
OPTIMIZING MATRIX-MATRIX MULTIPLICATION
FOR AN EMBEDDED VLIW PROCESSOR

Roland E. Wunderlich
rolandw@cmu.edu

Final Report – 18-799b Algorithms and Computation in Signal Processing, Spring 2005
Carnegie Mellon University

ABSTRACT

The optimization of matrix-matrix multiplication (MMM)
performance has been well studied on conventional gen-
eral-purpose processors like the Intel Pentium 4. Fast
algorithms, such as those in the Goto and ATLAS BLAS
libraries, exploit common microarchitectural features in-
cluding superscalar execution and the cache and TLB
hierarchy to achieve near-peak performance. However, the
microarchitectures of embedded processors typically use
explicitly parallel in-order execution and have configurable
memory hierarchies. Thus, approaches that find good
MMM code for processors like the Pentium may not be as
effective for embedded processors.

For this project, I investigated the methods needed to
achieve high performance MMM on an embedded VLIW
(very-long instruction word) processor, the Texas Instru-
ments C6713 floating-point DSP. This processor has three
distinguishing features that affect an MMM implementa-
tion: an 8-wide in-order pipeline, an L2 mapped RAM, i.e.,
software-controlled scratch pad, and a direct memory ac-
cess (DMA) engine. I present MMM implementations
obtained through search and a model-driven approach that
leverage the DSP microarchitecture. By using the scratch
pad and DMA, I observed a 51% performance increase
over a blocked MMM implementation.

1. INTRODUCTION

The availability of a high performance MMM implementa-
tion is of critical importance for a large range of numerical
computation problems. MMM is both a common stand-
alone function and a ubiquitous kernel of more complex
computations. Unfortunately, naïve implementations have
poor data locality, but speedups are possible if the data
reuse during the computation of a MMM is properly or-
dered. The data reuse is apparent since O(n3) operations
are performed on just O(n2) data. As a result of MMM’s
importance and opportunity for high performance imple-
mentations, the development of the fastest possible code is
worth the investment of time and effort.

Manufacturers of CPUs often provide hand-tuned as-
sembly code implementations of MMM to ensure good
computation performance on their product. The Intel Math
Kernel Library [1] contains such a MMM implementation
that achieves 78% of the peak performance [3] of the Pen-
tium 4. An even higher level of performance, 86% of peak
performance, is realized by another hand-tuned implemen-
tation, the Goto BLAS library [3]. While both of these
libraries are fast, it requires extensive effort to port them to
new microarchitectures without sacrificing performance.

An alternative approach to creating fast MMM code is
automatic code generation for specific microarchitectures.
The ATLAS library generator [4] uses search to find opti-
mal implementation parameters for a target processor.
While ATLAS produces competitive MMM code (69% of
peak performance [3] on the Pentium 4), the search process
cannot examine the entire parameter space in a tractable
amount of time. Recent work by Yotov et al. [5] has
shown that a model-driven optimization can obtain results
comparable to ATLAS without the time needed for search.

Both the Goto and ATLAS BLAS libraries are in-
tended for use with modern processors that have deep
superscalar pipelines and large hardware-managed cache
hierarchies. These implementations are not optimal for
embedded processors that typically have short pipelines
with compiler-controlled parallelism and small software-
managed cache hierarchies. I have modified both the
search and model-driven methods to automatically deter-
mine optimal implementation parameters for the Texas
Instruments (TI) C6713 floating-point DSP [2] to deter-
mine what fast MMM requires on this platform.

I use the MMM implementation included in the TI
DSP Library as the kernel of my blocked MMM imple-
mentation. The TI MMM is hand-tuned assembly code
that only performs well with input matrices that fit in the
L1 data cache. I perform a search, and derive an analytic
model, to determine the optimal matrix block size for in-
puts that do not fit in cache. In addition, I modify the
blocked MMM algorithm to make use of the scratch pad
and DMA. I also derive an analytic model to determine the
best usage of the scratch pad. I show that the use of L2

 2

scratch pad and DMA yield large performance improve-
ments over conventional blocked MMM.

The remainder of this report is organized as follows. I
present background on the C6713 DSP, the vendor sup-
plied MMM, and the original and model-based ATLAS in
Section 2. In Section 3, I determine the best block size
analytically and experimentally. Section 4 presents my
investigation of using the L2 mapped RAM in MMM.
Finally, I discuss the conclusions of this work in Section 5.

