Algorithms and Computation in
Signal Processing

special topic course 18-799B
spring 2005
4 Lecture Jan. 20, 2005

Instructor: Markus Pueschel
TA: Srinivas Chellappa



For Publications

m A problem has a complexity

m An algorithm has a cost (e.g.,
operations count, runtime,
memory requirement, area
requirement in hardware)

m Cost = runtime can only be
analyzed asymptotically

m [na precise sense, an algorithm

does not have a complexity

In research/writing/publications:

Problem | Complexity
Runtime compl. (asympt.)
Algorithm | Cost

Runtime (asymptotic)

If your contribution is an algorithm, you have to analyze it. As follows:
state your cost/complexity measure (what you count);
compute the cost of the algorithm as precise as possible/necessary,

at least asymptotically;
state what you know about the complexity of the problem you
address (from theory, other algorithms, ...)




]

Architecture and Microarchitecture:
What's Important for the Programmer



Definitions

m Architecture: (also instruction set architecture: ISA) The parts
of a processor design that one needs to understand to write
assembly code. Examples: instruction set specification,
registers. Counterexamples: cache sizes and core frequency.

Example (ISA): x86, ia, Ipf

m Microarchitecture: Implementation of the architecture.

Example: Pentium4 microarchitectures



http://processorfinder.intel.com/
http://en.wikipedia.org/wiki/Pentium_4

Microarchitecture: memory hierarchy, cache
structure, and processor

Front-End BTB

Instruction AW
{4K Entries) TLB/Prefetcher skt
¥ “
| Instruction Decoder | Microcode :
¥ ROM
TS | {  Taceacke L ] [[ v
Pumped
_ ¥
| Allocator [ Register Renamer | 3.2GBls
Memory uep Queue | | Integer/Floating Point uop Queue | Bus
[Memory Scheduler | [ Fast | [ Slow/General FP Scheduler | Simple FF | Intarf.ace
( — — ] Unit
» r ¥ ;
I Integer Register File /| Bypass Network [#y= FP Reg‘lfster | Bypass
F 3 k. 3
o e 8
AGU AGU 2x ALU |]| 2x ALu | | | stow ALU FP L2 Cache
MMX FP (256K Byte
Load Store Simple Simple Complex SSE Move E-way)
Address | | Address Instr. Instr. Instr. SSE2
l l ] ] ]

| L1 Data Cache (8Kbyte 4-way)

i 48GB/s

Figure 4: Pentium™ 4 processor microarchitecture

we take the software developers view ... (blackboard)

Source: “The Microarchitecture of the Pentium 4 Processor, "

Intel Technology Journal Q1 2001




Execution Units: Pentium 4

v

v

v

v

v

ALU ALU -
{Double FP Move {Double []1::::!;;“ E\L]l;(l“::l te
Speed) Speed) '
Add/Sub FP/SSE Move  Add/Sub Shift'rotate  FP/SSE-Add
Logic FP/SSE Store FP/55E-Mul
Store Data FXCH FP/SSE-Div
Branches MMX

Load Port

Memory
Load

All loads
LEA
SW prefetch

Store Port

Memory
Store

Store Address

Source: “The Microarchitecture of the Pentium 4 Processor, "

Figure 6: Dispatch ports in the Pentium” 4 processor

Intel Technology Journal Q1 2001




Remarks

m HW optimizations
= partially frees programmer from optimization
= targets most common code patterns and most important benchmarks

m Many HW optimizations/features are not (or not well)
documented

m Performance is hard to understand. Two major unknowns:
compiler and actual execution

m No very clear guidelines how to optimize code
= some provided in vendor's SW optimization manuals




Remarks (cont’d)

m Often vendor compilers are best
= Dut, e.g., icc cannot distinguish different processor cores (switches p2, p3, p4)

m Not always clear which compiler flags are best (in particular gcc)

m Most benchmarks/software is not floating point based (think
Word); thus, HW optimizations target first integers ops



Optimization of Numerical Software: First Thoughts

m [t’s all about keeping the floating point units busy

m Need to optimize for memory hierarchy
= for several levels
= often requires algorithm modifications or proper algorithm choice

= divide-and-conquer algorithms are in principal good
(recursive is better than iterative)

m Need for fine-grain instruction parallelism
m Rule: don’t code in assembly if you can avoid it

m Use a good compiler and make sure you understand flags



Microarchitectural Parameters
Most Important for Programmers

m Memory hierarchy:
= How many caches
= Cache sizes and structure
= Number of registers

m Processor
= Frequency
= Execution units
= | atency and throughput of fadd, fmult, etc.
= Floating point peak performance

m How to get It?
= Digging through manuals, vendor websites.
= Measuring. E.g., cpuid (Windows only), X-Ray



ISA: SIMD (Signal Instruction Multiple Data)
Vector Instructions
m Whatis it?

= Extension of the ISA. Data types and instructions for the parallel
computation on short (length 2-8) vectors of integers or floats.

(M [ (e (e A-way

m Why do they exist?

= Useful: Many application (e.g., multimedia) have the necessary fine-grain
parallelism. Then, large potential speedup (by a factor close to vector
length).

= Doable: Chip designers have enough transistors to play with.

m We will have an extra lecture on vector instructions
= What are the problems?
= How to use them efficiently.



	Algorithms and Computation in Signal Processing special topic course 18-799Bspring 20054th Lecture Jan. 20, 2005
	For Publications
	Architecture and Microarchitecture:What’s Important for the Programmer
	Definitions
	Microarchitecture: memory hierarchy, cache structure, and processor
	Execution Units: Pentium 4
	Remarks
	Remarks (cont’d)
	Optimization of Numerical Software: First Thoughts
	Microarchitectural ParametersMost Important for Programmers
	ISA: SIMD (Signal Instruction Multiple Data) Vector Instructions

