18-799 Algorithms and Computation in Signal Processing

Spring 2005
Assignment 3 - Solution

1. Determine the arithmetic cost of a radix-2 Cooley-Tukey FFT for a DFT of 2-power size $n=2^{k}$. The cost measure is $(A(n), M(n))$, where $A(n)$ is the number of complex adds/subs, $M(n)$ is the number of mults by a complex constant not equal to 1 or -1 . Is this a good cost measure when considering implementation?

Solution:

$\mathrm{DFT}_{2^{k}}=\left(\mathrm{DFT}_{2} \otimes \mathrm{I}_{2^{k-1}}\right) \mathrm{T}_{2^{k-1}}^{2^{k}}\left(\mathrm{I}_{2} \otimes \mathrm{DFT}_{2^{k-1}}\right) L_{2}^{2^{k}}$
Cost of additions: Note that the permutation and the twiddle introduce no additions.

$$
\begin{aligned}
A(n) & =T_{k}=\operatorname{Cost}\left(\mathrm{DFT}_{2^{k}}\right) \\
& =2^{k-1} \operatorname{Cost}\left(\mathrm{DFT}_{2}\right)+2 * \operatorname{Cost}\left(\mathrm{DFT}_{2^{k-1}}\right) \\
& =2^{k-1} * 2+2 * \operatorname{Cost}\left(\mathrm{DFT}_{2^{k-1}}\right) \\
& =2^{k}+2 * \operatorname{Cost}\left(\mathrm{DFT}_{2^{k-1}}\right) \\
T_{k} & =2^{k}+2 * T_{k-1}, \quad T_{0}=0 \\
T_{k} & =\sum_{i=0}^{k-1} 2^{i} * 2^{k-i} \\
T_{k} & =k * 2^{k}
\end{aligned}
$$

Cost of multiplications: Note that the permutation does not introduce any mults. The twiddle contains a total of 2^{k} entries, of which $2^{k-1}+1$ entries are equal to 1 . So there are $2^{k-1}-1$ entries not equal to one, resulting in that many multiplications.

$$
\begin{aligned}
M(n) & =M_{k}=2^{k-1} * \operatorname{Cost}\left(\mathrm{DFT}_{2}\right)+\left(2^{k-1}-1\right)+2 * \operatorname{Cost}\left(\mathrm{DFT}_{2^{k-1}}\right) \\
M_{k} & =2^{k-1}-1+2 * \operatorname{Cost}\left(\mathrm{DFT}_{2^{k-1}}\right) \\
M_{k} & =2^{k-1}-1+2 * M_{k-1}, \quad M_{0}=0 \\
& =\sum_{i=0}^{k-1} 2^{i} *\left(2^{k-i-1}-1\right) \\
& =\sum_{i=0}^{k-1} 2^{k-1}-\sum_{i=0}^{k-1} 2^{i} \\
& =2^{k-1}(k-2)+1
\end{aligned}
$$

Therefore, the cost $(A(n), M(n))$ is: $\left(k * 2^{k}, 2^{k-1}(k-2)+1\right)$
This cost measure counts complex operations. On current computers instruction sets and execution units only cover real operations. For this reason, a cost measure counting real operations would be more appropriate. Note that complex multiplications may translate into real operations differently. For example, a generic multiplication by a complex constant involves 6 real operations (see Lecture 13), but a multiplication by $i=\sqrt{-1}$ no real operation at all.
2. Show that the arithmetic cost (as defined and measured as in exercise 4.) of the Cooley-Tukey FFT for a DFT of 2-power size $n=2^{k}$ is independent of the chosen recursion strategy. (Hint: use induction).
Solution:
Adds: $n=2^{k}$

$$
\begin{aligned}
A(k) & =k * 2^{k} \\
M(k) & =(k-2) * 2^{k-1}+1 \\
& =(1 / 2) k * 2^{k}-2^{k}+1
\end{aligned}
$$

Proof by induction:

- $k=1$: Clear, since there is only one decomposition.
- $k-1$ to k : Assume the assumption holds for $1 . .(k-1)$. Show that all $k-1$ splits for s^{k} lead to the same cost.
Arbitrary split: $2^{k}=2^{i} * 2^{k-1}, i \in 1 . . k-1$.
$\mathrm{DFT}_{2^{k}}=\left(\mathrm{DFT}_{2^{i}} \otimes \mathrm{I}_{2^{k-1}}\right) \mathrm{T}_{m}^{n}\left(\mathrm{I}_{2}^{i} \otimes \mathrm{DFT}_{2^{k-1}}\right) L_{2^{i}}^{2^{k}}$
Adds:

$$
\begin{aligned}
A(k) & =2^{k-i} * A(i)+2^{i} * A(k-i) \\
& =2^{k-i} * i * 2^{i}+2^{i}(k-i) 2^{k-i} \\
& =i * 2^{k}+(k-i) 2^{k} \\
& =k * 2^{k}
\end{aligned}
$$

as defined.
Mults:
Note: $w(k, i)=$ number of elements $\neq 0$ in T_{m}^{n}, which, as seen by inspecting the definition, is $2^{k}-2^{i}-2^{k-i}+1$.

$$
\begin{aligned}
M(k) & =2^{k-i} * M(i)+2^{i} M(k-i)+w(k, i) \\
& =2^{k-i}\left((i-2) 2^{i-1}+1\right)+2^{i}\left((k-i-2) * 2^{k-i-1}+1\right)+2^{k}-2^{i}-2^{k-i}+1 \\
& =2^{k-i}(i-2)+2^{k-i}+2^{k-1}(k-i-2)+2^{i}+2^{k}-2^{i}-2^{k-i}+1 \\
& =2^{k-1}(k-4)+2^{k}+1 \\
& =2^{k-1}(k-2)+1
\end{aligned}
$$

as defined.

