
OPTIMIZING MATRIX-MATRIX MULTIPLICATION  
FOR AN EMBEDDED VLIW PROCESSOR 

Roland E. Wunderlich 
rolandw@cmu.edu 

Final Report – 18-799b Algorithms and Computation in Signal Processing, Spring 2005 
Carnegie Mellon University 

ABSTRACT 

The optimization of matrix-matrix multiplication (MMM) 
performance has been well studied on conventional gen-
eral-purpose processors like the Intel Pentium 4.  Fast 
algorithms, such as those in the Goto and ATLAS BLAS 
libraries, exploit common microarchitectural features in-
cluding superscalar execution and the cache and TLB 
hierarchy to achieve near-peak performance.  However, the 
microarchitectures of embedded processors typically use 
explicitly parallel in-order execution and have configurable 
memory hierarchies.  Thus, approaches that find good 
MMM code for processors like the Pentium may not be as 
effective for embedded processors. 

For this project, I investigated the methods needed to 
achieve high performance MMM on an embedded VLIW 
(very-long instruction word) processor, the Texas Instru-
ments C6713 floating-point DSP.  This processor has three 
distinguishing features that affect an MMM implementa-
tion: an 8-wide in-order pipeline, an L2 mapped RAM, i.e., 
software-controlled scratch pad, and a direct memory ac-
cess (DMA) engine.  I present MMM implementations 
obtained through search and a model-driven approach that 
leverage the DSP microarchitecture.  By using the scratch 
pad and DMA, I observed a 51% performance increase 
over a blocked MMM implementation. 

1. INTRODUCTION 

The availability of a high performance MMM implementa-
tion is of critical importance for a large range of numerical 
computation problems.  MMM is both a common stand-
alone function and a ubiquitous kernel of more complex 
computations.  Unfortunately, naïve implementations have 
poor data locality, but speedups are possible if the data 
reuse during the computation of a MMM is properly or-
dered.  The data reuse is apparent since O(n3) operations 
are performed on just O(n2) data.  As a result of MMM’s 
importance and opportunity for high performance imple-
mentations, the development of the fastest possible code is 
worth the investment of time and effort. 

Manufacturers of CPUs often provide hand-tuned as-
sembly code implementations of MMM to ensure good 
computation performance on their product.  The Intel Math 
Kernel Library [1] contains such a MMM implementation 
that achieves 78% of the peak performance [3] of the Pen-
tium 4.  An even higher level of performance, 86% of peak 
performance, is realized by another hand-tuned implemen-
tation, the Goto BLAS library [3].  While both of these 
libraries are fast, it requires extensive effort to port them to 
new microarchitectures without sacrificing performance. 

An alternative approach to creating fast MMM code is 
automatic code generation for specific microarchitectures.  
The ATLAS library generator [4] uses search to find opti-
mal implementation parameters for a target processor.  
While ATLAS produces competitive MMM code (69% of 
peak performance [3] on the Pentium 4), the search process 
cannot examine the entire parameter space in a tractable 
amount of time.  Recent work by Yotov et al. [5] has 
shown that a model-driven optimization can obtain results 
comparable to ATLAS without the time needed for search. 

Both the Goto and ATLAS BLAS libraries are in-
tended for use with modern processors that have deep 
superscalar pipelines and large hardware-managed cache 
hierarchies.  These implementations are not optimal for 
embedded processors that typically have short pipelines 
with compiler-controlled parallelism and small software-
managed cache hierarchies.  I have modified both the 
search and model-driven methods to automatically deter-
mine optimal implementation parameters for the Texas 
Instruments (TI) C6713 floating-point DSP [2] to deter-
mine what fast MMM requires on this platform. 

I use the MMM implementation included in the TI 
DSP Library as the kernel of my blocked MMM imple-
mentation.  The TI MMM is hand-tuned assembly code 
that only performs well with input matrices that fit in the 
L1 data cache.  I perform a search, and derive an analytic 
model, to determine the optimal matrix block size for in-
puts that do not fit in cache.  In addition, I modify the 
blocked MMM algorithm to make use of the scratch pad 
and DMA.  I also derive an analytic model to determine the 
best usage of the scratch pad.  I show that the use of L2 
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scratch pad and DMA yield large performance improve-
ments over conventional blocked MMM. 

