
Algorithms and Computation in
Signal Processing

special topic course 18-799B
spring 2005

9th Lecture Feb. 8, 2005

Instructor: Markus Pueschel
TA: Srinivas Chellappa

MMM versus MVM

Matrix-Vector Multiplication (MVM)

MMM:
BLAS3
O(n2) data (input), O(n3) computation, implies O(n) reuse per number
(More precise on blackboard)

MVM: y = Ax
BLAS2
O(n2) data, O(n2) computation
explain which optimizations remain useful (partially blackboard)

cache blocking?
register blocking?
unrolling?
scalar replacement?
add/mult interleaving, skewing?

Matrix-Vector Multiplication (MVM)

MMM:
BLAS3
O(n2) data (input), O(n3) computation, implies O(n) reuse per number

MVM: y = Ax
BLAS2
O(n2) data, O(n2) computation
explain which optimizations remain useful (partially blackboard)

cache blocking? yes, but reuse of x and y only
register blocking? yes, but reuse of x and y only
unrolling? yes
scalar replacement? x and y only
add/mult interleaving, skewing? yes
expected gains smaller

MMM vs. MVM: Performance

Performance for 2000 x 2000 matrices
Best code out of ATLAS, vendor lib., Goto

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

Sparse Matrix-Vector Multiplication
(Sparsity, Bebop)

Sparse MVM

y = Ax, A sparse but known

Important routine in:
finite element methods
PDE solving
physical/chemical simulation (e.g., fluid dynamics)
linear programming
scheduling
signal processing (e.g., filters)
…

In these applications, y = Ax is performed many times
justifies one-time tuning effort

Storage of Sparse Matrices

Standard storage (as 2-D array) inefficient (many zeros are
stored)

Several sparse storage formats are available

Explain compressed sparse row (CSR) format (blackboard)
advantage: arrays are accessed consecutively for y = Ax
disadvantage: no reuse of x and y, inserting elements costly

Direct Implementation y = Ax, A in CSR

void smvm_1x1(int m, const double* value, const int* col_idx,
const int* row_start, const double* x, double* y)

{
int i, jj;

/* loop over rows */
for(i = 0; i < m; i++) {

double y_i = y[i];

/* loop over non-zero elements in row i */
for(jj = row_start[i]; jj < row_start[i+1];

jj++, col_idx++, value++) {
y_i += value[0] * x[col_idx[0]];

}
y[i] = y_i;

}
}

scalar replacement
(only y is reused)

indirect array addressing
(problem for compiler opt.)

Code Generation/Tuning for Sparse MVM

Sparsity/Bebop

Paper used: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc.
SPARSITY: An Optimization Framework for Sparse Matrix
Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp.
135-158, 2004 (can be found on above website)

link

http://bebop.cs.berkeley.edu/

Impact of Matrix-Sparsity on Performance

Adressing overhead (dense MVM vs. dense MVM in CSR):
~ 2x slower (mflops, example only)

Irregular structure
~ 5x slower (mflops, example only) for “random” sparse matrices

Fundamental difference between MVM and sparse MVM (SMVM):
sparse MVM is input dependent (sparsity pattern of A)
changing the order of computation (blocking) requires change of data structure
(CSR)

Bebop/Sparsity: SMVM Optimizations

Register blocking

Cache blocking

Register Blocking

Idea: divide SMVM y = Ax into micro (dense) MVMs
of matrix size r x c

store A in r x c block CSR (r x c BCSR)

Explain on blackboard
Advantages:

reuse of x and y (as for dense MVM)
reduces index overhead

Disadvantages:
computational overhead (zeros added)
storage overhead (for A)

Example: y = Ax in 2 x 2 BCSR

void smvm_2x2(int bm, const int *b_row_start, const int *b_col_idx,
const double *b_value, const double *x, double *y)

{
int i, jj;

/* loop over block rows */
for(i = 0; i < bm; i++, y += 2) {

register double d0 = y[0];
register double d1 = y[1];

/* dense micro MVM */
for(jj = b_row_start[i]; jj < b_row_start[i+1];

jj++, b_col_idx++, b_value += 2*2) {
d0 += b_value[0] * x[b_col_idx[0]+0];
d1 += b_value[2] * x[b_col_idx[0]+0];
d0 += b_value[1] * x[b_col_idx[0]+1];
d1 += b_value[3] * x[b_col_idx[0]+1];

}
y[0] = d0;
y[1] = d1;

}
}

scalar replacement
(y is reused)

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

Which Block Size (r x c) is Optimal?

