
TWO APPROACHES TO OPTIMIZING FOR POWER IN THE SPIRAL FRAMEWORK

Peter Milder and Marek Telgarsky

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213

ABSTRACT

This paper evaluates two methods for generating power or
energy optimized Digital Signal Processing (DSP) trans-
forms. Both approaches integrate power models into the
SPIRAL code generator. SPIRAL decomposes a transform
into an algorithmic formula representation, which is then
implemented in C and timed. The timing data is used as
feedback to control the parameters of the next algorithm
generated. By replacing the timing method with power es-
timation models, we direct SPIRAL to search for a power-
optimized implementation.

We implement and evaluate two different methods: a
processor simulator and power model, and a hardware based
method that models power based upon data collected di-
rectly from on-chip Pentium 4 performance counters.

1. INTRODUCTION

A large amount of effort is directed into power concerns
during the design of desktop and embedded processors, but
very little work has been done examining power efficient
software. Although hardware design is a very important
factor in low-power systems, the software design may play
a significant role in the consumption of power and energy.

1.1. Motivation

This work aims to analyze the effects of software implemen-
tation on processor power and energy consumption. The
overarching goal of this research is to gain an understand-
ing of the degree to which software implementations affect
power issues.

Digital Signal Processing (DSP) transforms are often
used in power-sensitive applications, and as such, are an ex-
cellent class of software to optimize for power and energy.
The SPIRAL code generator [1] creates runtime-optimized
DSP kernels by searching over many implementation de-
grees of freedom and timing the results for feedback. By
integrating power modeling techniques as feedback mech-
anisms, SPIRAL can be used to generate power or energy-
optimized software.

1.2. Previous Work and State-of-the-Art

This research is based upon the well-developed SPIRAL
framework. SPIRAL uses its own signal processing lan-
guage to mathematically express DSP transforms. By sup-
porting several different decomposition rules it is capable of
expressing a transform of a given size in many ways. While
the algorithms all compute the same result, the differences
in their structures result in a variety of runtimes. Being
highly extensible, the SPIRAL platform’s backend can be
changed from runtime performance to power measurement.

We examine two methods for modeling power. The first
model, the Wattch simulator, [2] is often used in power esti-
mation. It is a pure software simulator of a hypothetical pro-
cessor, with power consumption calculated as a linear com-
bination of simulated event counters. The second method
we examine is an empirical macro scale power model of
the Intel Pentium 4 developed by Isci and Martonosi [3]. It
is based on metrics unveiled by the performance counters
available on the Pentium 4.

1.3. Overview

The SPIRAL measurement back-end is easily modifiable to
optimize for various metrics. We modify this backend and
insert, separately, the two different power models. Once
the models are in place and stable, we concentrate on 2-
power sized DFTs. SPIRAL then generates different al-
gorithms for DFTs of a particular size and executes them
under the two different models. Our primary goal is to eval-
uate these methods and their ability to generate power or
energy-optimized transforms. Secondly, we hope to look
for correlations between runtime, energy consumption, and
power consumption in each model.

1.4. Organization of the Paper

We begin Section 2 by providing an explanation of the SPI-
RAL platform and why it is an appropriate testbed for mea-
suring power usage in software. Next, we give details, in-
cluding positives and negatives, of each of the two simula-
tion methods. Section 3 concentrates on the actual imple-
mentation. Section 4 then gives the results and section 5



Ruletree

Formula

Transform

Rule

Fig. 1. Using rules to decompose a transform into a rule tree
and formula.

provides some conclusions and potential for future work.

2. NECESSARY BACKGROUND

2.1. SPIRAL

SPIRAL is a generator for platform-optimized DSP code.
It takes a user-specified transform as input, and produces
a runtime-optimized C implementation. As mentioned be-
fore, SPIRAL uses a signal processing language to math-
ematically represent a number of important transforms in
signal processing. For our evaluations we concentrate on
the Discrete Fourier Transform (DFT). Using the Cooley-
Tukey decomposition rule, the DFT can be decomposed in a
number of ways into smaller DFTs. By expressing Cooley-
Tukey mathematically, SPIRAL can generate different rule-
trees for each possible expansion at each DFT size. Graphi-
cally, this is represented in Figure 1. Each tree is converted
into C code that is then run under a timing backend. In our
work, we replace this timing backend with one of two power
models. Figure 2 shows a block diagram of SPIRAL with
our integrated power evaluation methods.

SPIRAL is the perfect platform for testing power usage
because of its ability to generate different implementations
of the same algorithm. By comparing the power used by
each of the implementations, it is possible to show that some
are better in terms of power or energy consumed than others.
It is also very easy to compare these power figures to the
number of clock cycles. Thus we can determine the power,
energy, and runtime for each generated implementation.

2.2. Wattch

Wattch is an architectural-level power simulation tool based
upon the SimpleScalar [4] cycle-level processor simulator.
The Wattch model calculates baseline and per-access power
costs for all of the simulated processor’s functional units.
Then, it uses event counters to determine the number of
accesses for each unit. The total power and energy con-
sumed by a program are modeled as linear combinations of
the power and energy consumed in the individual functional
units.

