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Abstract. It is known that the discrete Fourier transform (DFT) used in digital signal pro-
cessing can be characterized in the framework of representation theory of algebras, namely as the
decomposition matrix for the regular module C[Zn] = C[x]/(xn − 1). This characterization provides
deep insight on the DFT and can be used to derive and understand the structure of its fast algo-
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and sine transforms as decomposition matrices of certain regular modules associated to four series of
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1. Introduction. Many algorithms in digital signal processing are based on the
use of linear discrete signal transforms. Mathematically, such a transform is a matrix-
vector multiplication a 7→ M · a, where a ∈ Fn is the sampled signal, and M ∈ Fn×n
is the transform over some base field F. We will only consider F = C. Crucial for the
applicability of a signal transform M is the existence of fast algorithms that allow
its computation with O(n log n) operations (or better) compared to O(n2) arising
from a direct matrix-vector multiplication. The problem of finding these algorithms
for different transforms has been a major research topic leading to a vast number of
publications in signal processing and mathematics.

In this paper we present an algebraic approach to the class of the 16 trigonometric
transforms in the framework of algebra representation theory. Then we use algebraic
methods to derive most of their known fast algorithms. Our results give insight into
the structure and the existence of these algorithms and extend the relationship be-
tween signal processing and algebra that is currently mainly restricted to the discrete
Fourier transform.

1.1. Transforms and Algorithms. Probably the most famous example of a
signal transform is the discrete Fourier transform (DFT), which is used in harmonic
analysis to decompose a signal into its frequency components. Important algorithms
for the DFT include the “fast Fourier transform” (FFT) found by Cooley/Tukey
[11] (originally due to Gauß [23]), Rader’s algorithm for prime size [39], Winograd’s
algorithms [54], and several others. An overview on DFT algorithms is, for example,
in [49].

Another important class of transforms consists of the 8 different types of dis-
crete cosine and sine transforms (DCTs and DSTs), respectively, also called discrete
trigonometric transforms (DTTs). Their applications include image and video com-
pression, [40]. Important algorithms for the trigonometric transforms were developed
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by Chen, Smith and Fralick [7], Wang [52], Yip and Rao [56, 57], Vetterli and Nuss-
baumer [50], Lee [28], Feig [20], Chan and Ho [6], Steidl and Tasche [46], and Feig
and Winograd [21].

Each of these algorithms has been derived through insightful manipulation of
the transform matrix entries. The algorithms are highly structured, a property that
can be used to write them as sparse factorizations of the transform matrix in a very
concise way using mathematical operators. As examples, the Cooley/Tukey FFT can
be written as

DFTmn = (DFTm⊗ Im) ·D · (Im⊗DFTn) · P, (1.1)

and an example for an algorithm for the DCT-2 is

DCT-22n = Q · (DCT-2n ⊕DCT-4n) ·B. (1.2)

The notation will be explained in §2; the matrices D,P,Q,B are all sparse. Both
algorithms are of recursive nature.

1.2. The Algebraic Characterization of the DFT. It is well-known that
a DFT (of size n) can be introduced in strict algebraic terms as the decomposition
matrix for the group algebra C[Zn] of a cyclic group Zn with n elements,

DFTn : C[Zn]→ C⊕ . . .⊕ C, (1.3)

or, equivalently, as the decomposition matrix for the algebra C[x]/(xn − 1),

DFTn : C[x]/(xn − 1)→ C[x]/(x− ω0
n)⊕ . . .⊕ C[x]/(x− ωn−1

n ), (1.4)

with respect to appropriate bases in each case. These decompositions are instantia-
tions of the Wedderburn theorem for the semi-simple algebra C[Zn] ∼= C[x]/(xn − 1).
Equations (1.3) and (1.4) show that the DFT is indeed an algebraic object and thus
provides a deep understanding of its use in signal processing. Furthermore, (1.3) and
(1.4) can be used to easily derive and explain the structure of fast DFT algorithms
by algebraic constructions rather than by manipulation of the DFT entries. As an
example, (1.1) arises from a stepwise decomposition of C[Zn] as has been shown by
Auslander, Feig, and Winograd [2] and Beth [3].

Given the algebraic characterization of the DFT, we naturally obtain the following
question: Is it possible to generalize (1.3) or (1.4) to capture a larger class of signal
transforms in an algebraic framework? And, in the affirmative case: How do we use
the algebraic characterization to derive and explain their fast algorithms?

1.3. Beyond the DFT. Depending on the interpretation of the DFT in (1.3)
and (1.4) there have been two threads of generalization.

First, (1.3) has been generalized to arbitrary finite groups G 6= Zn leading to the
area of “Fourier analysis on groups” that provides a rich class of transforms and the
theory to derive their fast algorithms. Examples for important results in this field
include the work of Beth [4], Clausen [9], Diaconis and Rockmore [13], and Rockmore
[43]. A nice overview on this area can be found in [10] and in the survey articles
[29] and [44]. However, with few exceptions, the Fourier transforms on groups do
not correspond to the transforms actually used in signal processing. This problem
initiated a further generalization by Minkwitz [32, 31] to include C[G]-modules that
afford an arbitrary permutation representation. A matrix that decomposes such a
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module was said to have “symmetry”. Minkwitz discovered that the DCT (type 3)
possesses such a symmetry and derived, by pure algebraic means, a fast algorithm.
The approach was further generalized by Egner and Püschel to include monomial
representations. A decomposition theory [37, 36] and tools to analyze a matrix for
symmetry and automatically derive a factorization [19, 15, 17] were developed. In [16]
these tools were successfully applied to several signal transforms. Among the DTTs,
the DCT and DST of type 3 and 4 exhibited symmetry and could be decomposed by
these techniques.

Second, the generalization of (1.4) to arbitrary polynomials p(x) 6= xn − 1 and
arbitrary bases of C[x]/p(x) leads to the class of “polynomial transforms”. If p is
arbitrary, and (1, x, . . . , xn−1) is chosen as a basis, one obtains a Vandermonde matrix,
which is known to have a sparse factorization, e.g., [5]. Driscoll, Healy, and Rockmore
[14] developed a fast algorithm for the case of arbitrary (separable) polynomials p and
bases consisting of orthogonal polynomial sequences. Independently, Potts, Steidl, and
Tasche provide a numerical stable version of this algorithm [35]. In this paper the
DCT of type 1 is recognized as a polynomial transform. Steidl and Tasche [46] also
recognized the DCT of type 3 as a polynomial transform and used this property to
derive a fast algorithm. In a different context, the DCTs and DSTs of types 1–4 have
been related to polynomial transforms, in some cases after appropriate normalization
[26].

Taken together, we encounter the following situation with respect to the DTTs.

1. There are 16 types of DTTs and a large number of publications on their fast
algorithms.

2. In signal processing the DTTs are characterized as eigenmatrices of certain
linear time-invariant processes with given boundary conditions [33, 47].

3. Four DTTs have been shown to exhibit group symmetries, and, in each case,
an algorithm has been derived by algebraic means.

4. Two DTTs have been shown to be polynomial transforms (note that this
property is not equivalent to 3.). In one case this has been used to derive a fast
algorithm. Further 6 DTTs have been recognized as polynomial transforms after
suitable normalization.

This sets the framework for the results presented in this paper.

1.4. The Algebraic Characterization of the DTTs. In this paper we present
the algebraic characterization of the DTTs. This shows that, like the DFT, the DTTs
are algebraic objects. Then we use the algebraic framework to derive, and explain,
most of the fast DTT algorithms known in the literature. The results extend our
previous preliminary work [38].

In particular we present the following:

1. A complete algebraic characterization of all 16 DTTs as scaled polynomial
transforms (a generalization of polynomial transforms to be defined) arising from
polynomial algebras A = C[x]/p(x) and A-modules of the form f · A, where f is
a scaling function. The construction of these modules follows the defining signal
processing properties of the DTTs as eigenmatrices of certain linear time-invariant
processes with given boundary conditions. Thus, our construction relates the domain
of signal processing with the domain of algebra representation theory. As polynomials,
four series of Chebyshev polynomials will naturally come into play.

2. A comprehensive overview on existing fast algorithms and their derivation by
pure algebraic means, i.e., by manipulating modules and algebras rather than matrix
entries. The algorithms are divided into classes depending on the mathematical prin-
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ciple that accounts for their existence. Examples, based on a direct manipulation of
the A-module M and polynomial p(x) associated to a DTT, include: (1) translation
of a DTT into another DTT by a sparse base change in M ; (2) recursive decom-
position based on a factorization of p; and (3) recursive decomposition based on a
decomposition of p. We continue our investigation by deriving a striking property of
the DTTs. The characterization of the DTTs as scaled polynomial transforms, i.e.,
in a framework of polynomial algebras and their representations, leads in a natural
way to group symmetry properties, i.e., properties in the framework of groups and
their representations. We will identify two ways in which group symmetries come into
play (1) by extending the A-module M to a suitable C[G]-module, where G is a finite
group; and (2) through certain subgroups of the automorphism group of A. These
symmetry properties lead to algorithms that are structurally different from the ones
obtained by direct derivation (see above). All techniques used for the derivation of
fast DTT algorithms are potentially more generally applicable.

Taken together, our results provide a comprehensive framework that puts previ-
ous results on the DTTs into a common context, thus tying the knot between their
signal processing properties, their algebraic properties, and the structure of their fast
algorithms.

1.5. Organization. The paper is divided into 2 parts. Part I (§2 - §6) pro-
vides the mathematical framework and establishes the algebraic interpretation of the
discrete trigonometric transforms (DTTs). Part II (§7 - §10) uses different algebraic
methods to derive and explain most of the known fast algorithms for the DTTs.

