
Carnegie Mellon

How to Write Fast Code
18-645, spring 2008
6th Lecture, Feb. 4th

Instructor: Markus Püschel

TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)



Carnegie Mellon

Technicalities

 Research project

 First steps:
 Precise problem statement

 Correct implementation (create verification environment for future 
use)

 Analyze arithmetic cost

 Measure runtime and create a performance plot

 If algorithm consists of several steps: identify bottleneck(s) w.r.t. 
both cost and runtime

http://www.ece.cmu.edu/~pueschel/teaching/18-645-CMU-spring08/course.html


Carnegie Mellon

Temporal and Spatial Locality
 Properties of a program

 Temporal locality: Data that is referenced is likely to be 
referenced again in the near future
Promotes data reuse:

 Spatial locality: If data is referenced, data in proximity 
(address) is likely to be referenced in the near future
Promotes neighbor use:

 Exists because: 1) this is how humans think; 2) structure of 
numerical algorithms

 History of locality

http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1


Carnegie Mellon

Today

 Linear algebra software: history, LAPACK and BLAS

 Blocking: key to performance

 MMM

 ATLAS: MMM program generator



Carnegie Mellon

Today

 Linear algebra software: history, LAPACK and BLAS

 Blocking: key to performance

 MMM

 ATLAS: MMM program generator



Carnegie Mellon

Linear Algebra Algorithms: Examples

 Solving systems of linear equations

 Eigenvalue problems

 Singular value decomposition

 LU/Cholesky/QR/… decompositions

 … and many others

 Make up most of the numerical computation across 
disciplines (sciences, computer science, engineering)

 Efficient software is extremely relevant



Carnegie Mellon

The Path to LAPACK
 EISPACK and LINPACK

 Libraries for linear algebra algorithms 

 Developed in the early 70s

 Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, …

 LINPACK still used as benchmark for the TOP500 (Wiki) list of most 
powerful supercomputers

 Problem: 
 Implementation “vector-based,” i.e., no locality in data access

 Low performance on computers with deep memory hierarchy

 Became apparent in the 80s

 Solution: LAPACK
 Reimplement the algorithms “block-based,” i.e., with locality

 Developed late 1980s, early 1990s

 Jim Demmel, Jack Dongarra et al.

http://www.top500.org/
http://en.wikipedia.org/wiki/TOP500


Carnegie Mellon

LAPACK and BLAS
 Basic Idea:

LAPACK

BLAS

 BLAS = Basic Linear Algebra Subroutines (list)
 BLAS1: vector-vector operations (e.g., vector sum)

 BLAS2: matrix-vector operations (e.g., matrix-vector product)

 BLAS3: matrix-matrix operations (mainly matrix-matrix product)

static

reimplemented
for each platform

 LAPACK implemented on top of BLAS (web)
 as much as possible using block matrix operations (locality) = BLAS 3

 Implemented in F77 (to enable good compilation)

 Open source

 BLAS recreated for each platform to port performance

http://www.netlib.org/blas/blasqr.pdf
http://www.netlib.org/lapack/


Carnegie Mellon

Why is BLAS3 so important?

 Explain on blackboard

 Using BLAS3 = blocking

 Motivate blocking

 Blocking (for the memory hierarchy) is the single most 
important optimization for linear algebra algorithms

 The introduction of multicore processors requires a 
reimplementation of LAPACK 
(just multithreading BLAS is not good enough)



Carnegie Mellon

Matlab

 Invented in the late 70s by Cleve Moler

 Commercialized (MathWorks) in 84

 Motivation: Make LINPACK, EISPACK easy to use

 Matlab uses LAPACK and other libraries but can only call it 
if you operate with matrices and vectors and do not write 
your own loops
 A*B (MMM)

 A\b (solving linear system)



Carnegie Mellon

Today

 Linear algebra software: history, LAPACK and BLAS

 Blocking: key to performance

 MMM

 ATLAS: MMM program generator



Carnegie Mellon

MMM by Definition

 Usually computed as C = AB + C

 Cost as computed before
 n3 multiplications

 n3 additions

 = 2n3 floating point operations

 = O(n3) runtime

 Blocking
 Increases locality (see previous example)

 Does not decrease cost

 Can we do better?



Carnegie Mellon

Strassen’s Algorithm

 Strassen, V. "Gaussian Elimination is Not Optimal." 
Numerische Mathematik 13, 354-356, 1969
Until then, MMM was thought to be Θ(n3)

 Check out algorithm at Mathworld

 Recurrence T(n) = 7T(n/2) + O(n2):
Multiplies two n x n matrices in O(nlog

2
(7)) ≈ O(n2.808)

 Similar to Karatsuba

 Crossover point, in terms of cost: n=654, but …
 Structure more complex

 Numerical stability inferior

 Can we do better?

http://mathworld.wolfram.com/StrassenFormulas.html
http://mathworld.wolfram.com/StrassenFormulas.html
http://mathworld.wolfram.com/StrassenFormulas.html


Carnegie Mellon

MMM Complexity: What is known

 Coppersmith, D. and Winograd, S. "Matrix Multiplication 
via Arithmetic Programming." J. Symb. Comput. 9, 251-
280, 1990

 MMM is O(n2.376) and (obviously) Ω(n2)

 It could well be Θ(n2)

 Compare this to matrix-vector multiplication, 
which is Θ(n2) (Winograd), i.e., boring

 MMM is the single most important computational kernel 
in linear algebra (probably in whole numerical computing)



Carnegie Mellon

Today

 Linear algebra software: history, LAPACK and BLAS

 Blocking: key to performance

 MMM

 ATLAS: MMM program generator



Carnegie Mellon

MMM: Memory Hierarchy Optimization

0

2

4

6

1 2 4 8 16 32 64 128 256 512 1024 2048

performance [Gflop/s]

matrix side

MMM (square real double) Core 2 Duo 3Ghz

triple loop

ATLAS generated

theoretical peak

• Intel compiler icc –O2
• Huge performance difference for large sizes
• Great case study to learn memory hierarchy optimization



Carnegie Mellon

ATLAS

 Successor of PhiPAC, BLAS program generator (web)

 People can also contribute handwritten code

 The generator uses empirical search over implementation 
alternatives to find the fastest implementation
no vectorization or parallelization

 We focus on BLAS3 MMM

 Search only over 2n3 algorithms 
(cost equal to triple loop)

http://math-atlas.sourceforge.net/


Carnegie Mellon

ATLAS Architecture

Detect
Hardware

Parameters

ATLAS Search
Engine

(MMSearch)

NR
MulAdd

L*

L1Size
ATLAS MM

Code Generator
(MMCase)

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile,
Execute,
Measure

MFLOPS

Hardware parameters:
• L1Size: size of L1 data cache
• NR: number of registers
• MulAdd: fused multiply-add available?
• L* : latency of FP multiplication

Search parameters:
• span search space
• specify code
• found by orthogonal line search

source: Pingali, Yotov, Cornell U.



Carnegie Mellon

How ATLAS Works

 Blackboard