2. BACKGROUND

2.1. DSP microarchitecture

The TMS320C6713 DSP is the latest implementation in
the C67x family of high-end floating-point (FP) DSP chips
from Texas Instruments. This processor is intended for
demanding embedded applications that have power and
cost constraints that preclude the use of a general purpose
processor (GPP) such as the Pentium. The chip is imple-
mented in a 0.13 µm process technology and is available at
speeds up to 300 MHz. It has two single precision FP ad-
ders, two FP comparators, and two FP multipliers that give
it a peak performance of 1800 MFLOPS, or for MMM,
1200 MFLOPS because only the adders and multipliers are
used. The processor consumes a peak of ~1.5 watts, and
costs about $37.1 Table 1 compares the C6713 to the fast-
est Pentium 4 in the same 0.13 µm process technology, the
Northwood 3.4 GHz processor.

It is not unusual for embedded processors to have
some software control of their cache hierarchy. Specifi-
cally, fast but small SRAM is often available to store time-
critical program and data segments. This SRAM can be
used effectively when embedded processors execute only a
single program at a time and have well-defined data access
patterns. The C6713 has a 192 KB scratch pad SRAM,
referred to by TI as L2 mapped RAM, and a 64 KB L2
cache that can be dynamically converted to scratch pad

1 Prices are current as of April 2005.

memory as well. This means that up to 256 KB of low-
latency (8 cycles) SRAM is available.

Finally, many DSP implementations have DMA en-
gines that allow for background block memory transfers.
These DMA engines can perform memory copy operations
between the many I/O ports of the DSP. The C6713 DSP
can also perform memory copies to the scratch pad. This
essentially allows data to be loaded into the “L2 cache”
with minimal interaction with the CPU. When transferring
data to and from the scratch pad to main memory, the
C6713 can achieve transfer rates of 400 MB/s with
100 MHz SDRAM.

2.2. Blocked MMM parameters

The data access pattern of the MMM can be improved for
better cache performance with better data reuse locality.
This can be achieved by partitioning the computation to
operate on one set of cache resident sub-matrices (called
blocks) before moving on to subsequent computations.
The computation that is performed on these cache resident
blocks is called the mini-MMM.

I implemented a blocked MMM implementation (with
block copying) as described by Yotov et al. [5]. This algo-
rithm has nine parameters that describe the final C code.
Four of the parameters determine the loop structure of the
MMM and mini-MMM, while the other five describe the
organization of the innermost loop body.

Loop structure parameters:
NB = block edge dimension (mini-MMM input)
MU, NU = register block dimensions
KU = unroll factor for inner-most loop

Innermost loop body:
LS = latency for computation scheduling
FMA = fused multiply-add availability
FF, IF, NF = scheduling of loads

2.3. TI DSP Library MMM

TI provides an optimized single precision floating point
MMM implementation for C67x processors, the
DSPF_sp_mat_mul() function. This function is not a
blocked MMM, and thus is far from optimal for input ma-
trices that do not fit in the L1 data cache. However, it is
optimal for L1 cache resident data, its innermost loop at-
tains 100% of the peak performance of the C6713, with
only small overhead for the i and j loop control code.

The TI MMM function was hand-written in assembly
code, and the innermost loop was written such that all four
floating-point units are fully utilized. Data loads are made
at least 4 cycles before dependent operations, resulting in
stall-free execution of the innermost loop when all data is
in the L1 cache.

The 8-wide pipeline allows the innermost loop control
code to be executed in parallel with the FP operations,
yielding 100% peak FLOPS performance within this loop.
The wide pipeline means that the innermost loop does not

Table 1. Microarchitecture comparison DSP vs. GPP
 TI C6713 Pentium 4

Process technology 0.13 µm 0.13 µm
Clock speed 300 MHz 3.4 GHz

Price1 $37 $286
Floating point units 6 (32-bit) 1 (128-bit)

MFLOPS (32-bit) 1800 13,600
Peak power 1.5 W 90 W

L1 data cache size 4 KB 8 KB
Unified L2 cache size 0-64 KB 512 KB

Scratch pad SRAM 192-256 KB none
L1 latency (cycles, ns) 4, 13.3 9, 2.6

L2 & scratch pad latency 8, 26.7 16, 4.7

 3

need to be unrolled to amortize loop bounds control code.
Nevertheless, the DSPF_sp_mat_mul() function unrolls the
innermost loop by a factor of 8. It must be unrolled at least
this much to cover the 5 branch delay slots and schedule
the operations more than 4 cycles from data loads.

