 534.03 45 352.88
1481 16 327 380.81 2071.0 362.12 4.90 362.5p 4.79 355.7] 359|104 571 163.31
C499 41 352 636.61 4123.9 524.69 17.58 645.08 1.31 879.7p 613.48 3.p3 372.68
C1908 33 384 577.25 4352.41 498.44 13.65 598.16 3.6 816.5'4 574.39 0.49 420.72
alud 14 561 690.16 5752.3 651.33 5.60 698.71L 1.23 1085.13 688153 0.p3 490.06
mul8 32 820 1039.70 | 10755.00 912.43 12.24 1106.40 6.41 2373.'8 103p.40 0Joo 992.p1
Avg. values| Diff. = 14.679 Ermr. = 3.43rVo Speedup = 5|29 Err. = 4.18% Speedup =[11.86

The next step in Fig.6 does the actual generation of the outputsignificant impact on speeding-up the simulative approaches where
sequence. Once we get the compacted binary sequence, we generate run time is proportional to the length of the sequence which must
a PWL sequence (of length) within the postprocessing module. be simulated. As it can be seen in Table 1, for 10, the average
This sequence is later used Bpicesimulations. If the initial PWL relative error is less than 5%, while the speed-up in power estimation
sequence has the lendth and the new generated sequence has theis more than one order of magnitude, on average.
lengthL < L, then acompaction ratioof r = Lg/L is achieved.

Finally, a validation step is included in the strategy; we simulate V. CONCLUSION
the target circuit with the originaBpice sequence and the one |n this paper, we addressed the circuit-level power estimation under
resulted from the compaction process and then we compare theéhe paradigm of vector compaction. Based on dynamic Markov

results in terms of average power consumption estimates. modeling, we proposed a new approach to compact an initial PWL
T — _ _ eneratc sequence into a much shorter equivalent one, which can be used
s |Linearization OxrerutzEll Sl compactefi with any available simulator to obtain accurate power estimates.
sequenc Preprocessing DM sequence i
The results obtained on common benchmarks show that large
Compaction compaction ratios can be obtained without much loss in the
Transistor-level simul, |Transistor.|eve| sim Postprocessing & accuracy of power estimates. We are currently extending our
total power estimation | total power estimatign PWL Constructio approach to the more general case described in Section IIl.
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