
Small Guide to Software Benchmarking
(update planned)

Markus Püschel

Carnegie Mellon University

www.ece.cmu.edu/~pueschel



Guide to Benchmarking: How?

 First: Verify your code!

 Measure runtime, compare against the best available code
 compile other code correctly (as good as possible)

 use same timing method

 be fair

 always sanity check: compare to published results etc.

 Measure performance: flops (number floating point ops/second), 

compare to peak performance

 needs peak performance, which can be difficult

 get instruction count statically (cost analysis) or dynamically (tool that counts, or 

replace ops by counters through macros)

 Careful: Different algorithms may have different op count, i.e., best flops is not 

always best runtime



Guide to benchmarking: How to measure runtime?

 C clock()

 process specific, low resolution, very portable

 gettimeofday

 measures wall clock time, higher resolution, somewhat portable

 Performance counter (e.g., TSC on Pentiums)

 measures cycles (i.e., also wall clock time), highest resolution, not portable

 Careful:

 measure only what you want to measure (maybe subtract overhead)

 proper machine state (e.g., cold/warm cache)

 measure enough repetitions

 check how reproducible; if not reproducible: fix it



Guide to Benchmarking: 

How to present results (in writing)?

 Specify machine
 processor type, frequency

 relevant caches and their sizes

 operating system

 Specify compilation
 compiler incl. version

 flags

 Explain timing method

 Plot
 Has to be very readable (colors if possible, thick lines, fonts, etc.)

 Choose proper type of plot: message as visible as possible



Guide to Benchmarking: 

How to present results (talking)?

 Briefly explain the experiment

 Explain x- and y-axis

 Say, e.g., “higher is better” if appropriate

 If many lines, maybe explain one as example

 Extract a message in the end



Example
Performance of code for the discrete cosine transform (DCT):

Platform:

P4 (HT), 3GHz, 

8KB L1, 512KB L2,

WinXP

Compiler:

icc 8.0

Compiler flags:

/QxKW /G7 /O3

• Spiral-generated code is a factor of 2 faster

• reaches up to 50% of the peak performance