It is also worth noting that the TI MMM implementa-
tion has only 248 instructions, or 992 bytes. This is
approximately one-fourth of the 4 KB L1 instruction
cache, leaving 3 KB for the outer MMM loops to be im-
plemented with no instruction cache misses for the entire
blocked MMM. Assuming no instruction or data cache
misses, the runtime of DSPF_sp_mat_mul() for two n×n
input matrices (where n is even) is

Runtime = 0.5n3 + 6n2 + 4n + 22 cycles.

When using DSPF_sp_mat_mul() as the mini-MMM
in a blocked MMM, all but one parameter are fixed:

MU = NU = KU = 2
LS = 4 cycles
FMA = not available
FF, IF, NF = 4 cycles

This leaves us to determine the optimal value of NB.

2.4. ATLAS and model-determined optimal block size

ATLAS determines the best block size by measuring the
performance mini-MMM implementations with a range of
values for NB. Specifically, ATLAS tests values for NB
that are multiples of four between 16 and min(80, C1),
where C1 is the size of the L1 data cache.

Goto and van de Geijn state that non-square mini-
MMM blocks are preferable to avoid TLB misses [3].
They conclude that the mini-MMM input matrix B and
output matrix C should have relatively large row dimen-
sions to minimize TLB miss penalties. This optimization
is not required for the C6713 because there is no address
translation for virtual memory.

Yotov et al. derived an analytic model to determine
the highest performance block size by analyzing the MMM
data access pattern and typical cache behavior. Their
model for the optimal NB is

1

1

111

2

3
B
CN

B
M

B
NN

B
N

U
UUBB ≤⋅⎥
⎥

⎤
⎢
⎢

⎡
+⎥

⎥

⎤
⎢
⎢

⎡ ⋅
+⎥

⎥

⎤
⎢
⎢

⎡
,

where B1 is the cache line size. This model assumes an
allocate-on-write policy for the L1 cache. While this as-
sumption is true for processors like the Pentium 4, the
C6713 does not allocate an L1 data cache entry upon
writes. I refine this model to match the C6713’s cache
behavior, and solve for the optimal NB size in Section 3.1.

3. OPTIMAL BLOCKED MMM

In this section, I adapt Yotov et al.’s model for the C6713
and solve for the optimal block size. I confirm this result
by performing an ATLAS style search across a range of
possible block sizes, and present my blocked MMM.

3.1. Analytic model for NB

The model presented by Yotov et al. assumes that when
elements the output matrix are written out, they occupy
space in the L1 data cache. This is not the case on the
C6713; only data reads can allocate L1 cache lines. Data
writes are allocated in the L2 cache unless the data already
exists in the L1 data cache. The model for NB simplifies to

1

1

11

2

2
B
C

B
NN

B
N UBB ≤⎥

⎥

⎤
⎢
⎢

⎡ ⋅
+⎥

⎥

⎤
⎢
⎢

⎡

for any processor that does not allocate-on-write. If we
substitute the values for C1, B1, and NU from the C6713 and
the TI MMM implementation, we can solve for NB. The
C6713 has a L1 data cache of 1024 words, and a 32 byte
cache line size (8 words). Thus

29128
4

2
8

2

≤⇒≤⎥⎥
⎤

⎢⎢
⎡+⎥

⎥

⎤
⎢
⎢

⎡
B

BB NNN

We expect that a block size of 28×28 (3136 bytes or
49 cache lines) will have the best performance, after round-
ing NB down to an even value. Using the TI MMM
runtime formula from Section 2.3 we can estimate that a
28×28 MMM will take 15,814 cycles. This is equal to
818 MFLOPS at 300 MHz, or 68% peak performance of
the C6713 DSP.

3.2. Searching for the best NB

I performed a search for the highest performance for NB
between 16 and 48 for every multiple of two. All perform-
ance results are presented as MFLOPS as measured on the
TI Code Composer Studio 3.0 cycle accurate simulator. I
subtracted the overhead of the input setup code that
touched the input matrices in order to load them in cache
as if they had just been produced by a preceding function.
The L2 cache was configured at its largest possible size of
64 KB.