Part I. In §2 we briefly describe the notation and mathematical concepts we
use. Polynomial transforms and scaled polynomial transforms are introduced in §3
together with their module-theoretic interpretation. In §4 we present a generalization
of Chebyshev polynomials with particular attention to four special series and their
properties. The 16 types of DTTs are introduced in §5 together with their defin-
ing signal processing properties. In §6 we construct for each DTT, using its signal
processing properties, an associated module, which reveals that the DTTs are scaled
polynomial transforms.

Part II. In §7 we present general methods to obtain fast algorithms for poly-
nomial transforms and discuss results known from the literature. In §8 we use the
algebraic properties of the DTTs to derive and understand several known fast algo-
rithms for the DTTs. Other classes of algorithms for the DTTs are explained in §9
and are based on group representation symmetries. In §10 we will briefly discuss
algorithms that are not covered by the previous methods.

2. Notation and Terminology. We will use the following notation and math-
ematical background.

Matrices: An (n × n)-matrix with entry ak,` at row k and column ` is written
as [ak,`]. In most cases we provide the index range of k, ` as subscript. We denote

by A ⊕ B =
[

A
B

]

the direct sum of A and B. If A = [ak,`] then A ⊗ B = [ak,` ·B]
denotes the tensor or Kronecker product of A and B. The conjugation is written as
AB = B−1 · A · B. A monomial matrix has exactly one non-zero entry in every row
and column. If σ is a permutation (usually written in cycle notation), we will denote
a corresponding (n × n)-matrix as [σ, n], which has ones at positions (i, σ(i)). The
special case σ : i 7→ ki mod n − 1, i = 0 . . . n − 2, and n − 1 7→ n − 1, for k | n, is
called “stride permutation”, and we write [σ, n] = Lnk . A diagonal matrix is written
as diag(L), where L is the list of diagonal elements. A monomial matrix is denoted
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by [σ, L] = [σ, |L|] · diag(L).
Polynomials: Polynomials are denoted by lower case letters, p(x), q(x), etc. We

will often drop the argument for convenience. A polynomial is called separable, if its
zeros are pairwise distinct, i.e., if deg(p) = n then

p(x) =
n−1
∏

k=0

(x− αk), αi 6= αj , for i 6= j.

Algorithms: If B is a (n × n)-matrix, we mean “by a fast algorithm for B” a
fast algorithm for computing the matrix vector product x 7→ B · x. Algorithms are
given by factorizations, B = B1 · · ·Bk, where all Bi are sparse. If we refer to the
arithmetic cost of an algorithm or the arithmetic complexity of matrices B, we mean
the number of additions and multiplications different from 1,−1 (cf. [5]).

Algebras and Modules: We assume the reader is familiar with the basic theory
of algebras and modules. Examples for introductory books on this topic are [12, 25].
All algebras in this paper are C-algebras. In particular we will consider the polynomial
algebra C[x] and factor algebras C[x]/p(x), where p is a separable polynomial, and
group algebras C[G], where G is a finite group. Each of the algebras A = C[x]/p(x)
or A = C[G] is of finite dimension and semi-simple, i.e., every finite dimensional (left
or right) A-module, can be decomposed into a direct sum of irreducible submodules,

M ∼=M1 ⊕ . . .⊕Mk,

which is called theWedderburn decomposition ofM . If bases inM andMi, i = 1 . . . k,
are chosen, then this isomorphism can be expressed by a matrix, which we will refer
to as a Wedderburn matrix. The module M is usually a left module unless otherwise
stated. IfM has dimension n as C vector space, and a basis is chosen, thenM affords
a matrix representation of A, i.e., a homomorphism

φ : A→ Cn×n.

The Wedderburn decomposition of M is equivalent to a decomposition of φ into a
direct sum of irreducible representations. In the special case where M ∼= A (as A-
modules), M is called the regular A-module and a corresponding representation is
also called regular.

The annihilator of M in A is defined as

annA(M) = {a ∈ A | a ·m = 0, for all m ∈M};

it is a two-sided ideal in A. If M is an A-module, then M is also a A/ annA(M)-
module.

3. Polynomial Algebras, Modules, and Transforms. In this section we
introduce polynomial transforms and their algebraic interpretation as decomposition
matrices of polynomial algebras. Then we extend the definition to the more general
class of “scaled” polynomial transforms. This extension will enable us to capture all
trigonometric transforms in an algebraic framework.

3.1. Polynomial Transforms. Let

p(x) =
n−1
∏

k=0

(x− αk)
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be a separable polynomial. Then the algebra A = C[x]/p(x) is semi-simple and the
Wedderburn decomposition of (the regular module) M = A is given by the Chinese
remainder theorem (CRT) as

C[x]/p(x) ∼=
n−1
⊕

k=0

C[x]/(x− αk). (3.1)

We want to represent the isomorphism in (3.1) by a matrix.
Definition 3.1 (Polynomial Transform). Let b = (p0, . . . , pn−1) be a basis of

polynomials in C[x]/p(x), p separable, α = (α0, . . . , αn−1) the vector of zeros of p, and
assume that the one-dimensional algebras C[x]/(x− αk) have the base vector 1 = x0,
respectively. With these choices, the isomorphism (3.1) is given by the (n×n)-matrix

Pb,α = [p`(αk)]k,`=0...n−1 , (3.2)

where k is the row index. The Wedderburn matrix Pb,α is called the polynomial
transform w.r.t. the polynomials b and the sample points α (note that the order of
base polynomials and sample points matters).

The polynomial transform Pb,α can also be characterized via the representation
φ afforded by the module A = M with basis b. This is the subject of the following
lemma.

Lemma 3.2. We use previous notation. Let p(x) =
∏n−1

k=0(x − αk) be separable,
A = C[x]/p(x) and M = A the (regular) left module with basis b = (p0, p1, . . . , pn−1)
and polynomial transform Pb,a. Let φ be the corresponding representation of A. Then

(i) P−1
b,α decomposes φ into a direct sum of irreducible representations. More

precisely,

Pb,α · φ(q(x)) · P−1
b,α = diag(q(α0), . . . , q(αn−1)), for q(x) ∈ A.

All such decomposition matrices are given by P−1
b,α · D, where D is diagonal and in-

vertible.
(ii) PT

b,α decomposes φT into a direct sum of irreducible representations. More
precisely,

(PTb,α)−1 · φT (q(x)) · PT
b,α = diag(q(α0), . . . , q(αn−1)), for q(x) ∈ A.

All such decomposition matrices are given by PT
b,α · D, where D is diagonal and in-

vertible.
Proof. The matrix Pb,α expresses the basis b of M = A in the basis of the decom-

posed module M ′ =
⊕n−1

k=0 C[x]/(x− αk). Thus, the representation ρ afforded by M ′

is given by ρ = φP
−1
b,α . Since all the C[x]/(x−αk) are submodules (of dimension 1) of

M , ρ is diagonal. The projection of q(x) ∈ A onto C[x]/(x−αk) is just the evaluation
q(αk). Since for q(x) = x all eigenvalues of φ(x) are distinct, all decomposition ma-
trices are given by P−1

b,α ·D, D diagonal (and invertible). This shows (i). (ii) follows
from (i) by transposition.

Remark. The representation φT arises from the right regular module A.
Example 3.3 (Vandermonde matrix). Let A = M = C[x]/p(x), with separable

p as above. We consider the special case b = (x0, x1, . . . , xn−1). Then the polynomial
transform

Pb,α =
[

α`k
]

k,`=0...n−1
,
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is precisely the transpose of a Vandermonde matrix [5].
Next, we construct the regular representation φ of A with respect to the basis

b. Since A is cyclic (generated by the polynomial x), it is sufficient to determine the
image of x ∈ A under φ. Let p(x) =

∑n
i=0 ηi · xi. Then

x · xi = xi+1, i = 0 . . . n− 2, and

x · xn−1 = xn ≡
n−1
∑

i=0

−ηi · xi mod p(x).

Thus we obtain

φ(x) =















0 −η0
1 0 −η1

. . .
. . .

...
1 0 −ηn−2

1 −ηn−1















,

which is the transpose of the companion matrix of p. Using Lemma 3.2,

φ(x)P
−1
b,α = (φ(x)T )P

T
b,α = diag(α0, . . . , αn−1).

Example 3.4 (discrete Fourier transform). We continue Example 3.3 by re-
quiring that also p(x) = xn − 1, which implies that αk = e2πik/n, k = 0 . . . n − 1.
In this case the transposed Vandermonde matrix coincides with the discrete Fourier
transform (DFT) of size n,

DFTn =
[

e2πik`/n
]

k,`=0...n−1
.

This identifies the DFT as a polynomial transform. The corresponding representation
φ maps x to the cyclic shift,

φ(x) =











0 1
1 0 0

. . .
. . .

...
1 0











,

and, by Lemma 3.2 and since DFTn is symmetric,

(φ(x)T )DFT(n) = diagn−1
k=0(e

2πik/n).

