How to Write Fast Code
18-645, spring 2008
8th Lecture, Feb.11th

Instructor: Markus Püschel
TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)
Today

- ATLAS: Principles
- Model-based ATLAS

• Blocks MMM into mini-MMMs
• Searches for fastest (highest-performance) mini-MMM
• Choices encoded by parameters ($N_B, M_U, N_U, ...$)
• Parameter space bounded through microarchitecture parameters for example: $N_B \leq \sqrt{\text{cache size}}$
How it Worked: From Triple Loop to ...

// MMM loop-nest
for i = 0:N_B:N-1
 for j = 0:N_B:M-1
 for k = 0:N_B:K-1
 // mini-MMM loop nest
 for i’ = i:M_U:i+N_B-1
 for j’ = j:N_U:j+N_B-1
 for k’ = k:K_U:k+N_B-1
 // micro-MMM loop nest
 for k” = k’:1:k’+K_U-1
 for i” = i’:1:i’+M_U-1
 for j” = j’:1:j’+N_U-1

• ij or ji depending on N and M
• Blocking for cache
• Blocking for registers
• unrolling
• scalar replacement
• add/mult interleaving
• skewing

Search parameters: N_B, M_U, N_U, K_U, L_s
Principles used in ATLAS Optimization

- Optimization for memory hierarchy = increasing locality
 - Blocking for cache, blocking for registers
 - Done by loop tiling and loop exchange

- Fast basic blocks for small sizes (micro-MMM):
 - Loop unrolling (reduce loop overhead)
 - Scalar replacement (enables better compiler optimization)
 - Add/mult interleaving and skewing (instruction level parallelism)

- Search for the fastest over a relevant set of algorithm/implementation alternatives
MMM: So far

- We learned a set of optimization techniques for the memory hierarchy

- But there are degrees of freedom

- **Practical problem:** How to choose them without implementing search?

- **Scientific problem:** How to choose them from an understanding of the microarchitecture?
Model-Based ATLAS

- Search for parameters replaced by model to compute them
- More hardware parameters needed

source: Pingali, Yotov, Cornell U.
Model-Based ATLAS: Details

- Blackboard
Experiments

- **Unleashed**: Not generated = hand-written contributed code

- **Refined model** for computing register tiles on x86

- Blocking is for L1 cache

- Blocking for L1 cache usually better code but problematic if MMM used as subroutine

- Model-based comparable to search-based (except Itanium)

ATLAS generated

graph: Pingali, Yotov, Cornell U.