The TI TMS320C6x C/C++ Compiler 5.0 was used to
compile my C code implementation. The relevant com-
piler options that used were –O3 and –mv6700, to turn on
optimization and specify the microarchitecture, respec-
tively. The compiler options had no effect on the TI
MMM since it is implemented in assembly code.

 4

The results of the search for the best block size are
plotted in Figure 1. A naïve triple loop implementation is
shown for comparison. The block size of 28×28 is the best
value for NB, as the analytic model predicted. The TI
MMM reaches 764 MFLOPS, or 64% of peak performance
at this block size. The difference from the expected
818 MFLOPS performance is explained by compulsory
instruction cache misses.

3.3. Blocked MMM implementation

Using the TI MMM as a mini-MMM function, I wrote a
blocked MMM implementation. The pseudo-code of this
function is shown in Figure 2 for further reference. The
performance of this implementation is plotted for matrices
up to size 224×224 in Figure 3.

My blocked MMM reaches is 83% faster than the TI
MMM for large matrices. The TI MMM is faster for
N < 112 (49 KB per input matrix) because it does not have
the overhead of copying blocks, but for larger matrices this
overhead is justified since it helps improve data locality.
Also, the performance of the TI MMM drops gradually
when the input matrices are resident in L2 cache because
there is only a relatively small increase in latency.

4. DSP-SPECIFIC OPTIMIZATIONS

The C6713 can convert its L2 cache into software-
controlled memory in 16 KB steps, allowing 64 to 0 KB of
L2 cache, and 192 to 256 KB of scratch pad SRAM. In
addition, the C6713 has a DMA engine that can perform
efficient memory block copies from main memory to this
scratch pad. In this section, I investigate the possibility of
improving the blocked MMM’s performance by leveraging
the memory system of the C6713.

4.1. Sources of cache misses in blocked MMM

To determine the best usage of the scratch pad, I identify
the potential sources of cache misses. There are four main
sources of compulsory and capacity misses to both the L1
and L2 caches in my blocked MMM. I assume that stores
do not incur any cost. This assumption implies that the
store buffer never fills, and thus, never causes stalls.

The first source of potential misses is the two calls to
the copyBlock() function (see Figure 2). This function
loads portions of the input matrices A and B and stores
them into variables a and b. There is no optimization that
can eliminate the compulsory misses incurred by the first
call to copyBlock() on line 6. This is because each portion
of the B matrix that is loaded is never used again. The
second call to copyBlock() on line 10 incurs compulsory
misses on the loop iterations where j = 0. On all other it-
erations, it will only incur capacity misses if A does not fit
completely in L2 cache along with a, b, and c. These
misses occur only when N > 92.

The second source of potential data cache misses is the
writeBlock() function on line 13. This function has to read
all the values of c. Since the c block is read and written to
by the preceding calls to miniMMM(), it will reside en-
tirely within the L1 and L2 caches. Thus only L1 capacity
misses may occur, but these cannot be avoided since mov-
ing c into the L1 would evict useful portions of a and b.

The third source of potential cache misses is the
miniMMM() function when it loads a and b throughout its
execution. Before the miniMMM() function executes,
block a will be in the L2 cache due to the copyBlock() call
on line 10. The b block will also reside in L2 cache, ex-
cept for iterations where i = k = 0. On these iterations, the
relevant portion of the b block will be in L2 cache only if
the entire b block fits in L2 cache along with a, c, and one

764 MFLOPS

0

200

400

600

800

16 20 24 28 32 36 40 44 48
Matrices edge dimension (N)

M
FL

O
PS

TI MMM
Triple loop MMM

Figure 1. mini-MMM performance across NB

0

200

400

600

800

28 56 84 112 140 168 196 224
Matrices edge dimension (N)

M
FL

O
PS

+ blocking
TI MMM

Figure 3. Blocked MMM performance vs. TI MMM

 1 float[N][N] MMM(float[N][N] A, float[N][N] B) {
 2 float[NB][NB] a;
 3 float[N][NB] b;
 4 float[NB][NB] c;
 5 for j = 0:NB:N {
 6 b = copyBlock(B, (0,j));
 7 for i = 0:NB:N {
 8 fillZeroes(c);
 9 for k = 0: NB:N {
 10 a = copyBlock(A, (i,k));
 11 c += miniMMM(a, b+k·NB);
 12 }
 13 writeBlock(c, C, (i,j));
 14 }
 15 }
 16 }

Figure 2. Blocked MMM pseudo-code

 5

block of A. Thus, the b block will not be in L2 cache when
i = k = 0 for N > 464.

