18-799 Algorithms and Computation in Signal Processing

Spring 2005
Assignment 1 - Solution

1. (9 pts) Show that the following identities hold by determining the explicit constants c and n_{0} that are a part of the definition of O.
First look up the definition of $O(f(n))$.
(a) $n+1=O(n)$

Solution: It is, for all $n \geq 1$,

$$
n+1 \leq n+n=2 n
$$

Thus, for $c=2, n_{0}=1$, we have $n+1 \leq c n$ for all $n \geq n_{0}$.
(b) $n^{3}+a n^{2}+b n+c=O\left(n^{3}\right)$

Solution: The trick is to get rid of all lower terms by converting them into multiples of n^{3}.
For all $n \geq 1$:

$$
\begin{aligned}
n^{3}+a n^{2}+b n+c & \leq n^{3}+|a| n^{2}+|b| n+|c| n \\
& \leq n^{3}+|a| n^{3}+|b| n^{3}+|c| n^{3} \\
& \leq(1+|a|+|b|+|c|) n^{3}
\end{aligned}
$$

Therefore, we can choose $c=(1+|a|+|b|+|c|), n_{0}=1$ in the defintion of O. (Note that this c is different from the c in the polynomial.)
(c) $n^{5}=O\left(n^{\log _{2} n}\right)$

Solution: Since $5 \leq \log _{2}(n)$, for $n \geq 32$, we have for $n \geq 32$,

$$
n^{5} \leq n^{\log _{2}(n)}
$$

Hence, we can choose $c=1, n_{0}=32$.
2. (16 pts)
(i) In the first class, you learned that $\Theta\left(\log _{a} n\right)=\Theta\left(\log _{b} n\right)$ for $a, b>1$. Does $\Theta\left(a^{n}\right)=\Theta\left(b^{n}\right)$ hold? Justify your answer.
Solution: This is true only if $a=b$. Otherwise, let's assume $a>b$. We show that $a^{n} \neq O\left(b^{n}\right)$ through a proof by contradiction.
Namely, assume $a^{n}=O\left(b^{n}\right)$. Then, by definition of O, there is a constant c and n_{0} such that for all $n \geq n_{0}$:

$$
a^{n} \leq c b^{n}
$$

This implies (by applying the base-a \log on both sides),

$$
n \leq b \log _{a} b+\log _{a} c
$$

Since $a>b$ and thus $\log _{a} b<1$, we can solve for n as

$$
n \leq \log _{a} c /\left(1-\log _{a} b\right), \quad \text { for all } n \geq n_{0}
$$

which is a contradiction (it does not hold since n grows to infinity); thus, the original assumption is wrong and we have $a^{n} \neq O\left(b^{n}\right)$ as desired.
(ii) Prove or disprove: $2^{2 n}=O\left(2^{n}\right)$.

Solution: $2^{2 n}=4^{n}$. Above in (i) we showed already t hat $a^{n} \neq O\left(b^{n}\right)$, if $a>b>1$.
Other argument (informal): $2^{2 n}=\left(2^{n}\right)^{2}$. This means that there cannot exist a constant c such that, for $n \geq n_{0},\left(2^{n}\right)^{2}<c 2^{n}$, since this would imply $x^{2}<c x$ for $x>n_{0}$.
(iii) Show that for $k>0, \alpha>1: n^{k}=O\left(\alpha^{n}\right)$ (i.e., polynomial functions grow slower than exponential functions).
Solution: We consider $\lim _{x \rightarrow \infty} x^{k} / \alpha^{x}$ and apply L'Hospital's rule
http://mathworld.wolfram.com/LHospitalsRule.html
k times. Remember that the derivative of α^{x} is $\log _{e}(\alpha) \alpha^{x}$:

$$
\lim _{x \rightarrow \infty} \frac{x^{k}}{\alpha^{x}}=\lim _{x \rightarrow \infty} \frac{k x^{k-1}}{\log _{e}(\alpha) \alpha^{x}}=\ldots=\lim _{x \rightarrow \infty} \frac{k!}{\left(\log _{e}(\alpha)\right)^{k} \alpha^{x}}=0
$$

