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Abstract - In this paper we present an effective technique for
compacting a large sequence of input vectors into a much shorter
one so as to reduce the circuit-level simulation time by orders of
magnitude and maintain the accuracy of the power estimates. In
particular, we model the effects of complex spatiotemporal
correlations and rise/fall time slopes on total power dissipation. As
the results demonstrate, large compaction ratios of orders of
magnitude can be obtained without significant loss (about 5%, on
average) in the accuracy of power estimates.
Keywords: simulation efficiency, power estimation, input
dependencies, rise/fall time, vector compaction, Markov models.

I. INTRODUCTION
Power dissipation has become an important design constraint for
nowadays digital systems. Due to this trend, a significant amount of
work has been devoted to accurate power estimation in CMOS
circuits. To date, bothdynamicand static approaches have been
considered, each one having its own advantages and limitations [8].
More precisely, the general simulation techniques provide sufficient
accuracy, but are very costly. On the other hand, nonsimulative
approaches are much faster, but less accurate than those based on
simulation. The reason for inaccuracy is the set of simplifying
assumptions (zero rise/fall times, zero-delay) used in calculations.

Another important issue is thelevel of abstractionwhere the
power estimation techniques are applied. Generally speaking, the
logic-level power estimation is far less accurate compared to the
circuit-level estimation. The circuit-level simulation can improve
the accuracy of power estimates but, as a side effect, significantly
increase the computational cost of the estimation process.

As a conclusion, a number of issues appear to be important for
accurate power estimation. Theinput statistics (spatiotemporal
correlations, rise/fall time slopes, etc.) which must be properly
captured and thelength of the input sequenceswhich must be
applied are two such issues. Generating a minimal-length sequence
of input vectors that satisfies these statistics is not trivial. The
reason is the elaborate set of input statistics that must be preserved/
reproduced during sequence generation for power simulators.

The present paper addresses the problem ofcircuit-level power
estimationand improves the-state-of the art by providing an original
solution under the paradigm ofvector compaction. Having an initial
sequence (representative for a target circuit), we targetlossy
compression[2], i.e. the process of transforming an input sequence
into a shorter one, such that the new body of data represents agood
approximation as far as total power consumption is concerned.

The foundation of our approach is probabilistic in nature; it
relies onadaptive(dynamic) modelingof PieceWise Linear (PWL)
input sequences as second-order Markov sources of information.
The adaptive modeling technique itself (a.k.a.Dynamic Markov
Chain or DMC modeling [4]) was introduced recently in the
literature on data compression and extended in [9] to handle gate-
level spatiotemporal correlations. In this paper, we change the focus
from gate-level to circuit-level power estimation and give a new
formulation to the vector compaction problem. Using this new
formalism, we are able to handle multiple symbols that are used to
represent the PWL waveforms that arise in realSpicesimulations.

By moving the vector compaction problem from logic domain t
circuit-level, we significantly improve on the accuracy of powe
estimates and then completely eliminate the limitations in accura
of power estimates that are typical for logic-level approaches.

As demonstrated by practical evidence, this new framework
extremely effective in power estimation. The basic idea is illustrat
in Fig.1a. To evaluate the total power consumption for a PWL inp
sequence (of lengthL0), we first derive the Markov model of the
input sequence and then, having this compact representation,
generate a much shorter sequence (of lengthL « L0), equivalent with
the initial one, which can be used with any available circuit-lev
simulator to derive accurate power estimates (Fig.1b).

Fig.1: Data compaction for power estimation
We note that, as opposed to current circuit-level techniques that
to improve on thecircuit model used for simulation, our technique
is focusing only on modeling thePWL sequencesthat are fed to the
target circuit (simulator). This is a fundamental change whic
makes our technique appealing in practice: by targeting only t
input sequence and not the circuit itself, the approach becom
independent from the circuit modeling part. We also point out th
our techniquedoes notcompete with other circuit-level techniques
based on macromodeling [8]; we simply provide a tool for thos
approaches not only to speedup the characterization process but
to improve on their accuracy by capturing actual spatiotempo
correlations and rise/fall time slopes.

To conclude, both static and dynamic techniques for pow
estimation may benefit from this research. The issues brought i
attention in this paper are new and represent an important s
toward reducing the gap between the static and dynamic techniq
commonly used in circuit-level power estimation.

The paper is organized as follows: Section II reviews the bas
concepts of Markov modeling technique. Section III formalizes,
circuit level, the power-oriented vector compaction problem.
sections IV, we give some experimental results. Finally, w
conclude by summarizing our main contribution.