3.2. Scaled Polynomial Transforms. In §3.1 we introduced polynomial trans-
forms as Wedderburn matrices of regular A-modules M , where A = M = C[x]. To
capture all discrete trigonometric transforms (DTTs) in an algebraic framework, we
have to generalize slightly the notion of polynomial transforms. In short, we will
consider scaled polynomial transforms. These arise when the polynomials p` in (3.2)
are replaced by f · p`, where f is a complex-valued function. Every scaled polynomial
transform is associated to a regular module M ∼= A, where M can be 6= A. We start
with the definition.
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Definition 3.5 (Scaled Polynomial Transforms). Let C[x]/p(x), b, and α as
in Definition 3.1. Further, let f be a complex-valued function satisfying f(αk) 6= 0,
k = 0 . . . n− 1. We define the scaled polynomial transform with respect to the scaling
function f , basis b, and sample points α as

Pf ·b,α = [(f · p`)(αk)]k,`=0...n−1 . (3.3)

We can associate a regular module to a scaled polynomial transform Pf ·b,α in the
following way. The vector space f · C[x] = {f · q | q ∈ C[x]} naturally becomes a
C[x]-module by defining

r · (f · q) = f · rq, for r ∈ C[x].

Let p be a separable polynomial with zeros α = (α0, . . . , αn−1), and A = C[x]/p.
Then C[x] · (f · p) is a C[x]-submodule of f · C[x], and we can construct the factor
module M = f ·C[x]/(C[x] · (f · p)) = f ·C[x]/(f · p). We will briefly write M = f ·A.
Its annC[x](M) = C[x] · p, and thus M is an A-module and if b = (p0, . . . , pn−1) is a
basis of A then f · b = (f · p0, . . . , f · pn−1) is a basis of M .

We summarize the properties of the module M = f ·A and the scaled polynomial
transform Pf ·b,α in the following lemma.

Lemma 3.6. Let A = C[x]/p(x), b = (p0, . . . , pn−1) a basis of A, and p a separable
polynomial with zeros α = (α0, . . . , αn−1). Assume that f is defined as above, and
that f(αk) 6= 0, k = 0 . . . n−1. Further let M = f ·A with basis f · b as defined above.
Then the following holds.

(i) M is a regular A-module.
(ii) The (regular) representation φ of A afforded by M and f · b is equal to the

(regular) representation of A afforded by A and b.
(iii) Pf ·b,α = diag(f(α0), . . . , f(αn−1)) · Pb,α.
(iv) The representation φ is diagonalized by P−1

f ·b,α, the representation φ
T is di-

agonalized by PT
f ·b,α.

Proof. (i) follows since f 6≡ 0, pi 7→ f · pi, i = 0 . . . n− 1 defines an isomorphism
A → f · A. (ii) obvious. (iii) follows straight from the definitions in (3.2) and (3.3).
(iv) follows from (iii) and Lemma 3.2.

Remark. The scaled polynomial transform Pf ·b,α is not the Wedderburn matrix
of the module f ·A with basis f · b. The mapping f · pk 7→ pk, k = 0 . . . n− 1, defines
an A module isomorphism between f ·A and A. The corresponding matrix (w.r.t. the
bases f ·b and b) is the identity. Hence f ·A and A have the same Wedderburn matrix
Pb,α.

4. Chebyshev Polynomials. In this section we introduce a general class of
Chebyshev polynomials and their properties that we will use throughout this paper.
We start with the classical cases.

4.1. The Classical Cases. The classical Chebyshev polynomials (of the first
kind) Tn are given by the three-term recurrence

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x)− Tn−2(x), n ≥ 2. (4.1)

Tn is a polynomial of degree n and can be written in a closed form as

Tn(x) = cosnθ, cos θ = x, for x ∈ (−1, 1). (4.2)
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Table 4.1
Tn and Un for −2 ≤ n ≤ 3.

n −2 −1 0 1 2 3

Tn 2x2 − 1 x 1 x 2x2 − 1 4x3 − 3x

Un −1 0 1 2x 4x2 − 1 8x3 − 4x

The recurrence formula in (4.1) is symmetric and can also be run in the other direction
to obtain Chebyshev polynomials with negative n. Doing this, we obtain the symme-
try property T−n = Tn as can also be seen from (4.2). The sequence {Tn | n ≥ 0} is
orthogonal on the interval (−1, 1) w.r.t. the weight function w(x) = (1−x2)−1/2, i.e.,

∫ 1

−1

Tn(x)Tm(x)w(x)dx = 0, for n 6= m.

From the closed form (4.2) for Tn, we also readily read off its zeros as

cos
(k + 1/2)π

n
, k = 0 . . . n− 1.

Using recurrence (4.1) with changed initial conditions yields the Chebyshev poly-
nomials Un of the second kind

U0(x) = 1, U1(x) = 2x, Un(x) = 2xUn−1(x)− Un−2(x), n ≥ 2.

The closed form of Un is given by

Un(x) =
sin(n+ 1)θ

sin θ
, cos θ = x, for x ∈ (−1, 1),

and we get U−1 = 0 and the symmetry U−n−2 = −Un. For −2 ≤ n ≤ 3 the
polynomials Tn, Un are shown in Table 4.1.

A thorough introduction to Chebyshev polynomials and orthogonal polynomials
in general can be found in the books of Chihara , Szegö, and Rivlin [8, 48, 42].

4.2. Generalized Chebyshev Polynomials. Now we consider the set C of all
polynomial sequences {Pn | n ∈ Z} that satisfy the three-term recurrence

Pn(x) = 2xPn−1(x)− Pn−2(x). (4.3)

We will refer to each such sequence as Chebyshev polynomials.
Lemma 4.1. Let {Pn | n ∈ Z} be a sequence of Chebyshev polynomials (we drop

the argument x for simplicity). Then the following holds
(i) Pn = P1 · Un−1 − P0 · Un−2.
(ii) Tk · Pn = (Pn+k + Pn−k)/2.
Proof. Clearly, a sequence Pn is uniquely determined by its initial conditions

P0 and P1. If P0, P1 give rise to the sequence Pn and Q is any polynomial, then
Q · P0, Q · P1 give rise to the sequence Q · Pn. If further P ′0, P

′
1 gives rise to the

sequence P ′n, then P0 + P ′0, P1 + P ′1 gives rise to Pn + P ′n.
(i) First we consider the initial polynomials 0, 1 and 1, 0 and obtain (cf. Table 4.1)

P0 = 1, P1 = 0 : Pn = −Un−2

P0 = 0, P1 = 1 : Pn = Un−1.
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Table 4.2
Four series of Chebyshev polynomials. The range for the zeros is k = 0 . . . n− 1.

n = 0, 1 closed form symmetry zeros weight w(x)

Tn 1, x cos(nθ) T−n=Tn cos
(k+ 1

2
)π

n

1

(1− x2)1/2

Un 1, 2x
sin(n+ 1)θ

sin θ
U−n=−Un−2 cos (k+1)π

n+1 (1− x2)1/2

Vn 1, 2x− 1
cos(n+ 1

2 )θ

cos 1
2θ

V−n=Vn−1 cos
(k+ 1

2
)π

n+ 1
2

(1 + x)1/2

(1− x)1/2

Wn 1, 2x+ 1
sin(n+ 1

2 )θ

sin 1
2θ

W−n=−Wn−1 cos (k+1)π

n+ 1
2

(1− x)1/2
(1 + x)1/2

With the previous remark this shows (i).
(ii) Induction on k. For k = 0 it is trivial, for k = 1 this is the defining recurrence

(4.3) for Pn. Further we have

Tk+1 · Pn = (2xTk − Tk−1) · Pn
= 2x · (Pn+k + Pn−k)/2− (Pn+k−1 + Pn−k+1)/2 (ind. hyp.)

= (Pn+k+1 + Pn−k−1)/2.

In the last step we used (4.3).
Remarks. (1) Both assertions in Lemma 4.1 remain valid, when the polyno-

mials Pn and hence P0, P1 are allowed to be arbitrary complex-valued functions.
(2) Lemma 4.1 shows that C is a free C[x]-module of rank 2.

We are particularly interested in four polynomial sequences, Tn,Un,Vn,Wn, in C
arising from different initial conditions. The sequences Tn and Un are the Chebyshev
polynomials of the first and second kind as introduced above. All four sequences can
be written in a closed form, have simple symmetry properties, and are orthogonal on
(−1, 1) w.r.t. some weight function w(x). The zeros in all cases can be obtained from
the closed form. These properties are summarized in Table 4.2. The results on Vn
and Wn can be found in [8, p. 37,39].

Later we will need the following arithmetic properties of the Chebyshev polyno-
mials.

Lemma 4.2. The following holds for all m,n ∈ Z.
(i) Tmn = Tn(Tm) = Tm(Tn).
(ii) Umn−1 = Um−1(Tn)Un−1.
(iii) U2m = Vm ·Wm.
(iv) Wn(x) = (−1)nVn(−x).
(v) Tn(1) = 1.

Proof. Follows from the closed form of the polynomials (Table 4.2) and trigono-
metric identities.

We conclude this section by stating an interesting property of the four types of
Chebyshev polynomials introduced. Let Pn be any of Tn, Un, Vn, Wn. Then, using
well-known trigonometric identities, Pn − Pn−2, Pn − Pn−1, Pn + Pn+1 can again be
expressed using these polynomials. In particular, this allows us to determine their
zeros using Table 4.2. The complete set of identities is given in Table 4.3. The second
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Table 4.3
Identities among the four series of Chebyshev polynomials; Pn has to be replaced by Tn, Un,

Vn, Wn to obtain rows 1, 2, 3, 4, respectively.

Pn − Pn−2 Pn Pn − Pn−1 Pn + Pn−1

Tn 2(x2 − 1)Un−2 Tn (x− 1)Wn−1 (x+ 1)Vn−1

Un 2Tn Un Vn Wn

Vn 2(x− 1)Wn−1 Vn 2(x− 1)Un−1 2Tn

Wn 2(x+ 1)Vn−1 Wn 2Tn 2(x+ 1)Un−1

column is trivial and introduced to make the table comply with later investigations.
As an example, row 2, column 1 shows that Un − Un−2 = 2Tn.