The remainder of this report is organized as follows.  I 
present background on the C6713 DSP, the vendor sup-
plied MMM, and the original and model-based ATLAS in 
Section 2.  In Section 3, I determine the best block size 
analytically and experimentally.  Section 4 presents my 
investigation of using the L2 mapped RAM in MMM.  
Finally, I discuss the conclusions of this work in Section 5. 

2. BACKGROUND 

2.1. DSP microarchitecture 

The TMS320C6713 DSP is the latest implementation in 
the C67x family of high-end floating-point (FP) DSP chips 
from Texas Instruments.  This processor is intended for 
demanding embedded applications that have power and 
cost constraints that preclude the use of a general purpose 
processor (GPP) such as the Pentium.  The chip is imple-
mented in a 0.13 µm process technology and is available at 
speeds up to 300 MHz.  It has two single precision FP ad-
ders, two FP comparators, and two FP multipliers that give 
it a peak performance of 1800 MFLOPS, or for MMM, 
1200 MFLOPS because only the adders and multipliers are 
used.  The processor consumes a peak of ~1.5 watts, and 
costs about $37.1  Table 1 compares the C6713 to the fast-
est Pentium 4 in the same 0.13 µm process technology, the 
Northwood 3.4 GHz processor. 

It is not unusual for embedded processors to have 
some software control of their cache hierarchy.  Specifi-
cally, fast but small SRAM is often available to store time-
critical program and data segments.  This SRAM can be 
used effectively when embedded processors execute only a 
single program at a time and have well-defined data access 
patterns.  The C6713 has a 192 KB scratch pad SRAM, 
referred to by TI as L2 mapped RAM, and a 64 KB L2 
cache that can be dynamically converted to scratch pad 

                                                           
1 Prices are current as of April 2005. 

memory as well.  This means that up to 256 KB of low-
latency (8 cycles) SRAM is available. 

Finally, many DSP implementations have DMA en-
gines that allow for background block memory transfers.  
These DMA engines can perform memory copy operations 
between the many I/O ports of the DSP.  The C6713 DSP 
can also perform memory copies to the scratch pad.  This 
essentially allows data to be loaded into the “L2 cache” 
with minimal interaction with the CPU.  When transferring 
data to and from the scratch pad to main memory, the 
C6713 can achieve transfer rates of 400 MB/s with 
100 MHz SDRAM. 

2.2. Blocked MMM parameters 

The data access pattern of the MMM can be improved for 
better cache performance with better data reuse locality.  
This can be achieved by partitioning the computation to 
operate on one set of cache resident sub-matrices (called 
blocks) before moving on to subsequent computations.  
The computation that is performed on these cache resident 
blocks is called the mini-MMM. 

I implemented a blocked MMM implementation (with 
block copying) as described by Yotov et al. [5].  This algo-
rithm has nine parameters that describe the final C code.  
Four of the parameters determine the loop structure of the 
MMM and mini-MMM, while the other five describe the 
organization of the innermost loop body. 

Loop structure parameters: 
NB = block edge dimension (mini-MMM input) 
MU, NU = register block dimensions 
KU = unroll factor for inner-most loop 

Innermost loop body: 
LS = latency for computation scheduling 
FMA = fused multiply-add availability 
FF, IF, NF = scheduling of loads 

2.3. TI DSP Library MMM 

TI provides an optimized single precision floating point 
MMM implementation for C67x processors, the 
DSPF_sp_mat_mul() function.  This function is not a 
blocked MMM, and thus is far from optimal for input ma-
trices that do not fit in the L1 data cache.  However, it is 
optimal for L1 cache resident data, its innermost loop at-
tains 100% of the peak performance of the C6713, with 
only small overhead for the i and j loop control code. 

The TI MMM function was hand-written in assembly 
code, and the innermost loop was written such that all four 
floating-point units are fully utilized.  Data loads are made 
at least 4 cycles before dependent operations, resulting in 
stall-free execution of the innermost loop when all data is 
in the L1 cache. 