This means, if we choose any $c>0$, then there is an n_{0} such that

$$
n^{k} / \alpha^{k}<c
$$

which implies $n^{k}<c \alpha^{k}$ as desired.
(iv) Find a function $f(n)$ such that $f(n)=O(1), f(n)>0$ for all n, and $f(n) \neq \Theta(1)$. Justify the answer.
Solution: $f(n)=1 / n$. Obviously $0<1 / n<1$ for $n \geq 1$ and thus $1 / n=O(1)$. Assume now that also $1 / n=\Omega(1)$ and show that this leads to a contradiction. $1 / n=\Omega(1)$ means that there is a constant $c>0$ and n_{0} such that

$$
c \cdot 1 \leq 1 / n, \quad \text { for } n \geq n_{0}
$$

which is obviously wrong (whenever $n>1 / c$).
Not easy to find an algorithm with $1 / n$ as cost function :-).
3. (21 pts) Give asymptotic upper and lower bounds for $T(n)$ in each of the following recurrences. Assume that $T(n)$ is constant for $n \leq 2$. Make your bounds as tight as possible. Justify your answers.
(a) $T(n)=2 T(n / 2)+n^{3}$. $a=2, b=2, f(n)=n^{3}$. This is Case 3. $T(n)=\Theta\left(n^{3}\right)$.
(b) $T(n)=T(9 n / 10)+n$. $a=1, b=10 / 9, f(n)=n$. This is Case 3. $T(n)=\Theta(n)$.
(c) $T(n)=16 T(n / 4)+n^{2} . a=16, b=4, f(n)=n^{2}$. This is Case 2. $T(n)=\Theta\left(n^{2} \log n\right)$.
(d) $T(n)=7 T(n / 3)+n^{2} . a=7, b=3, f(n)=n^{2}$. This is Case 3. $T(n)=\Theta\left(n^{2}\right)$.
(e) $T(n)=7 T(n / 2)+n^{2}$. $a=7, b=2, f(n)=n^{2}$. This is Case 1. $T(n)=\Theta\left(n^{\log _{2} 7}\right)$.
(f) $T(n)=2 T(n / 4)+\sqrt{n} . a=2, b=4, f(n)=\sqrt{n}$. This is Case 2. $T(n)=\Theta(\sqrt{n} \log n)$.
(g) $T(n)=4 T(n / 2)+n^{2} \log n$. This problem does not fall into any of the cases (recognizing this gives all points). One can solve it, e.g., by unrolling the recurrence (i.e., replacing $T(n / 2)$ again by the recurrence etc.), assuming $n=2^{k}$, and gets $T(n)=\Theta\left(n^{2} \log ^{2}(n)\right)$ (gives extra points).
4. (24 pts) Compute the exact (arithmetic) cost

$$
C(n)=(\text { number of adds, number of mults })
$$

of the Karatsuba algorithm, recursively applied, for the multiplication of the polynomials:

$$
h(x)=h_{n-1} x^{n-1}+\ldots+h_{0}, \quad p(x)=p_{n-1} x^{n-1}+\ldots+p_{0}
$$

assuming $n=2^{k}$. (Solution: in written form at the end)
Extension to 4 (Extra Credit Problem, 20 pts): Now compute the exact (arithmetic) cost

$$
C(m, n)=(\text { number of adds, number of mults })
$$

in the more general case

$$
h(x)=h_{m-1} x^{m-1}+\ldots+h_{0}, \quad p(x)=p_{n-1} x^{n-1}+\ldots+p_{0}
$$

assuming $n=2^{k}, m=2^{\ell}, m \leq n$.
(Solution: in written form at the end)
5. (30 pts) Solve the recurrence $f_{0}=1, f_{1}=1, \quad f_{n}=f_{n-1}+2 f_{n-2}$, using the method of generating functions.
Solution: Our generating function is:

$$
F(x)=\sum_{n>=0} f_{n} x^{n}
$$

Step 1: $\sum f_{n} x^{n}=\sum f_{n-1} x^{n}+2 \sum f_{n-2} x^{n}$
Step 2: $\sum_{n>=2} f_{n} x^{n}=\sum_{n>=2} f_{n-1} x^{n}+2 \sum_{n>=2} f_{n-2} x^{n}$
Step 3:

$$
\begin{aligned}
& F(x)=f_{0}+f_{1}+\sum_{n>=2} f_{n} x^{n} \\
& F(x)=1+x+\sum_{n>=2} f_{n-1} x^{n}+2 \sum_{n>=2} f_{n-2} x^{n} \\
& F(x)=1+x+x \sum_{n>=2} f_{n-1} x^{n-1}+2 x^{2} \sum_{n>=2} f_{n-2} x^{n-2} \\
& F(x)=1+x+x \sum_{k>=1} f_{k} x^{k}+2 x^{2} \sum_{k>=0} f_{k} x^{k} \\
& F(x)=1+x+x \sum_{k>=0} f_{k} x^{k}+2 x^{2} \sum_{k>=0} f_{k} x^{k}-x f_{0} x^{0} \\
& F(x)=1+x+x F(x)+2 x^{2} F(x)
\end{aligned}
$$

Step 4:

$$
\begin{aligned}
& F(x)=1+x F(x)+2 x^{2} F(x) \\
& F(x)=1 /\left(1-x-2 x^{2}\right)=1 /(1+x)(1-2 x)
\end{aligned}
$$

Step 5:

$$
\begin{aligned}
F(x) & =A /(1+x)+B /(1-2 x) \\
A(1-2 x)+B(1+x) & =1 \\
A+B & =1 \\
-2 A+B & =0 \\
\text { Solution: } A=1 / 3, B & =2 / 3
\end{aligned}
$$

Step 6: $F(x)=1 / 3 \sum_{n>=0}(-1)^{n} x^{n}+2 / 3 \sum_{n>=0} 2^{n} x^{n}$
Step 7: $f_{n}=\frac{1}{3}(-1)^{n}+\frac{2}{3} 2^{n}=\frac{1}{3}\left(2^{n+1}+(-1)^{n}\right)$
4.) $\quad h(x)=h_{1}\left(x^{2}\right)+x h_{2}\left(x^{2}\right)$

$$
\operatorname{deg}\left(L_{1}\right)=\operatorname{deg}\left(p_{1}\right)
$$

$$
p(x)=p_{1}\left(x^{2}\right)+x p_{2}\left(x^{2}\right) \quad=d y\left(h_{2}\right)=\operatorname{deg}\left(p_{2}\right)=\frac{n}{2}-1
$$

Note: adding 2 porynomicls of depree k (boon) requires $\leq k+1$ adds.

Karatsus a :
 (i. x^{2})
adds A_{n} :

$$
\begin{aligned}
& A_{n}: \quad n / 2 \quad n / 2 n-1 \quad n-1 \quad n-2 \text { adds } \\
& \Rightarrow A_{n}=4 n-4+3 H_{n / 2}, A_{1}=0 \quad \text { (solution selow) }
\end{aligned}
$$

$$
\text { mulds } \Pi_{n} ; \quad M_{1}=1, \Pi_{n}=3 \Pi_{n / 2}
$$

$$
\xrightarrow[\left(n=2^{k}, N_{k}=N_{n}\right)]{\text { trandate }} \quad N_{0}=1, N_{n}=3 N_{k-1}
$$

$\xrightarrow{\text { solve }} N_{k}=3^{k}$
$\xrightarrow[\text { back }]{\text { dranslate }} M_{n}=n^{\log _{2} 3}$

$$
\Rightarrow C_{n}=\left(4 n-4, n^{\log _{2} 3}\right)
$$

$$
A_{n}=3 \mathrm{An}_{2}+4 n-4, A_{n}=0
$$

(danulate $n=2^{4}$

$$
\begin{aligned}
& \text { dand ase } n=2^{4} \\
& A_{k}^{\prime}=3 A^{\prime} k-4 \cdot 2^{4}-4 \\
& \text { from cless }
\end{aligned}
$$