Remarks. (1) In a few places in the literature the four series of Chebyshev
polynomials occur together, e.g., in [30]. (2) If we use the close forms of Tn, Un
to extend their definitions to rational n ∈ Q, we can write Vn = Tn+1/2/T1/2 and
Wn = Un−1/2/U−1/2. (3) For a complete overview on the factorization of Tn and Un
over Q see [41].

5. The 16 types of DTTs. The first discrete cosine transform was introduced
by Ahmed, Natarajan, and Rao [1]. The complete set of all 8 types of discrete
cosine transforms (DCTs) and discrete sine transforms (DSTs), respectively, was first
presented by Wang and Hunt [53]. We will refer to them sometimes as discrete
trigonometric transforms (DTTs). Each of the transforms is given by an (n × n)-
matrix M , n ≥ 0, which multiplies to a signal vector a from the left, a 7→ M · a. As
examples, we will use the symbol DCT-2 to refer to a DCT of type 2, DST-7n to refer
to a DST of type 7 and size n. If an arbitrary trigonometric transform is addressed we
will write DTT or DTTn. In this notation, the first DCT introduced was of type 2.

Table 5.1 gives the definitions of all 16 types of DCTs and DSTs, by stating the
respective entry at position (k, `), where k is the row index, for k, ` = 0 . . . n− 1. As
can be seen, all entries are pure cosines or sines of the form cos rπ or sin rπ, where r is
some rational number. Thus, all entries are elements in a suitable cyclotomic field over
Q. The definitions given in Table 5.1 are the unscaled versions of the DCTs and DSTs,
which will be considered in this paper. The scaled versions of the DCTs and DSTs are
orthonormal and arise from the unscaled versions by multiplying in some cases the
first and/or last row and/or column by 1/

√
2, which makes the matrix orthogonal. In

addition, the entire matrix is multiplied by a factor to achieve orthonormality. As an
example, the orthonormal version of the DCT-2 has entries

√

2

n
· ck · cos k

(

`+
1

2

)

π

n
, k, ` = 0 . . . n− 1,

where ck =
√

1/2 for k = 0 and ck = 1 elsewhere. For the convenience of the reader,
the scaled, orthonormal versions of the DCTs and DSTs are given in Table A.1 in
the appendix. Note that the set of all DTTs is closed under matrix transposition.
From Table 5.1 it is easily seen that the DCT and the DST of types 1, 4, 5, and 8 are
symmetric, and that types 2 and 3, and types 6 and 7 are converted into each other
by transposition, respectively.

All 16 DCTs and DSTs arise as eigenmatrices of certain tridiagonal matrices
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Table 5.1
8 types of DCTs and DSTs, given for size n. The entry at row k and column ` is given for

k, ` = 0 . . . n− 1.

DCTs DSTs

type 1 cos k` π
n−1 sin(k + 1)(`+ 1) π

n+1

type 2 cos k(`+ 1
2 )

π
n sin(k + 1)(`+ 1

2 )
π
n

type 3 cos(k + 1
2 )`

π
n sin(k + 1

2 )(`+ 1)πn
type 4 cos(k + 1

2 )(`+
1
2 )

π
n sin(k + 1

2 )(`+
1
2 )

π
n

type 5 cos k` π
n− 1

2

sin(k + 1)(`+ 1) π
n+ 1

2

type 6 cos k(`+ 1
2 )

π
n− 1

2

sin(k + 1)(`+ 1
2 )

π
n+ 1

2

type 7 cos(k + 1
2 )`

π
n− 1

2

sin(k + 1
2 )(`+ 1) π

n+ 1
2

type 8 cos(k + 1
2 )(`+

1
2 )

π
n+ 1

2

sin(k + 1
2 )(`+

1
2 )

π
n− 1

2

[47, 45] of size (n× n), which can be chosen of the form

B(β1, β2, β3, β4) =
1

2
·

















β1 β2

1 0 1
1 0 1

· · ·
1 0 1

β3 β4

















. (5.1)

The internal structure of B(β1, β2, β3, β4) corresponds to the equation

ak =
1

2
(ak−1 + ak+1), 1 ≤ k ≤ n− 2. (5.2)

The entries β1, β2 are determined by a choice of left boundary conditions (b.c.) that
determine how a−1 is chosen in (5.2) for k = 0. The 4 left b.c. considered are
a−1 = a1, a−1 = 0, a−1 = a0, a−1 = −a0. For example, the choice a−1 = a1 leads
to β1 = 0, β2 = 2. Similarly, the entries β3, β4 are determined by right b.c. arising
from the choice of an in (5.2) for k = n− 1. The right b.c. are the mirrored versions
of the left b.c.: an = an−2, an = 0, an = an−1, an = −an−1. The complete set of
values β1, β2, β3, β4 for all 16 possible combinations of b.c. is given in Table 5.2. If
b.c., and thus values β1, β2, β3, β4 are chosen, and a = (a0, . . . , an−1)

T , then (5.2),
k = 0 . . . n− 1, can be written as

a = B(β1, β2, β3, β4) · a.

Remarks. (1) The matrices B(·) in (5.1) correspond to linear time-invariant
processes with boundary conditions [33, 47]. (2) The b.c. a−1 = 0 and a−1 = −a0 are
the discrete versions of Dirichlet b.c.; a−1 = a1 and a−1 = a0 are the discrete versions
of Neumann b.c. Analogously for the right b.c. [33, 47].

The 16 DTTs correspond to these different choices of boundary conditions as
shown in Table 5.3 [47]. The relationship is as follows. If numbers β1, β2, β3, β4 (and
hence left and right b.c.) are chosen from row k and row `, respectively, of Table 5.2
(k, ` = 1 . . . 4), then the corresponding matrix B(β1, β2, β3, β4) is diagonalized by the
transpose of the DTT of size n given in row k and column ` of Table 5.3.
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Table 5.2
The values β1, β2, β3, β4 from (5.1) for the 4 respective choices of left b.c. and right b.c.

left b.c. β1 β2

a−1 = a1 0 2

a−1 = 0 0 1

a−1 = a0 1 1

a−1 = −a0 −1 1

right b.c. β3 β4

an = an−2 2 0

an = 0 1 0

an = an−1 1 1

an = −an−1 1 −1

Table 5.3
The left and right boundary conditions associated with the DCTs and DSTs.

an = an−2 an = 0 an = an−1 an = −an−1

a−1 = a1 DCT-1 DCT-3 DCT-5 DCT-7

a−1 = 0 DST-3 DST-1 DST-7 DST-5

a−1 = a0 DCT-6 DCT-8 DCT-2 DCT-4

a−1 = −a0 DST-8 DST-6 DST-4 DST-2

Example 5.1. As an example we choose left b.c. a−1 = a0 and right b.c. an =
an−1 and obtain β1 = β2 = β3 = β4 = 1. The (n× n)-matrix

B(1, 1, 1, 1) =
1

2
·













1 1
1 0 1

· · ·
1 0 1

1 1













. (5.3)

is diagonalized by DCT-2Tn = DCT-3n, i.e., B(1, 1, 1, 1)DCT-3n is diagonal.
Remarks. (1) The DTTs of type 5-8 are also called “odd” DTTs of type 1-

4, respectively. (2) Reference [47] considers the matrices 2 I−2B(·), rather than the
matrices B(·), which leads to equivalent diagonalization properties. Also the definition
of the DTTs is transposed to our definition. We chose the original [53] and commonly
used definition.

6. The Algebraic Characterization of the DTTs. In this section we will
show that all 16 DTTs are scaled polynomial transforms (see §5) by constructing the
corresponding modules and bases. To connect, for a given DTT, its diagonalization
property, i.e., the associated matrix B(β1, β2, β3, β4) (cf. §5), with the algebra/module
framework, we will construct a module with basis b that affords a representation φ,
such that

φT (x) = B(β1, β2, β3, β4).

In other words, the operation of x (via multiplication) on b is reflected by the matrix
B(β1, β2, β3, β4). Lemma 3.6, (iv), will establish the correspondence between the DTT
and the module constructed this way.

The construction of the module and its base is a three step procedure. Assume a
DTT and an associated matrix B(·) is given.

1. Internal structure (§6.1): Determine a sequence of polynomials that yields
the internal structure of B(·), i.e., the . . . , 1

2 , 0,
1
2 , . . . in each column. This will bring

into play generalized Chebyshev polynomials in a natural way.
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2. Left boundary conditions (§6.2): Fix the left b.c. This corresponds to fixing
the initial conditions for the Chebyshev polynomials, i.e., the choice of a particular
sequence of Chebyshev polynomials.

3. Right boundary conditions (§6.3) Fix the right b.c. This corresponds to choos-
ing the appropriate polynomial p for the module (and the algebra) C[x]/p.

6.1. Internal Structure. First we will consider n-dimensional modules that
carry the structure given in (5.2). Rewriting (4.3) in a slightly different form as

x · Pk =
1

2
(Pk−1 + Pk+1) (6.1)

shows that this is afforded by any regular module A = C[x]/p, deg(p) = n, if we choose
the basis b = (P0, . . . , Pn−1) where the Pk are generalized Chebyshev polynomials. In
other words, the image of x under the representation φ afforded by A with basis b
will have an internal structure similar to the matrices given in (5.1).