The 8-wide pipeline allows the innermost loop control 
code to be executed in parallel with the FP operations, 
yielding 100% peak FLOPS performance within this loop.  
The wide pipeline means that the innermost loop does not 

Table 1.  Microarchitecture comparison DSP vs. GPP 
 TI C6713 Pentium 4 

Process technology 0.13 µm 0.13 µm 
Clock speed 300 MHz 3.4 GHz 

Price1 $37 $286 
Floating point units 6 (32-bit) 1 (128-bit) 

MFLOPS (32-bit) 1800 13,600 
Peak power 1.5 W 90 W 

L1 data cache size 4 KB 8 KB 
Unified L2 cache size 0-64 KB 512 KB 

Scratch pad SRAM 192-256 KB none 
L1 latency (cycles, ns) 4, 13.3 9, 2.6 

L2 & scratch pad latency 8, 26.7 16, 4.7 
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need to be unrolled to amortize loop bounds control code.  
Nevertheless, the DSPF_sp_mat_mul() function unrolls the 
innermost loop by a factor of 8.  It must be unrolled at least 
this much to cover the 5 branch delay slots and schedule 
the operations more than 4 cycles from data loads. 

It is also worth noting that the TI MMM implementa-
tion has only 248 instructions, or 992 bytes.  This is 
approximately one-fourth of the 4 KB L1 instruction 
cache, leaving 3 KB for the outer MMM loops to be im-
plemented with no instruction cache misses for the entire 
blocked MMM.  Assuming no instruction or data cache 
misses, the runtime of DSPF_sp_mat_mul() for two n×n 
input matrices (where n is even) is 

Runtime = 0.5n3 + 6n2 + 4n + 22 cycles. 

When using DSPF_sp_mat_mul() as the mini-MMM 
in a blocked MMM, all but one parameter are fixed: 

MU = NU = KU = 2 
LS = 4 cycles 
FMA = not available 
FF, IF, NF = 4 cycles 

This leaves us to determine the optimal value of NB. 

2.4. ATLAS and model-determined optimal block size 

ATLAS determines the best block size by measuring the 
performance mini-MMM implementations with a range of 
values for NB.  Specifically, ATLAS tests values for NB 
that are multiples of four between 16 and min(80, C1 ), 
where C1 is the size of the L1 data cache. 

Goto and van de Geijn state that non-square mini-
MMM blocks are preferable to avoid TLB misses [3].  
They conclude that the mini-MMM input matrix B and 
output matrix C should have relatively large row dimen-
sions to minimize TLB miss penalties.  This optimization 
is not required for the C6713 because there is no address 
translation for virtual memory. 

Yotov et al. derived an analytic model to determine 
the highest performance block size by analyzing the MMM 
data access pattern and typical cache behavior.  Their 
model for the optimal NB is 
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where B1 is the cache line size.  This model assumes an 
allocate-on-write policy for the L1 cache.  While this as-
sumption is true for processors like the Pentium 4, the 
C6713 does not allocate an L1 data cache entry upon 
writes.  I refine this model to match the C6713’s cache 
behavior, and solve for the optimal NB size in Section 3.1. 

3. OPTIMAL BLOCKED MMM 

In this section, I adapt Yotov et al.’s model for the C6713 
and solve for the optimal block size.  I confirm this result 
by performing an ATLAS style search across a range of 
possible block sizes, and present my blocked MMM. 

3.1. Analytic model for NB 

The model presented by Yotov et al. assumes that when 
elements the output matrix are written out, they occupy 
space in the L1 data cache.  This is not the case on the 
C6713; only data reads can allocate L1 cache lines.  Data 
writes are allocated in the L2 cache unless the data already 
exists in the L1 data cache.  The model for NB simplifies to 
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for any processor that does not allocate-on-write.  If we 
substitute the values for C1, B1, and NU from the C6713 and 
the TI MMM implementation, we can solve for NB.  The 
C6713 has a L1 data cache of 1024 words, and a 32 byte 
cache line size (8 words).  Thus 
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We expect that a block size of 28×28 (3136 bytes or 
49 cache lines) will have the best performance, after round-
ing NB down to an even value.  Using the TI MMM 
runtime formula from Section 2.3 we can estimate that a 
28×28 MMM will take 15,814 cycles.  This is equal to 
818 MFLOPS at 300 MHz, or 68% peak performance of 
the C6713 DSP. 