Formula Generation 
and Optimization

Implementation and
Code Optimization

measure 
runtime

Compilation

Wattch
simulator

perf. counter 
model

S
earch / Learning

algorithm as formula

C implementation

optimized implementation

performance

control

control

transform

Fig. 2. Integrating power simulation into the SPIRAL envi-
ronment

Although Wattch runs much faster than circuit or HDL-
level power simulators, it is still quite slow for this appli-
cation since, typically, SPIRAL generates and evaluates a
large number of implementations. Compilation and simula-
tion can take as long as several minutes for a medium-sized
transform. In an application where thousands of large trans-
forms need to be searched in order to find an optimal solu-
tion, the effectiveness of the search can be greatly limited
by these time constraints.

2.3. Performance Counter Model

Isci and Martonosi produced a power model for the Pen-
tium 4 processor based on performance counter metrics.
This model, described in [5], is for a specific Pentium 4 die:
the 0.18 micron 1.4 Ghz Willamette. The model subdivides
the die into 22 units. The power used by each unit is then
represented by a linear combination of performance coun-
ters. Using test programs that stressed different units while
measuring current into the processor with an ammeter, Isci
correlated the performance counter values to the required
power. However, not all details of the model are available
in [5], and personal correspondence [6] with the author was
necessary to complete the model.

The performance counter model described in [3] uses
a custom kernel module under Linux to access the perfor-
mance counters on the Pentium 4. In this work, the freely
available perfctr library is used [7]. Using a supported solu-
tion means it is portable between kernel revisions. Also, the
library, being partially embedded in the kernel, turns off the
counters when the process under test is not executing. This
was not a concern in Isci’s work as they were interested
in system-wide power performance, while our concern is
much more fine grained. The drawback of the library is that
it introduces some overhead into the retrieval of the counter
values. How much the measurement affects the test depends



5 5.5 6
x 10

4

118.8

118.9
DFT(512) Power

po
w

er
 (

W
)

runtime (clocks)
5 5.5 6

x 10
4

6

6.5

7

7.5x 10
6 DFT(512) Energy

en
er

gy

runtime (clocks)
1.4 1.6 1.8 2 2.2 2.4

x 10
6

118.8

118.9
DFT(8192) Power

po
w

er
 (

W
)

runtime (clocks)
1.5 2 2.5

x 10
6

1.5

2

2.5

3x 10
8 DFT(8192) Energy

en
er

gy

runtime (clocks)

Fig. 3. Wattch simulated power and energy for random rule trees of DFT512 and DFT8192

upon the counters under study. Section 3.2 describes some
of the techniques employed to combat this problem.

3. IMPLEMENTATION DETAILS

We execute 200 random rule trees of DFTs of sizes 64, 512,
8192, and 32768. The transform sizes were chosen such
that their data span a range of sizes ranging from residing
entirely in the L1 cache to being larger than the L2.

3.1. Wattch

Wattch is configured to run an out-of-order core with a split
L1 cache (16KB data and 32KB instruction) and a 256KB
L2 cache. Code for the simulator is compiled with a ver-
sion of gcc that has been modified to output PISA assem-
bly, which is the instruction set architecture used by Sim-
pleScalar. All compilation was done with the -O3 flag.

3.2. Performance Counter Model

There are several issues with the implementation of the per-
formance counter model. First, the model was tuned for the
aforementioned 1.4Ghz CPU, while the system under test
is a dual 1.7Ghz Xeon. The L1 and L2 cache sizes of the
original CPU are not known, while the CPU under test has
an 8KB L1 data cache, a 12KB L1 instruction cache, and a
256KB L2 cache. For the purpose of this work, we assume
that the model holds even though the Xeon under test and
the original Willamette are different.

A test consists of making four passes on each generated
algorithm. The list of performance counters monitored is
slightly different on each pass. The counters are then com-
bined linearly and divided by the number of clock cycles to
produce a power figure per unit. These power figures are
then summed together into the final result. Sometimes the
cycle count for one pass will be much longer than for the
rest. To deal with the problem, each test is run 10 times. A
test is dropped if any of its passes take longer than 5 percent
of the median of all the passes in all the tests for that partic-
ular transform. This removes the occasional hiccup due to
context switches and other runtime factors. The power fig-
ures for the remaining good tests are then averaged to yield
the final estimate.

4. EXPERIMENTAL RESULTS
4.1. Wattch

Figure 3 shows scatter plots of the Wattch simulated power
and energy consumption correlated with runtime for DFT512

and DFT8192.
The Wattch simulator’s results show a reasonable range

and spread of energy values. There is approximately a factor
of 3 difference between the highest and lowest energy in
each of the four sizes examined. As expected, the energy
consumed increases with an increase in transform size.

However, the results show that the energy consumed is
linearly correlated with the algorithm’s runtime. Accord-
ingly, the results for simulated power show a constant level
of power dissipation across all generated algorithms at all
runtimes. These results show power as a constant value
±1/100, 000 watt.

Although the same tests were run over algorithms of
four different sized transforms, the results are the same for
each: constant power and linearly increasing energy. For
this reason, results for other sizes are not displayed.