6.2. Left Boundary Conditions. The 4 left b.c. associated with the DTTs are
(see Table 5.3)

a−1 = a1, a−1 = 0, a−1 = a0, a−1 = −a0. (6.2)

They apply in the boundary case k = 0 in (5.2). An equivalent behavior is obtained
in (6.1) if we choose the 4 special sequences of Chebyshev polynomials, Tk, Uk, Vk,Wk

introduced in Table 4.2. The symmetry properties of these polynomials (cf. Table 4.2)
correspond to the left b.c. in (6.2),

T−1 = T1, U−1 = 0, V−1 = V0, W−1 = −W0,

respectively. As an example, every regular module C[x]/p with basis (T0, . . . , Tn−1)
carries the left b.c. a−1 = a1.

6.3. Right Boundary Conditions. The 4 right b.c. associated with the DTTs
mirror the left b.c. (see Table 5.3)

an = an−2, an = 0, an = an−1, an = −an−1. (6.3)

The right b.c. are determined by the choice of p in C[x]/p. As an example, to introduce
the right b.c. an = an−2, we choose p = Pn − Pn−2 where P ∈ {T,U, V,W}. Thus
the choices of p corresponding to (6.3) are

Pn − Pn−2, Pn, Pn − Pn−1, Pn + Pn−1, (6.4)

respectively. To determine the zeros of p in these cases, and hence the decomposition of
A and its associated decomposing polynomial transform, we need to consult Table 4.3,
which covers all cases in (6.4) for P ∈ {T,U, V,W, }.

6.4. Summary. Before we state the interpretation of the DTTs as scaled poly-
nomial transforms, it is perhaps instructive to consider an example.

Example 6.1 (DST-3). We choose the left b.c. a−1 = 0, which leads to the
choice of the basis b = (U0, . . . , Un−1). As right b.c. we choose an = an−2, which
leads to p = Un − Un−2 = 2Tn using Table 4.3. The decomposition of the regular
module A = C[x]/Tn (the 2 can be dropped) is determined by the zeros of Tn, which
are α = (cos 1

2π/n, . . . , cos(n− 1
2 )π/n) (cf. Table 4.2), i.e.,

A = C[x]/(Un − Un−2) = C[x]/Tn =
n−1
⊕

k=0

C[x]/(x− cos(k +
1

2
)π/n).
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The decomposing polynomial transform is given by

Pb,α = [U`(cos(k + 1/2)π/n)]k,`=0...n−1

=

[

sin(`+ 1)(k + 1/2)π/n

sin(k + 1/2)π/n

]

k,`=0...n−1

= diagn−1
k=0

(

1

sin(k + 1/2)π/n

)

·DST-3n,

which shows that DST-3n is the scaled polynomial transform

DST-3n = Pf ·b,α, f = sin θ,

associated with the module f ·A with basis f · b.
Next we construct the representation φ afforded by A with basis b. By con-

struction, we have x · U0 = 1
2U1, x · U` = 1

2 (U`−1 + U`+1) for ` = 1 . . . n − 2, and
x · Un−1 = Un−2 (in A). We get

φ(x) =
1

2
·













0 1
1 0 1

· · ·
1 0 2

1 0













.

Lemma 3.6 shows that φ(x)T is diagonalized by DST-3Tn = DST-2n, namely

φT (x)DST-2n = diag(cos
1

2
π/n, . . . , cos(n− 1

2
)π/n).

Using the notation from §5, φ(x)T = B(0, 1, 2, 0), which corresponds to the DST-3
(see Table 5.2 and 5.3) as desired.

Remarks. (1) It is intriguing that the left and right b.c. are seemingly handled
differently (initial conditions versus factor polynomial). In §8.1 we will see that this
construction can be reversed. (2) Note that the boundary conditions corresponding to
the left module constructed affect the first and last column of the left representation
φ(x). Lemma 3.2 shows that the right representation φT is decomposed by the trans-
pose of the corresponding DTT, which complies with the fact that the b.c. affect the
first and last row in the matrices B(·) (cf. §5). (3) The polynomial defining the right
b.c. in Example 6.1 can be written in two ways, Un−Un−2 = 2Tn (cf. Table 4.3). The
left form determines the b.c.; the right form provides the decomposition of C[x]/Tn,
which corresponds to the zeros of Tn.

The complete correspondence between DTTs and modules is given in Theo-
rem 6.2. To provide a convenient overview, and because we will repeatedly use it
in the following, we have combined Table 4.3, Table 5.3, and the respective scaling
functions into Table 6.1.

Theorem 6.2. Define the 4 scaling functions f1 = 1, f2 = sin θ, f3 = cos 1
2θ,

and f4 = sin 1
2θ, with cos θ = x. Choose a combination of left and right boundary

conditions with index i, j from Table 6.1, i, j = 1 . . . 4, and let DTTn be the corre-
sponding discrete trigonometric transform. Denote the polynomial below the DTT in
Table 6.1 by Qn and its zeros by α = (α0, . . . , αn−1). Choose a basis of A = C[x]/Qn

as b = (P0, . . . , Pn−1) where P = T,U, V,W for i = 1, 2, 3, 4, respectively. Then
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Table 6.1
Overview on the DTTs and associated modules. The left b.c. and right b.c. are in the first

column (value of a−1) and row, respectively. A given DTTn is associated to the module f ·C[x]/Qn,
where Qn is given below the DTT and the scaling function f in the second column. The basis of
C[x]/Qn is given in the third column.

an − an−2 an an − an−1 an + an−1

DCT-1 DCT-3 DCT-5 DCT-7
a1 1 T`

2(x2 − 1)Un−2 Tn (x− 1)Wn−1 (x+ 1)Vn−1

DST-3 DST-1 DST-7 DST-5
0 sin θ U`

2Tn Un Vn Wn

DCT-6 DCT-8 DCT-2 DCT-4
a0 cos 1

2θ V`
2(x− 1)Wn−1 Vn 2(x− 1)Un−1 2Tn

DST-8 DST-6 DST-4 DST-2−a0 sin 1
2θ W`

2(x+ 1)Vn−1 Wn 2Tn 2(x+ 1)Un−1

(i) DTTn is the scaled polynomial transform

DTTn = Pfi·b,α

associated with the module fi ·A and basis fi · b.
(ii) If φ is the representation afforded by A with b then φ(x)T is the matrix B(·)

in (5.1) given by the left and right b.c. chosen.
(iii) The matrix φ(x)T is diagonalized by DTTT

n , namely

(DTTT
n )
−1 · φ(x)T ·DTTT

n = diag(α0, . . . , αn−1),

which implies that DTTT
n is a decomposition matrix for the (right) regular represen-

tation φT of A.
Proof. By computations completely analogous to Example 6.1 for all 16 cases.
Remarks. (1) Theorem 6.2 shows that a DTT is a polynomial transform (i.e., not

scaled) iff it appears in the first row of Table 6.1. For the DCT-1 and the DCT-3 this
has been recognized in [35] and [46], respectively. (2) The sparse matrices B(·) occur
as images of T1 = x under the (right) representation φT of the respective module.
Using Lemma 4.1, (ii), one can compute the images φT (Tk), k = 0 . . . n − 1, which
all turn out to be sparse. This makes (T0, . . . , Tn−1) a natural choice of basis in the
algebra (not the module) A in all 16 cases. The image φT (a) (or φ(a)) of a generic
element a =

∑

akTk ∈ A has a structure that is usually referred to as Toeplitz +
Hankel.

With the algebraic characterization of the DTTs given in Theorem 6.2 we are
now in the position to derive and explain many of their fast algorithms known from
the literature. This is the subject of the remaining sections.

7. Fast Algorithms for Polynomial Transforms. Fast algorithms for the
matrix-vector multiplication with a polynomial transforms, z 7→ Pb,α · z or, equiva-
lently, sparse factorizations of Pb,α, have been subject of several papers. In [46] the
DCT-3 and the real and imaginary part of the DFT are recognized as polynomial
transforms, which is used for their factorization. In [14] and in [35] an O(n log2 n)
algorithm is derived for the case that b is an arbitrary sequence of orthogonal poly-
nomials and α a list of arbitrary (distinct) evaluation points. Using this result in
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combination with Theorem 6.2 shows that the complexity of computing a DTTn is
O(n log2 n). The fast DTT algorithms known from the literature, however, and the
following discussion show that the complexity is indeed O(n log n).

In this section we will present two general techniques that can be used to factor
a polynomial transform Pb,α associated to the regular module C[x]/p. They apply in
the cases

1. p(x) = q(x) · r(x) (p factors)
2. p(x) = q(r(x)) (p decomposes)

An important question is to know when the resulting matrix factors are sparse yielding
a fast algorithm. We note that it is also possible to factor Pb,α, if

3. p(x) = q(x)⊗ r(x) (p is a tensor product),
but we omit this case since it does not apply to the DTTs. Because of Lemma 3.6
the problems of finding fast algorithms for Pb,α and Pf ·b,α are equivalent.

Throughout this section, p is a separable polynomial with zero vector α.

7.1. Direct Sum. One straightforward way of obtaining a fast polynomial trans-
form is by splitting the polynomial p recursively using the fact that, if p = q · r,

C[x]/p ∼= C[x]/q ⊕ C[x]/r. (7.1)

This reduces the problem of computing one polynomial transform to the computation
of 2 smaller polynomial transforms.

Lemma 7.1. Let p = q · r and assume p, q, r have the zero vectors α, β, γ, respec-
tively. Let further b, c, d be bases of C[x]/p, C[x]/q, C[x]/r, respectively. Then

Pb,α = P · (Pc,β ⊕ Pd,γ) ·B,

where B is the base change matrix b → (c, d) (concatenation) corresponding to (7.1)
and P is a permutation matrix mapping (β, γ) 7→ α.