Example: ~20,000 x 20,000 matrix with perfect 8 x 8 block
structure, 0.33% non-zero entries
In this case:
no overhead when blocked r x c, with r,c divides 8

source: R. Vuduc, LLNL

Speed-up through r x c Blocking
ro

w
 b

lo
ck

 s
iz

e
r

Ultra 2i Itanium 2

ro
w

 b
lo

ck
 s

iz
e

r
col. block size ccol. block size c

• machine dependence
• hard to predict

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

How to Find the Best Register Blocking for given A?

Best blocksize hard to predict (see previous slide)

Searching over all r x c (within a range, say 1..12) BCSR
expensive

conversion of A in CSR to BCSR roughly as expensive as 10 SMVMs

Solution: Performance model for given A

Performance Model for given A
Model for given A built from

Gain of blocking:
Gr,c = Performance r x c BCSR/performance CSR for dense MVM
machine dependent, independent of matrix A

Computational overhead:
Or,c = size of A in r x c BCSR/size of A in CSR
machine independent, dependent on A
computed by scanning only a fraction of the matrix
(blackboard example)

Model: Performance gain from r x c blocking of A:
Pr,c = Gr,c/Or,c

For given A, use this model to search over all r, c in {1,…,12}

Gain from Blocking (Dense Matrix in BCSR)
Pentium III Itanium 2

ro
w

 b
lo

ck
 s

iz
e

r

ro
w

 b
lo

ck
 s

iz
e

r

col. block size ccol. block size c

• machine dependence
• hard to predict

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

Register Blocking: Experimental results

Paper applies method to a large set of sparse matrices

Performance gains between 1x (no gain) for very
unstructured matrices and 4x

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

Cache Blocking

Idea: divide sparse matrix into blocks of sparse matrices

Experiments:
requires very large matrices (x and y do not fit into cache)
speed-up up to 80%, speed-up only for few matrices, with 1 x 1 BCSR

Figure Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework
for Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

Multiple Vector Optimization

Blackboard

Experiments: up to 9x speedup for 9 vectors

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

Principles in Bebop/Sparsity Code Generation

Optimization for memory hierarchy = increasing locality
Blocking for registers (micro-MMMs) + change of data structure for A
Less important: blocking for cache
Optimizations are input dependent (on sparse structure of A)

Fast basic blocks for small sizes (micro-MMM):
Loop unrolling (reduce loop overhead)
Some scalar replacement (enables better compiler optimization)

Search for the fastest over a relevant set of
algorithm/implementation alternatives (= r, c)

Use of performance model (versus measuring runtime) to evaluate
expected gain

red = different from ATLAS

	Algorithms and Computation in Signal Processing special topic course 18-799Bspring 20059th Lecture Feb. 8, 2005
	MMM versus MVM
	Matrix-Vector Multiplication (MVM)
	Matrix-Vector Multiplication (MVM)
	MMM vs. MVM: Performance
	Sparse Matrix-Vector Multiplication(Sparsity, Bebop)
	Sparse MVM
	Storage of Sparse Matrices
	Direct Implementation y = Ax, A in CSR
	Code Generation/Tuning for Sparse MVM
	Impact of Matrix-Sparsity on Performance
	Bebop/Sparsity: SMVM Optimizations
	Register Blocking
	Example: y = Ax in 2 x 2 BCSR
	Which Block Size (r x c) is Optimal?
	Speed-up through r x c Blocking
	How to Find the Best Register Blocking for given A?
	Performance Model for given A
	Gain from Blocking (Dense Matrix in BCSR)
	Register Blocking: Experimental results
	Cache Blocking
	Multiple Vector Optimization
	Principles in Bebop/Sparsity Code Generation