II . BACKGROUND ON DYNAMIC MARKOV MODELS

The foundation of our approach relies on the adaptive (dynam
modeling of binary input streams as Markov sources of informatio
The Markov modeling technique [4] was recently extended
capture not only correlations among adjacent bits, but al
correlations between successive input patterns [9]. Indeed,
power estimation purposes, this is an essential feature because
power consumption is very much dependent on the statisti
properties of the input patterns. In the remaining part of this sectio
we briefly review the main issues in Markov modeling. For an in
depth presentation the reader is referred to [9].
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Without loss of generality, we restrict our attention to finite
binary strings; that is, finite sequences onb bits consisting only of
0’s and 1’s. A particular sequenceS1 consists of vectorsv1, v2,...,vn
(distinct or not), each having a non-zero occurrence probability.
Indices 1, 2,...,n represent the discrete time steps when a particular
vector is applied to a target circuit. Imposing a total ordering among
bits, such a sequence may be conveniently viewed as a binary tree
(called DMT0 from Dynamic Markov Tree of order zero) where
nodes at levelj correspond to bitj (1 ≤ j ≤ b) in the original
sequence; each edge that emerges from a node is labelled with a
positive count (and then a positive probability) that indicates how
many times the substring from the root to that particular node,
occurred in the original sequence. TheDMT0 alone cannot capture
temporal correlations because the relative order of vectors in the
initial sequence is irrelevant for its construction. For power
estimation this is a fundamental limitation so we consider a more
refined structure by incorporatingfirst-order temporal effects
(calledDMT1 from Dynamic Markov Tree of order1) [9].
Example1: For the following 4-bit sequence consisting of 8 non-
distinct vectors (v1, v2, v3, v4, v5, v6, v7, v8) = (0000, 0001, 1001,
1100, 1001, 1100, 1001, 1100), the treeDMT1 is given in Fig.2.

Fig.2: Structure ofDMT1

The upper subtree (levels 1 to 4) representsDMT0 while the lower
subtrees (levels 5 to 8), give the actual sequencing between any two
successive vectors. We note that any binary sequence can be
modeled as a first-order Markov source usingDMT1. The simple
structure ofDMT1, can be further extended to capture temporal
dependencies of higher orders. For instance, if we define recursively
DMT2, we can capture second-order temporal correlations. For any
sequence wherevi, vj, vl are 3 consecutive vectors (vi → vj → vl), the
treeDMT2 looks like in Fig.3.

Fig.3: A second-order Markov tree

More generally, a structureDMTp can be constructed;DMTp
completely captures spatial and temporal correlations of orderp [9].

III . POWER-ORIENTED DATA COMPACTION

A. Problem Formulation
Input pattern dependencies (i.e. spatial and temporal correlations)
have a dramatic impact on power dissipation estimates [10]. More
than this, it was shown that the real rise/fall time slopes in signal
propagation can have a significant effect on total power dissipation

[3][5][7]. More precisely, different rise/fall time slopes in signa
propagation can generate glitches within the circuit and the
glitches determine extra-power consumption. In addition, as t
signal rise and fall times increase, the contribution of short-circu
power consumption can also significantly increase [1][3]. T
illustrate this issue, we simulate the benchmarkC17, with Spiceat a
clock frequency of 10MHz. The circuit is fed with a 5-bit counte
sequence whose signals have, in a first scenario, equal rise and
times of 1ns. In a second experiment, we change the rise and
times to 5ns. The total power consumption we obtain is 13.05µW in
the first case and 18.12µW for the latter, which shows a relative
difference of 40%.

Considering all these, we focus on theinput problem, in the
sense that we try to find,independentlyof the target circuit, a good
approximation of the input sequence. For circuit-level pow
estimation purposes, it is critical to distinguish not only betwee
input sequences with very different spatial and tempor
correlations, but also different values for the rise and fall tim
slopes; this is especially true if we are interested in node-by-no
accurate power estimation usingSpice.

To simplify the vector compaction problem, we restrict to
finite set of rise and fall time slopes that may characterize the 0
transitions in real applications. More precisely, we consider the
of 2k rise/fall time slopes1 that characterize the set

of PWL input signals in aSpicesimulation. We assume that the
0→1/1→0 transitions can take place as shown in Fig.4a. (tn, tn+1,
tn+2 represent three discrete time steps associated to the la
Markov chain that characterizes the transition process.)

Fig.4: Transitions 0→1 / 1→0 with k rise andk fall time slopes
In this representation, every transition 0→1/1→0 takes place with a
particular slopesi (i = 1..k); moreover, the glitches that have the
width below a certain threshold are automatically filtered out. W
note that, this modeling scheme can be easily extended to a
accommodate 0→1/1→0 transitions with infinite slopes, narrow
glitches, and incomplete transitions (symbolsg1, g2, g3, g4 in
Fig.4b). However, we restrict our subsequent presentation only
the case illustrated in Fig.4a.