The final source of potential cache misses is the size
of the blocked MMM code. If the blocked MMM and the
mini-MMM functions are more than 4 KB of instructions,
then instruction cache capacity misses will occur during
the blocked MMM.

4.2. Model for scratch pad usage

Using the scratch pad SRAM to store data and instruc-
tions reduces L2 cache capacity misses, assuming the L2
cache size is not reduced. By placing all instructions, and
the a, b, and c blocks, in L2 mapped RAM, more space in
the L2 cache is available. This decreases capacity misses
in two of the cases described in Section 4.1.

The first case where capacity misses are reduced is the
call to copyBlock() on line 10. The threshold where A fits
within the L2 cache increases to N < 114. The second case
where misses are reduced is the miniMMM() function for
iterations where i = k = 0. The miss latency reduces when
the b block fits in the scratch pad. This is possible only
when N < 1662. I do not further consider the case when
N > 1662 and the b block does not completely fit in the
scratch pad.

In summary, L2 cache capacity misses are reduced
when all instructions, and the a, b, and c blocks, are placed
in the scratch pad for 92 < N < 114. Also, a more complex
implementation is required for N > 1662 because the b
block no longer fits in the scratch pad.

4.3. Scratch pad and DMA MMM performance

The placement of instructions and data into the scratch pad
can be controlled at compile time during the linking phase.
Pragmas in the C code define which memory sections vari-
ables and functions will reside in at runtime. I modified

the blocked MMM to store the MMM and miniMMM
functions in the scratch pad. In addition, the a, b, and c
blocks are also statically allocated in the scratch pad. The
performance of this implementation versus the original
blocked MMM is plotted for matrices up to size 224×224
in Figure 4. The use of the scratch pad has a small per-
formance benefit, mostly from a reduction in instruction
fetch stalls.

The second optimization specific to the C6713 DSP
was using the DMA engine to perform the copyBlock(),
fillZeroes(), and writeBlock() functions more efficiently
than possible with the CPU. The reason that these opera-
tions can be performed faster by DMA is that the CPU
must operate on one word of data at a time, but the DMA
engine can operate on entire cache lines at once.

The performance of my final implementation that uses
blocking, the sctach pad, and DMA is shown in Figure 4.
The DMA code is the worst performer at small input sizes
because of the setup overhead of DMA transfers. Once
larger DMA transfers are performed for large matrices, its
performance advantage grows. For large matricies, the
implementation using DMA achieves performance only
15% slower than the TI MMM at N = 28.

5. CONCLUSIONS

The blocked MMM is an effective algorithm for high per-
formance on general purpose processors like the
Pentium 4. However, when the scratch pad SRAM and
DMA of the C6713 DSP are used, there are further per-
formance gains. In fact, if the DMA operations are
performed in parallel with the mini-MMM, I expect to
achieve performance only limited by the mini-MMM.

6. REFERENCES

[1] Intel Math Kernel Library web site [Online]. Available:
http://www.intel.com/software/products/mkl/

[2] Texas Instruments DSP products web site [Online]. Avail-
able: http://dspvillage.ti.com/

[3] K. Goto and R. van de Geijn. “On reducing TLB misses in
matrix multiplication.” Dept. Comput. Sci., Univ. Texas,
Austin, Tech. Rep. TR-2002-55, 2002.

[4] R. C. Whaley, A. Petitet, and J. J. Dongarra. “Automated
empirical optimization of software and the ATLAS project.”
Parallel Comput., vol. 27, no. 1-2, pp. 3-35,, 2001.

[5] K. Yotov, X. Li, G. Ren, M. J. Garzarán, D. Padua, K. Pin-
gali, and P. Stodghill. “Is search really necessary to generate
high-performance BLAS?” Proc. IEEE, vol. 93, no. 2,
pp. 358-386, 2005.

0

200

400

600

800

28 56 84 112 140 168 196 224
Matrices edge dimension (N)

M
FL

O
PS

+ DMA
+ scratch pad
+ blocking
TI MMM

Figure 4. Performance using the scratch pad and DMA

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

