
Small Guide to Software Benchmarking
(update planned)

Markus Püschel

Carnegie Mellon University

www.ece.cmu.edu/~pueschel



Guide to Benchmarking: How?

 First: Verify your code!

 Measure runtime, compare against the best available code
 compile other code correctly (as good as possible)

 use same timing method

 be fair

 always sanity check: compare to published results etc.

 Measure performance: flops (number floating point ops/second), 

compare to peak performance

 needs peak performance, which can be difficult

 get instruction count statically (cost analysis) or dynamically (tool that counts, or 

replace ops by counters through macros)

 Careful: Different algorithms may have different op count, i.e., best flops is not 

always best runtime



Guide to benchmarking: How to measure runtime?

 C clock()

 process specific, low resolution, very portable

 gettimeofday

 measures wall clock time, higher resolution, somewhat portable

 Performance counter (e.g., TSC on Pentiums)

 measures cycles (i.e., also wall clock time), highest resolution, not portable

 Careful:

 measure only what you want to measure (maybe subtract overhead)

 proper machine state (e.g., cold/warm cache)

 measure enough repetitions

 check how reproducible; if not reproducible: fix it



Guide to Benchmarking: 

How to present results (in writing)?

 Specify machine
 processor type, frequency

 relevant caches and their sizes

 operating system

 Specify compilation
 compiler incl. version

 flags

 Explain timing method

 Plot
 Has to be very readable (colors if possible, thick lines, fonts, etc.)

 Choose proper type of plot: message as visible as possible



Guide to Benchmarking: 

How to present results (talking)?

 Briefly explain the experiment

 Explain x- and y-axis

 Say, e.g., “higher is better” if appropriate

 If many lines, maybe explain one as example

 Extract a message in the end



Example
Performance of code for the discrete cosine transform (DCT):

Platform:

P4 (HT), 3GHz, 

8KB L1, 512KB L2,

WinXP

Compiler:

icc 8.0

Compiler flags:

/QxKW /G7 /O3

• Spiral-generated code is a factor of 2 faster

• reaches up to 50% of the peak performance