3.2. Searching for the best NB 

I performed a search for the highest performance for NB 
between 16 and 48 for every multiple of two.  All perform-
ance results are presented as MFLOPS as measured on the 
TI Code Composer Studio 3.0 cycle accurate simulator.  I 
subtracted the overhead of the input setup code that 
touched the input matrices in order to load them in cache 
as if they had just been produced by a preceding function.  
The L2 cache was configured at its largest possible size of 
64 KB. 

The TI TMS320C6x C/C++ Compiler 5.0 was used to 
compile my C code implementation.  The relevant com-
piler options that used were –O3 and –mv6700, to turn on 
optimization and specify the microarchitecture, respec-
tively.  The compiler options had no effect on the TI 
MMM since it is implemented in assembly code. 
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The results of the search for the best block size are 
plotted in Figure 1.  A naïve triple loop implementation is 
shown for comparison.  The block size of 28×28 is the best 
value for NB, as the analytic model predicted.  The TI 
MMM reaches 764 MFLOPS, or 64% of peak performance 
at this block size.  The difference from the expected 
818 MFLOPS performance is explained by compulsory 
instruction cache misses. 

3.3. Blocked MMM implementation 

Using the TI MMM as a mini-MMM function, I wrote a 
blocked MMM implementation.  The pseudo-code of this 
function is shown in Figure 2 for further reference.  The 
performance of this implementation is plotted for matrices 
up to size 224×224 in Figure 3. 

My blocked MMM reaches is 83% faster than the TI 
MMM for large matrices.  The TI MMM is faster for 
N < 112 (49 KB per input matrix) because it does not have 
the overhead of copying blocks, but for larger matrices this 
overhead is justified since it helps improve data locality.  
Also, the performance of the TI MMM drops gradually 
when the input matrices are resident in L2 cache because 
there is only a relatively small increase in latency. 

4. DSP-SPECIFIC OPTIMIZATIONS 

The C6713 can convert its L2 cache into software-
controlled memory in 16 KB steps, allowing 64 to 0 KB of 
L2 cache, and 192 to 256 KB of scratch pad SRAM.  In 
addition, the C6713 has a DMA engine that can perform 
efficient memory block copies from main memory to this 
scratch pad.  In this section, I investigate the possibility of 
improving the blocked MMM’s performance by leveraging 
the memory system of the C6713. 

4.1. Sources of cache misses in blocked MMM 

To determine the best usage of the scratch pad, I identify 
the potential sources of cache misses.  There are four main 
sources of compulsory and capacity misses to both the L1 
and L2 caches in my blocked MMM.  I assume that stores 
do not incur any cost.  This assumption implies that the 
store buffer never fills, and thus, never causes stalls. 

The first source of potential misses is the two calls to 
the copyBlock() function (see Figure 2).  This function 
loads portions of the input matrices A and B and stores 
them into variables a and b.  There is no optimization that 
can eliminate the compulsory misses incurred by the first 
call to copyBlock() on line 6.  This is because each portion 
of the B matrix that is loaded is never used again.  The 
second call to copyBlock() on line 10 incurs compulsory 
misses on the loop iterations where j = 0.  On all other it-
erations, it will only incur capacity misses if A does not fit 
completely in L2 cache along with a, b, and c.  These 
misses occur only when N > 92. 

The second source of potential data cache misses is the 
writeBlock() function on line 13.  This function has to read 
all the values of c.  Since the c block is read and written to 
by the preceding calls to miniMMM(), it will reside en-
tirely within the L1 and L2 caches.  Thus only L1 capacity 
misses may occur, but these cannot be avoided since mov-
ing c into the L1 would evict useful portions of a and b. 

