
Carnegie Mellon

How to Write Fast Code
18-645, spring 2008

5th Lecture, Jan. 30th

Instructor: Markus Püschel

TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)

Carnegie Mellon

Technicalities

 Research project

 First homework:

After your name, write number of hours you needed

http://www.ece.cmu.edu/~pueschel/teaching/18-645-CMU-spring08/course.html

Carnegie Mellon

Today

 Runtime/performance measurement of numerical code

 Cache behavior of code

Carnegie Mellon

Runtime versus Performance

 We consider numerical programs

 Example: Computing MMM by definition

 Two measures: runtime and performance

 Runtime

 Measured in seconds

 Is what ultimately matters

 Performance

 Usually: measured in floating point operations per second = flop/s (or Mflop/s, Gflop/s)

 Floating point operations = additions + multiplications (arithmetic cost)

 Assumes negligible amount of divisions, sin, cos, ….

 Gives you an idea how much room for improvement when comparing to theoretical peak

performance of your machine

 Careful: higher performance ≠ shorter runtime (Why?)

Carnegie Mellon

Example: MMM Performance

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

theoretical peak performance

 Exact operations count is known: 2n3, so performance (here in Gflop/s)

can be computed from runtime

 Fast code reaches 85% of peak!

Carnegie Mellon

Example: DFT Performance

0

5

10

15

20

25

30

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 262,144

input size

..

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz (single precision)

Gflop/s

 Exact operations count is not known: somewhere between 4 to 5nlog2(n)

 So 5nlog2(n) is used in all cases: preserves runtime relationship

 Fast code reaches only up to 40 to 50% of peak, drop for large sizes

Carnegie Mellon

Summary

 Showing performance is often preferrable to showing runtime
 If it is computed using the same flops (arithmetic cost) formula for all

implementations

 Preserves runtime relationship between different implementations
(performance ≈ inverse runtime)

 Gives an idea of absolute quality (how far from peak?)

 Yields “higher is better” plots: psychologically preferrable to “lower is better”
plots

 Question: What percentage of peak is achievable for a given
algorithm?

 Answer: It depends on
 Reuse (memory hierarchy)

 Regular fine grain parallelism (vector instructions)

 Coarse grain parallelism (multiple threads)

Carnegie Mellon

Reuse

 Cache misses

 Deteriorate performance: Much more expensive than adds and mults

 Ideally:

 Every data element is brought into cache once

 All computation that needs it is performed before it is evicted from cache

 Means only one compulsory miss

 Miss time overcompensated by computation time, but there are limitations

 Reuse: The reuse of an O(f(n)) algorithm is given by

O(f(n)/n)

 Intuitively measures how often every input element is on average needed in

the computation

 Can also be measured exactly: Arithmetic cost of algorithm divided by n

Carnegie Mellon

CPU bound versus Memory bound

 Definitions are not precise

 An algorithm with high reuse is called CPU bound

 Most time is spent computing

 Will run faster if CPU is faster

 An algorithm with low reuse is called memory bound

 Most time spent transferring data in the memory hierarchy

 Will run faster if memory bus is faster

 Examples: (blackboard)

 MMM, DFT, MVM

Carnegie Mellon

Effects

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

0

5

10

15

20

25

30

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 262,144

input size

..

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz (single precision)

Gflop/s

MMM: O(n) reuseFFT: O(log(n)) reuse

80-85% peak

Performance can be maintained
Cache miss time compensated/hidden

by computation

40-50% peak

Performance drop outside L2 cache
Most time spent transferring data

Carnegie Mellon

Actual Benchmarking (Read Section 3.2 in Tutorial)

 First: Verify your code!

 Measure runtime in seconds for a set of relevant input sizes

 Determine performance: flop/s

(number floating point ops/second)

 Needs arithmetic cost:

 Obtained statically (cost analysis since you understand the algorithm)

 or dynamically (tool that counts, or replace ops by counters through macros)

 Compare to theoretical peak performance

 Careful: Different algorithms may have different op count, i.e., best flop/s is not

always best runtime

Carnegie Mellon

Guide to benchmarking: How to measure runtime?

 C clock()

 process specific, low resolution, very portable

 gettimeofday

 measures wall clock time, higher resolution, somewhat portable

 Performance counter (e.g., TSC on Pentiums)

 measures cycles (i.e., also wall clock time), highest resolution, not portable

 Careful:

 measure only what you want to measure

 ensure proper machine state

(e.g., cold or warm cache = input data is or is not in cache)

 measure enough repetitions

 check how reproducible; if not reproducible: fix it

 Getting proper measurements is not easy at all!

Carnegie Mellon

Example: Timing MMM

 Assume MMM(A,B,C,n) computes

C = C + AB, A,B,C are nxn matrices

double time_MMM(int n)

{ // allocate

double *A=(double*)malloc(n*n*sizeof(double));

double *B=(double*)malloc(n*n*sizeof(double));

double *C=(double*)malloc(n*n*sizeof(double));

// initialize

for(int i=0; i<n*n; i++){

A[i] = B[i] = C[i] = 0.0;

}

init_MMM(A,B,C,n); // if needed

// warm up cache (for warm cache timing)

MMM(A,B,C,n);

// time

ReadTime(t0);

for(int i=0; i<TIMING_REPETITIONS; i++)

MMM(A,B,C,n);

ReadTime(t1);

// compute runtime

return (double)((t1-t0)/TIMING_REPETITIONS);

}

Carnegie Mellon

Problems with Timing

 Too few iterations: inaccurate non-reproducible timing

 Too many iterations: system events interfere

 Machine is under load: produces side effects

 Multiple timings performed on the same machine

 Bad data alignment of input/output vectors: align to multiples of cache

line (on Core: address is divisible by 64)

 Time stamp counter (if used) overflows

 Machine was not rebooted for a long time: state of operating system

causes problems

 Computation is input data dependent: choose representative input data

 Computation is inplace and data grows until an exception is triggered

(computation is done with NaNs)

 You work on a laptop that has dynamic frequency scaling

 Solution: check whether timings make sense, are reproducible

Carnegie Mellon

Cache Behavior of Code

 Blackboard

 Small example

 Data reuse and neighbor reuse

 Sequential access

 Strided access