Proof. Follows from the definition of B and P .
Clearly, the decomposition in Lemma 7.1 is useful for a fast algorithm only if B

is sparse or has itself a fast algorithm. As an example, the fast algorithm for the
Vandermonde matrix relies on the fact that in this case B has a Toeplitz structure,
which permits its computation with O(n log n) arithmetic operations [14, 34].

7.2. Decomposition. A more interesting factorization of a polynomial trans-
form can be derived if p decomposes into 2 polynomials, p(x) = q(r(x)). We will need
the following lemma.

Lemma 7.2. Let p be separable and of degree n with zeros α0, . . . , αn−1. Assume
p(x) = q(r(x)) with q of degree k and r of degree `. Then for each zero β of q there
are precisely ` zeros αm of p such that r(αm) = β.

Proof. Let αm be a zero of p. Then 0 = p(αm) = q(r(αm)). Thus r maps the
n = k` zeros of p to the k zeros of q. If β is one of the k zeros of q, then the equation
r(αm) = β has maximal deg(r) = ` solutions αm, thus it has precisely ` solutions.

As in Lemma 7.2 let the degrees of p, q, r be n, k, `, respectively, n = k`. We
choose bases c = (q0, . . . , qk−1) of C[x]/q and d = (r0, . . . , r`−1) of C[x]/r. Then

b′ = ( r0 · q0(r), . . . , r0 · qk−1(r),
r1 · q0(r), . . . , r1 · qk−1(r),
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
r`−1 · q0(r), . . . , r`−1 · qk−1(r) )
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is a basis of C[x]/p. Using the shorter notation pj,i,m = (rj · qi(r))(αm), the corre-
sponding polynomial transform is given by

Pb′,α =









p0,0,0 . . . p0,k−1,0 . . . p`−1,0,0 . . . p`−1,k−1,0

p0,0,1 . . . p0,k−1,1 . . . p`−1,0,1 . . . p`−1,k−1,1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
p0,0,n−1 . . . p0,k−1,n−1 . . . p`−1,0,n−1 . . . p`−1,k−1,n−1









.

Because of Lemma 7.2, for each i, the n numbers qi(r(αm)), m = 0 . . . n − 1, will
divide into k groups of ` equals. We permute α into α′ with a permutation P such
that r(αi+jk) = βi, i = 0 . . . k − 1, j = 0 . . . `− 1, i.e.,

Pb′,α′ = P · Pb′,α.

Now Pb′,α′ reveals the following block structure

Pb′,α′ = [Dh,j · Pc,β ]h,j=0...`−1 , with

Dh,j = diag(rj(α
′
hk), rj(α

′
hk+1), . . . , rj(α

′
hk+k−1)).

Thus we can write Pb′,α′ as

Pb′,α′ = [Dh,j ]h,j=0...`−1 · (I`⊗Pc,β).

Since Dh,j is diagonal, h, j = 0 . . . `− 1, the matrix [Dh,j ] consists of k (`× `) blocks
at stride k. Thus,

[Dh,j ]
Ln`

is a direct sum of (`× `)-matrices, which turn out to be again polynomial transforms.
Using (Ln` )

−1 = Lnk , we get the following theorem.
Theorem 7.3. We use previous notation. Then

Pb,α = P ·
(

k−1
⊕

i=0

Pd,αi

)Lnk

· (I`⊗Pc,β) ·B,

where B is the matrix giving the base change b→ b′, P is a permutation matrix, and

αi = (α′0·k+i, α
′
1·k+i, . . . , α

′
(`−1)·k+i).

As in Lemma 7.1, the value of this factorization for deriving a fast algorithm for
Pb,α depends on the base change matrix B.

Theorem 7.3 can be interpreted as a generalization of the Cooley/Tukey FFT as
we will see in the next example.

Example 7.4 (FFT, size 4). We consider the case p(x) = x4−1 = (x2)2−1, i.e.,
q(x) = x2 − 1, and r(x) = x2. As bases we choose b = (1, x, x2, x3)and c = d = (1, x).
The zeros of p are α = (1, i,−1,−i) and the zeros of q are β = (1,−1). This is
the situation of Example 3.4, Pb,α = DFT4, Pc,β = DFT2. Since r(1) = r(−1) and
r(i) = r(−i), it is α′ = α. Further, b′ = (1, x2, x, x3) and thus B = [(2, 3), 4] = L4

2. It
remains to compute Pd,α0

,Pd,α1
:

Pd,α0
=

[

1 1
1 −1

]

= DFT2, and Pd,α1
=

[

1 i
1 −i

]

= DFT2 ·diag(1, i).
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As a result we get the FFT of size 4,

DFT4 = (DFT2⊗ I2) · diag(1, 1, 1, i) · (I1⊗DFT2) · L4
2 .

Remark. It is worth giving an algebraic interpretation of Theorem 7.3 using the
notation from above. Since p(x) = q(r(x)), A′ = C[r(x)]/p(x) = C[y]/q(y) (y = r(x))
is a subalgebra of A = C[x]/p(x). We have

A ∼= r0 ·A′ ⊕ . . .⊕ r`−1 ·A′

as vector spaces, i.e., d = (r0, . . . , r`−1) is a transversal of A′ in A. In a similar way
as it is done for C[G]-modules (G a group) [12, pp. 73], we can construct the induced
module

A⊗A′ A′ = (r0 ⊗A′)⊕ . . .⊕ (r`−1 ⊗A′),

which has the basis b′. The modules A and A ⊗′A A′ are isomorphic with the base
change given by the matrix B. Thus, Theorem 7.3 (for polynomial algebras) is the
equivalent of Theorem 3.33 (for group algebras of solvable groups) in [37]. They
coincide for the case C[Zn] ∼= C[x]/(xn − 1) (Zn = cyclic group of order n), where
they yield the Cooley/Tukey FFT (cf. Example 7.4).

8. Fast DTTs via Decomposition of Polynomial Transforms. In this sec-
tion we derive and explain several different recursive algorithms for the DTTs directly
from their algebraic interpretation. In contrast to the derivations given in the liter-
ature, we do not manipulate matrix entries; rather, we obtain the algorithm directly
from the underlying modules. This makes the derivation simpler, more transparent,
and provides a mathematically satisfying insight into the structure of the algorithm.

The algorithms presented in this section can be loosely grouped into the following
categories.

1. Translation (§8.1): A DTT is translated into another DTT using sparse
matrices. Two different methods are identified.

2. Direct Sum (§8.2): A DTT is decomposed into the direct sum of smaller
DTTs using sparse matrices. These algorithms are due to Lemma 7.1.

3. Reduction (§8.3): A DTT is decomposed into smaller DTTs of the same type
using sparse matrices. These algorithms are due to Theorem 7.3.

It is important to note that we can always derive, from any given fast algorithm,
new fast algorithms by straightforward operations like symbolic transposition or in-
version, since these are compatible with ⊗ and ⊕. As an example, a factorization
like

DCT-2n = P · (DCT-2n/2 ⊕DCT-4n/2) ·B

can be transposed to yield

DCT-3n = BT · (DCT-3n/2 ⊕DCT-4n/2) · PT ,

since DCT-2T = DCT-3, and DCT-4 is symmetric. Moreover, it is always possible
to locally manipulate these formula expressions. As an example, let Q and R be
permutations. Then

Q · (In⊗DFT2) ·R = (QP−1) · (In⊗DFT2) · (PR)
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for any permutation P permuting (2 × 2)-blocks (n! such P ). We will consider al-
gorithms that can be transformed into each other using manipulations of this kind
as “algebraically equivalent”. The comparisons between the algorithms we derive
here and the algorithms from the literature have to be understood “modulo” this
equivalence, though, in many cases, the comparison will be exact.

8.1. Translation between DTTs. In this section we will discuss and derive
sparse relationships between the different types of DTTs. We say that DTTn and
DTT′n are in sparse relationship, if DTTn can be derived from DTT′n using O(n)
operations. An example of a sparse relationship is the equation

DTTn = Bn ·DTT′n ·Cn,
where Bn, Cn are sparse matrices (O(n) entries). These relationships are important
for fast algorithms. If a fast algorithm for DTTn is given, and DTTn and DTT′n are
in sparse relationship, then we obtain a fast algorithm for DTT′n, and vice-versa.

Investigating Table 6.1 we observe that transform pairs at transposed positions
(i, j) and (j, i), i, j = 1 . . . 4, have the same associated algebra (i.e., the same polyno-
mial Qn). As an example, DCT-5 and DCT-6 both arise from C[x]/(x−1)Wn−1 with
different bases. This leads to the concept of duality introduced in the next definition.

Definition 8.1 (Duality). We call a pair DTTn, DTT′n dual to each other if the
left b.c. of DTTn correspond to the right b.c. of DTT′n, and vice-versa. Equivalently,
DTTn and DTT′n appear in transposed positions (i, j) and (j, i) in Table 6.1. If i = j
we call DTTn = DTT′n self-dual.

We show how this duality can be used to derive a sparse relationship between the
transforms.