The third source of potential cache misses is the 
miniMMM() function when it loads a and b throughout its 
execution.  Before the miniMMM() function executes, 
block a will be in the L2 cache due to the copyBlock() call 
on line 10.  The b block will also reside in L2 cache, ex-
cept for iterations where i = k = 0.  On these iterations, the 
relevant portion of the b block will be in L2 cache only if 
the entire b block fits in L2 cache along with a, c, and one 
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 1 float[N][N] MMM(float[N][N] A, float[N][N] B) { 
 2  float[NB][NB] a; 
 3  float[N][NB] b; 
 4  float[NB][NB] c; 
 5  for j = 0:NB:N { 
 6   b = copyBlock(B, (0,j)); 
 7   for i = 0:NB:N { 
 8    fillZeroes(c); 
 9    for k = 0: NB:N { 
 10     a = copyBlock(A, (i,k)); 
 11     c += miniMMM(a, b+k·NB); 
 12    } 
 13    writeBlock(c, C, (i,j)); 
 14   } 
 15  } 
 16 } 

Figure 2.  Blocked MMM pseudo-code 
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block of A.  Thus, the b block will not be in L2 cache when 
i = k = 0 for N > 464. 

The final source of potential cache misses is the size 
of the blocked MMM code.  If the blocked MMM and the 
mini-MMM functions are more than 4 KB of instructions, 
then instruction cache capacity misses will occur during 
the blocked MMM. 

4.2. Model for scratch pad usage 

Using the scratch pad SRAM to store data and instruc-
tions reduces L2 cache capacity misses, assuming the L2 
cache size is not reduced.  By placing all instructions, and 
the a, b, and c blocks, in L2 mapped RAM, more space in 
the L2 cache is available.  This decreases capacity misses 
in two of the cases described in Section 4.1. 

The first case where capacity misses are reduced is the 
call to copyBlock() on line 10.  The threshold where A fits 
within the L2 cache increases to N < 114.  The second case 
where misses are reduced is the miniMMM() function for 
iterations where i = k = 0.  The miss latency reduces when 
the b block fits in the scratch pad.  This is possible only 
when N < 1662.  I do not further consider the case when 
N > 1662 and the b block does not completely fit in the 
scratch pad. 

In summary, L2 cache capacity misses are reduced 
when all instructions, and the a, b, and c blocks, are placed 
in the scratch pad for 92 < N < 114.  Also, a more complex 
implementation is required for N > 1662 because the b 
block no longer fits in the scratch pad. 

4.3. Scratch pad and DMA MMM performance 

The placement of instructions and data into the scratch pad 
can be controlled at compile time during the linking phase.  
Pragmas in the C code define which memory sections vari-
ables and functions will reside in at runtime.  I modified 

the blocked MMM to store the MMM and miniMMM 
functions in the scratch pad.  In addition, the a, b, and c 
blocks are also statically allocated in the scratch pad.  The 
performance of this implementation versus the original 
blocked MMM is plotted for matrices up to size 224×224 
in Figure 4.  The use of the scratch pad has a small per-
formance benefit, mostly from a reduction in instruction 
fetch stalls. 

The second optimization specific to the C6713 DSP 
was using the DMA engine to perform the copyBlock(), 
fillZeroes(), and writeBlock() functions more efficiently 
than possible with the CPU.  The reason that these opera-
tions can be performed faster by DMA is that the CPU 
must operate on one word of data at a time, but the DMA 
engine can operate on entire cache lines at once. 

The performance of my final implementation that uses 
blocking, the sctach pad, and DMA is shown in Figure 4.  
The DMA code is the worst performer at small input sizes 
because of the setup overhead of DMA transfers.  Once 
larger DMA transfers are performed for large matrices, its 
performance advantage grows.  For large matricies, the 
implementation using DMA achieves performance only 
15% slower than the TI MMM at N = 28. 

5. CONCLUSIONS 

The blocked MMM is an effective algorithm for high per-
formance on general purpose processors like the 
Pentium 4.  However, when the scratch pad SRAM and 
DMA of the C6713 DSP are used, there are further per-
formance gains.  In fact, if the DMA operations are 
performed in parallel with the mini-MMM, I expect to 
achieve performance only limited by the mini-MMM. 
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