The two-step transition process in Fig.4a can be describ
using the (2k+2) by (2k+2) transition matrix in equation (1). In this
representation, a probability "0" denotes an impossible transiti
while an entry "*" represents a valid transition (with the probabilit
value within the [0,1] interval). For instance, starting with symbo
"0" it’s possible either to go to any symbol within the se

or to remain in the same state symbolized by "0". O

the other hand, for anysi (i = 1..k), the process will move
deterministically to symbol ’1’. We also note that, becauseQ is a
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stochastic matrix, the elements in every row add to 1.

                                     (1)

Using this compact notation, the vector compaction problem
can be formulated as follows: for any PWL sequence of lengthL0
(consisting of vectorsα1, α2,...,αn), find another PWL sequence of
length L < L0 (consisting of the subsetβ1, β2,..., βm of the initial
sequence), such that theaverage transition probabilityon the
primary inputs of the target circuit is preservedwordwise.

More formally, for any generic input valuei (that is, 0, 1, or
any slope ), the following condition should hold:

                                                       (2)

where is the (column) state probability vector of the input

valuei, and represent the two-step transition matrices

that correspond to the original and compacted sequences,
respectively.O(ε) (read as’zero of epsilon’) represents any power

series  (convergent for smallε).

We note that the above two-step transition probabilities are
needed to ensure that we preserve the appropriate (valid) set of
triplets (that is, 0→ s1→ 1 or 0→ s2→ 1, etc.) which define the non-
ideal (valid) 0→1 and 1→ 0 transitions. Furthermore, this bit-level
formulation can be extended to any number of bits.

B. A DMC-based Approach
The compaction process of the PWL sequences can be realized
using the DMC model in Section II. To this end, all we need to do is
to encodethe PWL information inbinary formatand then apply the
DMC compaction procedure at bit-level. For example, for a PWL
sequence that contains symbols from the set {0,1, } (i.e.

0, 1, two rise, and two fall time slopes), one can use a 3-bit encoding
to generate the binary sequence. The overall flow is given in Fig.5.

Starting with a realSpice sequence, we first linearize it by
considering the full transitions between 0 and 1 with different rise/
fall time slopes. After that, using an encoding scheme with

bits, we preprocess the PWL sequence (of length
L0) into a binary one (S0 in Fig.5) which is taken as input in the

compaction module. The resulting compacted sequence (i.e. S0
’) is

decoded and transformed back into a PWL sequence (of lengthL)
which is used as stimulus at the primary inputs of the target circuit.

The compaction process in Fig.5 is based on the second-order
dynamic Markov tree (DMT2 in Fig.3) which actually implements
relation (2) at word-level. A practical procedure to construct the
DMT2 and generate the compacted sequence works as follows:
during a one-pass traversal of the original sequence (when we
extract the bit-level statistics of each individual vectorv1,v2...,vn and

also those statistics that correspond to pairs of consecutive vec
(v1v2}, (v2v3),..., (vn-2vn-1}, (vn-1vn)), we grow simultaneously the
treeDMT2. We continue to growDMT2 as long as the number of
nodes in the Markov model is smaller than a user-specifi
threshold and we didn’t reach the end of the sequence. If t
Markov model becomes too large, we just generate the n
sequence up to that point and discard (flush) the model. A n
Markov model is started again and the process is continued up to
end of the original sequence.

Fig.5: The flow of the compaction process
Once the Markov model is built, to generate a new sequence,

use a modified version of thedynamic weighted selection algorithm
[6]. To ensure a minimal level of error, we implemented anerror
controlling mechanismin a greedy fashion. More precisely, at eac
level in the lower Markov tree, to decide whether a zero or one h
to be generated, we compute the transition probabilities for bo
alternatives and choose the one that minimizes the absolute e
accumulated up to that point. Simultaneously, the upper tree
parsed from the root to the leaves, according to the bits generate
the lower subtree. The procedure is then resumed until the nee
number of vectors is generated.

This strategy does note introduce ‘forbidden’ vectors that
those input patterns that did not occur in the original sequence, w
not appear in the compacted sequence either. This is an esse
capability to avoid ‘hang-up’ (‘forbidden’) states of the circui
during simulation process for power estimation. We also note th
by construction, it does not introduce forbidden transitions either

IV. EXPERIMENTAL RESULTS
The overall strategy is given in Fig.6. In our current implementatio
the input data is obtained from realSpice simulations by doing
piecewise linearization and representation of the resulti
waveforms with six symbols (i.e. 0, 1, and tha

correspond to two different rise and two different fall slopes). The
encoding the PWL of lengthL0 (represented with symbols in {0,1,

}) with 3 bits, we transform the original input stream

into a binary input sequence which is sent to the compacti
module. Starting with this binary input sequence, we perform a on
pass traversal of the original sequence and simultaneously build
basic treeDMT2.
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Table 1: Power estimates and simulation times for the original and compacted sequences