In §6 we derived a module for a given pair of b.c. by fixing (1) a base sequence
of Chebyshev polynomials Pn depending on the left b.c., and (2) depending on the
right b.c., a polynomial p in C[x]/p. Since the recursion formula (4.3) for Chebyshev
polynomials is symmetric, this can be done in a reverse way. We illustrate this with
the pair DCT-3 and DST-3. The DST-3 has the left b.c. a−1 = 0 that fixes the base
sequence U`, and it has the right b.c. an = an−2 that is fixed by p = Un−Un−2 = 0. In
alternative, we can realize the same b.c. by the sequence T`, ` = −n+1 . . . 0. Now the
right b.c. are given by a−1 = a1, i.e., T1 = T−1, which corresponds to Un−Un−2 = 0.
The left b.c. are fixed by p = T−n = Tn = 0. The correspondence between the forward
U` and the backward T` is as follows

0 = U−1 U0, . . . , Un−1 Un = Un−2

0 = T−n T−(n−1), . . . , T0 T−1 = T1,

where the vertical lines indicate the boundaries. In other words, using T−` = T`, the
two bases (U0, . . . , Un−1) and (Tn−1, . . . , T0) afford identical representations of A =
C[x]/Tn. Thus, the corresponding polynomial transforms must be scaled versions of
each other. And indeed, if αk denotes the zeros of Tn, we get, using basic trigonometric
identities,

Tn−1−`(αk) = cos(n− 1− `)(k + 1

2
)π/n

= (−1)k · sin (`+ 1)(k +
1

2
)π/n,

and thus, using the definition of DST-3 and DCT-3 (Table 5.1),

diagn−1
k=0((−1)k) ·DST-3n = DCT-3n · Jn, (8.1)
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where Jn denotes the opposite identity, i.e., the permutation matrix exchanging i↔
n − i, i = 0 . . . n − 1. Similar computations for all pairs of dual transforms yield the
following result.

Theorem 8.2 (Translation by Duality). Let DTTn and DTT′n be a pair of dual
transforms. Then

diagn−1
k=0((−1)k) ·DTTn = DTT′n · Jn,

In particular, dual DTTs have the same arithmetic complexity.
A second class of sparse relationships can be obtained in certain cases by appro-

priate base changes and will be explained in the following. Going back to Table 6.1,
we see that the 16 DTTs are partitioned into 4 groups of 4 transforms each depending
on the polynomial Qn, which is essentially equal to one of the Chebyshev polynomials
Tn, Un, Vn,Wn. For example, on the main-diagonal in Table 6.1 are all DTTs in the
“U -group”, which are exactly the self-dual ones. Each of the other groups consists of
two pairs of dual DTTs, respectively. For each 2 DTTs within the same group the
corresponding algebra C[x]/Qn is basically equal. The difference is in the basis chosen
in the module. Thus, it is possible to derive a sparse relationship by performing an
appropriate base change. We will illustrate this in the following 2 examples.

Example 8.3 (DCT-3 and DST-3). We consider again the pair DCT-3n and
DST-3n. Using Table 6.1 we see that both transforms correspond to the same algebra,
but with different bases,

DCT-3n ↔ C[x]/Tn, b = (T0, . . . , Tn−1),
DST-3n ↔ C[x]/Tn, b

′ = (U0, . . . , Un−1),

and that DCT-3n = [T`(αk)], and DST-3n = D · [U`(αk)], where αk are the zeros of
Tn and D = diagn−1

k=0(sin(k + 1
2 )π/n) arises from the scaling function. To compute

the base change matrix B for b → b′, we use that T` =
1
2 (U` − U`−2) (2nd row, 1st

column in Table 4.3), and get

B =
1

2
·

















2 0 −1
1 0 −1

· · ·
1 0 −1

1 0
1

















.

Thus, [T`(αk)] = [U`(αk)] ·B and hence

D ·DCT-3n = DST-3n ·B.

Note that this relationship is different from the one arising from the duality of DCT-3n
and DST-3n (Theorem 8.2).

Example 8.4 (DCT-1 and DST-2). We will translate a DCT-1n+1 into a
DST-2n. Using again Table 6.1 we get as associated algebras and bases

DCT-1n+1 ↔ C[x]/(x2 − 1)Un−1, b = (T0, . . . , Tn),
DST-2n ↔ C[x]/(x+ 1)Un−1, b′ = (W0, . . . ,Wn−1).

Note that we have to choose size n + 1 and n, respectively, to obtain comparable
algebras. We have DCT-1n+1 = [T`(αk)] and DST-2n = D · [W`(αk)], where αk =
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cos kπ/n, k = 0 . . . n are the zeros of (x2 − 1)Un−1 (2nd row in Table 4.2). For the
DST-2n, α0 = 1 is skipped. The scaling matrix is D = diagn−1

k=0(sin(k + 1)π/2n)
(Table 6.2). We compute the base change matrix B for

C[x]/(x2 − 1)Un−1
∼= C[x]/(x− 1)⊕ C[x]/(x+ 1)Un−1.

The bases are b, (1), b′, respectively. Using T` =
1
2 (W` −W`−1) (4th row, 3rd column

in Table 4.3) and Tn = 1
2 (Wn −Wn−1) ≡ −Wn−1 mod (x + 1)Un−1 (because, again

from Table 4.3, (x+ 1)Un−1 = 1
2 (Wn +Wn−1)) we get

B =
1

2
·

















2 2 2 · · 2
2 −1

1 −1
· ·
· −1

1 −2

















.

The 1′s in the first row are due to T`(1) = 1 (Lemma 4.2). We get [T`(αk)] =
(I1⊕[W`(αk)]) ·B and hence

(I1⊕D) ·DCT-1n+1 = (I1⊕DST-2n) ·B.

We obtain the following theorem.
Theorem 8.5 (Translation by Base Change). All DTTs of type 1-4 are in sparse

relationship. All DTTs of type 5-8 are in sparse relationship.
Proof. Similar computations as in Examples 8.3 and 8.4 show that all DTTs of

type 1 and 2 (the “U -group”) are in sparse relationship, and that all DTTs of type 3
and 4 (the “T -group”) are in sparse relationship. By transposition we obtain sparse
relationship for DTTs of type 2 and 4 and thus for all DTTs of type 1-4, which is the
first assertion. The other statement is proved analogously.

Of particular importance is the translation between a DCT-4 and DCT-2, which,
together with Theorem 8.6, yields a fast algorithm for the DCT-2 [28].

Remarks. (1) Aside from Definition 8.1 there is another, more obvious, form
of duality among the DTTs: DTT and DTT′ are dual if DTTT = DTT′. Currently,
we have no algebraic explanation for this duality. (2) Note that “sparse relationship”
does not define an equivalence relation. Every two matrices (of the same size) can be
converted into each other using a (long enough) sequence of sparse matrices.

8.2. Direct Sum: Fast Algorithms via Polynomial Factorization. In this
section we will derive recursive algorithms for all DTTs in the U -group, i.e., the DCT
and DST of type 1 and 2 The algorithms are based on the rational factorization of
the polynomials Un given in Lemma 4.2, (ii) and (iii).

As an example we will consider a DCT-2n where n = 2m. Consulting Table 6.1
we get as corresponding algebra C[x]/(x − 1)Un−1 with basis b = (V0, . . . , Vn−1).
Lemma 4.2, (ii) gives the factorization U2m−1 = 2 · Um−1 · Tm, which leads to the
isomorphism

C[x]/(x− 1)U2m−1
∼= C[x]/(x− 1)Um−1 ⊕ C[x]/Tm. (8.2)

For the summands we choose bases b, b′, b′, respectively, b′ = (V0, . . . , Vm−1). The
zeros of (x − 1)Un−1 are cos kπ/n, k = 0 . . . n − 1. Thus, the first summand in
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(8.2) collects the zeros with even k, and the second summand the zeros with odd k
(cf. Table 4.2). Now the decomposition of DCT-2n follows Lemma 7.1. To compute
the base change matrix B in (8.2) we need

Vm+k ≡ Vm−k−1 mod (x− 1)Um−1, and

Vm+k ≡ −Vm−k−1 mod Tm,

which can be shown by induction using (x−1)Um−1 = Vm−Vm−1, Tm = Vm+Vm+1,
and (4.3). We get

B =

















1 1
· ·

1 1
1 −1
· ·

1 −1

















=

[

Im Jm
Im − Jm

]

= (DFT2⊗ Im)(Im⊕ Jm).

The summands in (8.2) are decomposed recursively using a DCT-2m and DCT-4m,
respectively. The resulting one-dimensional summands are permuted in canonical
order using the stride permutation Lnm (see §2). Since DCT-2 and DCT-4 have the
same scaling function, we get

DCT-22m = L2m
m ·(DCT-2m ⊕DCT-4m) ·B.

Besides DCT-2, similar derivations can be performed on the three remaining trans-
forms in the U -group DCT-1, DST-1, and DST-2 using U2m−1 = 2Um−1Tm and using
U2m = VmWm. The complete set of identities can be stated using two types of block
matrices and two types of permutation matrices. The block matrices give the base
change,

B2m =

[

Im Jm
Im − Jm

]

, B2m+1 =





Im 0 Jm
0 1 0
Im 0 − Jm



 ,

and the permutation matrices give the reordering of the irreducible modules,

P2m = L2m
m ,

P2m+1 : i→ (m+ 1)i mod 2m+ 1, i = 0 . . . 2m.

Theorem 8.6. The following recursive algorithms for DTTs are based on the
rational factorization U2m−1 = 2 · Um−1 · Tm. We also indicate where they first
appeared in the literature (to our best knowledge).

(i) DCT-12m+1 = P2m+1 · (DCT-1m+1 ⊕DCT-3m) ·B2m+1, [27].
(ii) DST-12m−1 = P2m−1 · (DST-3m ⊕DST-1m−1) ·B2m−1, [55].
(iii) DCT-22m = P2m · (DCT-2m ⊕DCT-4m) ·B2m, [7].
(iv) DST-22m = P2m · (DST-4m ⊕DST-2m) ·B2m, [52].
Theorem 8.6 is complemented by the decompositions in the following theorem.