(formele from cless

$$
\begin{aligned}
& =\sum_{i=0}^{k-1} 3^{i}\left(4 \cdot 2^{k-i}-4\right)=4 \cdot 2^{k} \sum_{i=0}^{k-1}\left(\frac{3}{2}\right)^{i}-4 \sum_{i=0}^{k-1} 3^{i} \\
& =4.2^{4} \frac{\left(\frac{3}{2}\right)^{k}-1}{1 / 2}-4 \frac{3^{n}-1}{2} \\
& =6 \cdot 3^{4}-8 \cdot 2^{4}+2 \\
& \text { (aramiate } \log _{2} 3 \\
& A_{4}=6 \cdot n^{\log _{2} 3}-8 u+2
\end{aligned}
$$

4 exdra.) $\quad \operatorname{dy} h=\operatorname{mal}=2^{e}-1 \quad h(x)=h_{1}\left(x^{2}\right)+x h_{2}\left(x^{2}\right)$
$h \geqslant m \quad \operatorname{deg} p=n-1=2^{k}-1 \quad p(x)=p_{1}\left(x^{2}\right)+x p_{2}\left(x^{2}\right)$

Karatsusa: $h_{p}=\underbrace{h_{1} p_{1}}_{\frac{m}{2}-1}+[\underbrace{\left(h_{1}+h_{2}\right.}_{m / 2-1}) \underbrace{p_{1}+p_{2}}_{y / 2-1})-h_{\substack{m / 2-1 \\ m_{1} \\+4 / 2-1+4 / 2-1}}^{p_{1}}-h_{2} p_{2}] x+\underbrace{h_{2} p_{2} x^{2}}_{m / 2+\psi_{2}-1}$ degrees:
count adds:

$$
+\frac{n}{2}-1
$$

$$
\uparrow
$$

$$
m / 2+4 / 2-2
$$

$$
\Rightarrow A_{m, n}=3 A_{m / 21} n / 2+2 m+2 n-4, m \geqslant 2
$$

$$
A_{1, n}=0
$$

$\begin{gathered}m=2^{k} \\ n=2^{k}\end{gathered} \quad A_{e, k}^{\prime}=3 A_{e-1, k-1}^{l}+2^{e+1}+2^{k+1}-4, \quad e \geqslant 1$ $n=2 \quad A_{0,}^{\prime}=0$
unvoll: $A_{l, n}^{\prime}=3\left(3 A_{e-2, k-2}^{\prime}+2^{e}+2^{4}-4\right)+2^{e+1}+2^{k+1}-4$

$$
\begin{aligned}
& =\sum_{i=0}^{e-1} 3^{i}\left(2^{k+1-i}+2^{l+1-i}-4\right) \\
& =2^{k+1} \sum_{i=0}^{e-1}\left(\frac{3}{2}\right)^{i}+2^{e+1} \sum_{i=0}^{e-1}\left(\frac{3}{2}\right)^{i}-4 \sum_{i=0}^{e-1} 3^{i}
\end{aligned}
$$

$$
=3^{2} M_{m / 4, n / 4} \quad C_{m, n}=\left(A_{m, n}, \Pi_{m, n}\right)
$$

$$
=3^{\dot{e} \cdot \mu_{1,4 / m}}
$$

$$
=m^{\log _{2} 3} \cdot\left(\frac{n}{m}\right)
$$

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{translck}\left(\begin{array}{l}
\text { sach }
\end{array} S=4 \cdot 2^{k-l} 3^{l}-4 \cdot 2^{k}+2 \cdot 3^{l}-4 \cdot 2^{l}+2\right.
\end{array} \\
& \text { sach } \\
& \text { count mets: } \\
& \text { unroll: }
\end{aligned}
$$