Initial Sequences
(non-zero rise/fall times)

Ideal Sequences
(zero rise/fall times)

Compacted Sequences (r = 5)
(non-zero rise/fall times)

Compacted Sequences (r = 10)
(non-zero rise/fall times)

Circuit Inputs Gates Power [µW] time [sec] Power [µW] Diff.[%] Power [µW] Error [%] time [sec] Power [µW] Error [%] time [sec]

cu 14 44 34.36 110.52 25.26 26.48 37.12 8.03 20.29 36.84 7.21 9.78

add16 33 80 280.78 944.01 211.20 24.78 277.30 1.23 179.42 261.89 6.70 80.77

rd84 8 125 257.89 817.50 205.08 20.47 241.06 6.52 116.32 227.75 11.68 50.70

9symml 9 145 219.13 971.13 191.34 12.68 230.17 5.03 192.16 212.61 2.97 82.55

my_adder 33 173 311.02 978.77 284.28 8.59 318.97 2.55 185.98 323.83 4.11 86.84

mul4 16 189 337.65 2030.15 284.88 15.62 341.66 1.18 381.36 326.87 3.19 179.11

alu2 10 277 319.71 1919.37 293.18 8.29 317.64 0.64 397.74 305.83 4.34 176.81

C1355 41 292 557.16 4017.79 446.05 19.94 568.38 2.01 789.36 534.03 4.15 352.38

t481 16 327 380.81 2071.00 362.12 4.90 362.56 4.79 355.75 359.04 5.71 163.31

C499 41 352 636.61 4123.90 524.69 17.58 645.03 1.32 879.76 613.48 3.63 372.68

C1908 33 384 577.25 4352.41 498.45 13.65 598.16 3.68 816.54 574.39 0.49 420.72

alu4 14 561 690.16 5752.30 651.33 5.60 698.71 1.23 1085.58 688.53 0.23 490.06

mul8 32 820 1039.70 10755.00 912.43 12.24 1106.40 6.41 2373.08 1039.40 0.00 992.51

Avg. values Diff. = 14.67% Err. = 3.43% Speedup = 5.29 Err. = 4.18% Speedup = 11.86
The next step in Fig.6 does the actual generation of the output
sequence. Once we get the compacted binary sequence, we generate
a PWL sequence (of lengthL) within the postprocessing module.
This sequence is later used forSpicesimulations. If the initial PWL
sequence has the lengthL0 and the new generated sequence has the
lengthL < L0, then acompaction ratio of r = L0/L is achieved.

Finally, a validation step is included in the strategy; we simulate
the target circuit with the originalSpice sequence and the one
resulted from the compaction process and then we compare the
results in terms of average power consumption estimates.

Fig.6: Experimental setup
In Table 1, we provide the results for a set of highly biased input

sequences (of length 850 vectors) obtained from real applications.
These sequences are compacted with two different compaction ratios
(r = 5 and 10). We give in this table the total power dissipation mea-
sured for the initial (column 4) and compacted sequences (columns
8, 11). For comparison purposes, we also indicate (columns 6 and 7)
the power and the corresponding difference we get if we ignore the
actual rise and fall times of the input signals. In columns 5, 10 and
13, we give the time in seconds (on an Ultra 10 workstation with 128
Mbytes of memory) necessary to estimate the average power con-
sumption for the initial and compacted sequences, respectively.
Since the compaction process with DMC modeling is linear in the
number of nodes in the structure of theDMT2, the time needed for
compaction is less than 3 seconds in all cases. During these experi-
ments, the number of states allowed in the Markov model was 5,000
(about 140 Kbytes).

As we can see, the quality of results is very good even when the
length of the initial sequence is reduced by one order of magnitude.
For instance, theSpice simulation of alu2 took 1919.37 sec to
estimate an exact power value of 319.71µW, whereas using the
compacted sequence of only 170 vectors (r = 5), Spiceestimated a
value of 317.64µW in only 397.74 sec. Furthermore, with only 85
vectors (r = 10),Spiceestimated a power consumption of 305.83µW
in only 176.81 sec. This reduction in the sequence length has a

significant impact on speeding-up the simulative approaches wh
the run time is proportional to the length of the sequence which m
be simulated. As it can be seen in Table 1, forr = 10, the average
relative error is less than 5%, while the speed-up in power estimat
is more than one order of magnitude, on average.

V. CONCLUSION
In this paper, we addressed the circuit-level power estimation un
the paradigm of vector compaction. Based on dynamic Mark
modeling, we proposed a new approach to compact an initial PW
sequence into a much shorter equivalent one, which can be u
with any available simulator to obtain accurate power estimates.

The results obtained on common benchmarks show that la
compaction ratios can be obtained without much loss in t
accuracy of power estimates. We are currently extending o
approach to the more general case described in Section III.
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