The very narrow range of power suggests that Wattch (as
currently configured) is not a reasonable method to optimize
for power consumption within SPIRAL. Although there is
a range of reported values, the spread is so narrow that it is
impossible to tell if the results are significant at all, or if the
variations are simply noise.

Furthermore, the near-constant power values show that
the Wattch method is not ideal for optimizing for energy
consumption in SPIRAL. Since the simulated power is ex-
tremely close to constant, the energy results reported by
Wattch are extremely closely correlated to runtime. There-
fore, optimizing for energy gives the same result as optimiz-
ing for runtime, but takes much longer to compute.

4.2. Performance Counter Model

In contrast to the Wattch model, the performance counter
model results in a significant spread of results for each size
under test (see Figure 4). The first case, DFT64, fits entirely
into the L1 data cache and produces an unexpected result
that does not correlate with the rest of the sizes, namely,
that there are implementations that consume the least power



4000 5000 6000 7000 8000
2.5

3

3.5

4

4.5x 10
5 DFT(64) Energy

en
er

gy

runtime (clocks)
4 5 6 7

x 10
4

2

2.5

3

3.5

4x 10
6 DFT(512) Energy

en
er

gy

runtime (clocks)
2 4 6 8

x 10
6

0.5

1

1.5

2

2.5x 10
8 DFT(8192) Energy

en
er

gy

runtime (clocks)
1 2 3 4 5

x 10
7

0.6

0.8

1

1.2

1.4x 10
9 DFT(32768) Energy

en
er

gy

runtime (clocks)

4000 5000 6000 7000 8000
50

52

54

56

58
DFT(64) Power

po
w

er
 (

W
)

runtime (clocks)
4 5 6 7

x 10
4

50

52

54

56

58
DFT(512) Power

po
w

er
 (

W
)

runtime (clocks)
2 4 6 8

x 10
6

30

35

40

45
DFT(8192) Power

po
w

er
 (

W
)

runtime (clocks)
1 2 3 4 5

x 10
7

25

30

35

40
DFT(32768) Power

po
w

er
 (

W
)

runtime (clocks)

Fig. 4. Performance counter model power and energy for random rule trees of DFT(64, 512, 8192, and 32768).

and have the shortest runtime. It is unclear why this would
be the case, but it is possible that the overhead of reading the
counters is affecting the measurements. A DFT512 fits en-
tirely into the L2 cache, and exhibits the expected behavior
with power inversely proportional to runtime. The last two
sizes do not fit into cache and exhibit behavior similar to the
512 case. In both of the largest cases the inverse relation-
ship between power and runtime is clear. For the fastest al-
gorithms of each size, the shortest runtime leads to the least
energy consumed. Additionally, it is possible to choose a
best runtime given a power constraint. The range of the re-
sults suggests that there are differences between implemen-
tations and that this model may be effective in categorizing
them.

5. CONCLUSIONS

We have presented two methodologies for measuring trans-
form power in SPIRAL. The SPIRAL project has shown
that given a transform of some size, different algorithms
produce different runtimes. By replacing the SPIRAL mea-
surement backend, we have shown that an algorithm’s en-
ergy and power needs, like runtime, are dependent on its
structure.

The Wattch simulator results for power have been in-
conclusive in that they suggest all algorithms consume the
same amount of power. Given the variance in runtimes, it
is unlikely that this is an accurate simulation. The perfor-
mance counter model provides reasonable results, although
its absolute correctness has not been verified.

Future work includes further examination of the Wattch
simulation to determine why large changes in runtime and
cache hit rates do not lead to changes in power consumed.
Additionally, the performance counter model needs to be
fully justified on the machine under test.

6. REFERENCES

[1] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua,
M. Veloso, B. Singer, J. Xiong, F. Franchetti, A. Gačić,
Y. Voronenko, K. Chen, R. Johnson, and N. Rizzolo.
SPIRAL: Code Generation for DSP Transforms. In
Proceedings of the IEEE special issue on “Program
Generation, Optimization, and Adaptation,” Vol. 93,
No. 2, 2005, pp. 232-275.

[2] D. Brooks, V. Tiwari, M. Martonosi. Wattch: A Frame-
work for Architectural-Level Power Analysis and Op-
timizations. In Proceedings of the 27th International
Symposium on Computer Architecture, 2000.

[3] C. Isci, M. Martonosi. Runtime Power Monitoring
in High-End Processors: Methodology and Empirical
Data. In Proceedings. 36th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2003, pp. 93-
104.

[4] D. Burger and T. M. Austin. The SimpleScalar Tool
Set, Version 2.0. Computer Archictecture News, pages
13-25, June 1997.

[5] C. Isci, M. Martonosi. Runtime Power Monitoring
in High-End Processors: Methodology and Empirical
Data. Internal Princeton University Dept. of Electrical
Engineering Technical Report, 2003.

[6] C. Isci. Personal communication. 17 April 2005.

[7] M. Pettersson. Perfctr library for Linux.
http://user.it.uu.se/ mikpe/linux/perfctr/. Accessed 18
April 2005.