We did not find these in the literature.
Theorem 8.7. The following recursive algorithms for DTTs are based on the

rational factorization U2m = VmWm.
(i) DCT-12m = P2m · (DCT-5m ⊕DCT-7m) ·B2m.
(ii) DST-12m = P2m · (DST-7m ⊕DST-5m) ·B2m.
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(iii) DCT-22m+1 = P2m+1 · (DCT-6m+1 ⊕DCT-8m) ·B2m+1.
(iv) DST-22m+1 = P2m+1 · (DST-8m+1 ⊕DST-6m) ·B2m+1.
Remarks. (1) Transposition of the decompositions in Theorems 8.6 and 8.7

yields algorithms for the DTTs of type 3. (2) Theorem 8.6 reveals why the DCT-1
and the DST-1 are usually considered at sizes 2k + 1 and 2k − 1, respectively. The
available algorithms are more efficient since there are no simple sparse factorizations
of the DTTs of types 5-8. (3) Theorem 8.5 and Theorem 8.6 combined give a complete
set of algorithms for the DTTs of type 1-4, of 2-power size (for type 1 the size differs
by 1, see remark (2)). (4) It is possible to derive algorithms for the more general case
n = k`, using the factorization in Lemma 4.2, (ii).

8.3. Reduction: Fast Algorithms via Polynomial Decomposition. In this
section we derive algorithms based on the decomposition of the polynomial Tn in
Lemma 4.2, (i). This decomposition property allows the decomposition of all DTTs
in the T -group, i.e, DCT and DST of type 3 and 4, using Theorem 7.3.

As an example we will consider a DCT-3n, where n = 2m. Using Table 6.1 we get
the corresponding algebra C[x]/Tn with basis b = (T0, . . . , Tn−1). We use the decom-
position T2m = Tm(T2) (Lemma 4.2). Following Theorem 7.3 and its proof, we choose
bases c = (T0, . . . , Tm−1) and d = (T0, T1) of C[x]/Tm and C[x]/T2, respectively. We
get the new basis

b′ = (T0, T2, . . . , T2m−2, T1, (T1 + T3)/2, . . . , (T2m−3 + T2m−1)/2).

Thus, the base change b′ → b is given by

B =



























1 0
0 0 1 1

2
0 1 0 0
0 0 0 1

2
1
2

...
...

1
2

1 0
0 1

2



























,

and the base change b → b′ by B−1. The zeros of Tn are αk = cos(k + 1
2 )π/n,

αk = −αn−1−k, and T2(αk) = T2(αn−1−k). Thus, the permutation P in Theorem 7.3
is P = (Im⊕ Jm). Further,

Pd,αi =
[

T0(αi) T1(αi)
T0(αn−1−i) T1(αn−1−i)

]

=

[

1 αi
1 −αi

]

= DFT2 ·diag(1, αi),

for i = 0 . . .m. This can be used to derive (
⊕m−1

i=0 Pd,αi)L
2m
m = (DFT2⊗ Im) ·

(Im⊕diagm−1
i=0 (αi)) and we get

DCT-32m = P · (DFT2⊗ Im) · (Im⊕diagm−1
i=0 (αi)) · (I2⊗DCT-3m) ·B−1.

Further simplification can be achieved by writing B = C · (Im⊕ 1
2 Im) and observing

that Im⊕2 Im commutes with I2⊗DCT-3m. For simplicity we set D = diagm−1
i=0 (αi)

and get

DCT-32m = P · (DFT2⊗ Im) · (Im⊕2D) · (I2⊗DCT-3m) · C−1. (8.3)
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Equation (8.3) is also a good example to study the effect of transposition and inversion
to derive new algorithms from known ones. Transposition of (8.3) is straightforward
and yields

DCT-22m = C−T · (I2⊗DCT-2m) · (Im⊕2D) · (DFT2⊗ Im) · P. (8.4)

For the inversion of (8.3) we need DCT-3−1
n = 2

n · diag( 1
2 , 1, . . . , 1) · DCT-2n. After

simplifications we get

DCT-22m = C1 · (I2⊗DCT-2m) · (Im⊕(2D)−1) · (DFT2⊗ Im) · P, (8.5)

where C1 arises from C by setting the entry 2 at position (2,m + 1) to 1. C1 incurs
only additions. Transposing (8.5) (or, equivalently, inverting (8.4)) yields again an
algorithm for DCT-3.

DCT-32m = P · (DFT2⊗ Im) · (Im⊕(2D)−1) · (I2⊗DCT-3m) · CT
1 . (8.6)

Equations (8.5) and (8.6) are very similar to (8.4) and (8.3), respectively, with the
difference that inverting the entries in the diagonal (middle factor) saves one multi-
plication by 2 in the base change matrix (C1 vs. C). More crucial, the additions in
C1 and CT

1 can be performed in parallel (i.e., the critical path has length 1), which
does not hold for C−1 and C−T .

Each of the equations (8.3)–(8.6) occurs in the literature. The references are:
(8.3) [24], (8.4) [24], (8.5) [57] (transposed definition of DTTs), (8.6) [28] and [56]
(transposed definition of DTTs).

Note that (8.4) can also be obtained by first applying Theorem 8.6, (iii), and then
translating the resulting DCT-4 using Theorem 8.5.

Similar computations for the other DTTs in the T -group yield the following result.
Theorem 8.8. Let n = 2m. All DTTs in the T -group have a fast recursive

algorithm of the form

DTT2m = P · (DFT2⊗ Im) · (Im⊕D) · (I2⊗DTTm) ·B,

where P is a permutation matrix, D is diagonal, and B is sparse. This factorization
is based on T2m = Tm(T2) and the concrete form of P and B can be obtained using
Theorem 7.3.

For the DST-3 the factorization can be also found in [56]. For DCT-4 and DST-4,
the factorizations do not appear in literature. They are less efficient with respect to
arithmetic cost.

Remark. It is possible to derive a recursive algorithm based on Tk` = Tn(Tm)
using Theorem 7.3. The problem for larger m is the further decomposition of the
occurring matrices Pd,αi in Theorem 7.3.

9. Fast DTTs via Group Symmetries. In this section we will derive fast
DTT algorithms that are based on “group symmetries” in the sense defined below.
In the cases where they occur, these symmetries are a direct consequence of the DTT
properties in Theorem 6.2. We will identify two ways in which group symmetries
might come into play.

1. Extension (§9.2): By extension to a group algebra of the algebra A = C[x]/p
associated to a DTT.

2. Automorphisms (§9.3): By subgroups of the automorphism group of A,
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These symmetries lead to algorithms that are substantially different from the ones
derived in §8.

For the convenience of the reader, we overview briefly group symmetry based
matrix factorization. We take in the following a “representation” approach, instead
of the equivalent “module-with-basis” point of view.

9.1. Group Symmetry based Matrix Factorization. Matrix factorization
based on group symmetries has its origin in [31, 32] and was generalized in [15, 36,
37, 19] to the form presented here. In [18] the technique was successfully applied
to several discrete signal transforms, which initiated the research presented in this
paper. Due to space limitations we can only give a brief overview and refer to these
references for further details.

In the following G is a finite solvable group. All representations of G (or, equiva-
lently C[G]) in the following arise from right G-modules. The entire approach is based
on the following definition of symmetry.

Definition 9.1. Let B be an arbitrary complex matrix. A pair (φ1, φ2) of rep-
resentations of G is called a symmetry of B, if

φ1(g) ·B = B · φ2(g), for g ∈ G.

G is called a symmetry group of B.
If B has a symmetry, we can factor B according to Figure 9.1. We choose ma-

trices A1, A2 that decompose φ1, φ2, respectively, into a direct sum of irreducible
representations ρ1 and ρ2. Then we compute the matrix

D = A−1
1 ·B ·A2

so that the diagram commutes. We obtain the factorization

B = A1 ·D ·A−1
2 .

φ1

A1

²²

B
// φ2

A2

²²
ρ1

D
// ρ2

Fig. 9.1. Factorization of the matrix M with symmetry (φ1, φ2)

The matrixD is sparse since it is the conjugating matrix for two reduced represen-
tations ρ1, ρ2 (a consequence of Schur’s lemma [12]). This means that the factorization
of B is useful as a fast algorithm for B if the Ai are sparse or can themselves be writ-
ten as products of sparse matrices. This is possible in at least the following cases:
(1) φi is a permuted direct sum of irreducible representations, i.e., φi = ρPi , where P
is a permutation matrix. In this case we call φi of type “irred”. It is Ai = P−1. (2) φi
is monomial. (A representation is monomial if all its images are monomial matrices,
i.e., have exactly one non-zero entry in each row and column.) In this case we call φi
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Table 9.1
Types of symmetry that can be used for factorizing B (irrs = irreducible representations).

mon-mon symmetry φ1 and φ2 monomial

mon-irred symmetry φ1 monomial, φ2 permuted direct sum of irrs

irred-mon symmetry φ2 monomial, φ1 permuted direct sum of irrs

being of type “mon”. The decomposition matrix Ai can be determined as a product of
sparse matrices using the algorithm in [37]. Briefly sketched, this algorithm translates
the monomial representation into an induction that is decomposed stepwise along a
composition series using certain recursion formulas similar to Theorem 7.3. We call
φi of type “mon”.

Depending on the types of the φi, we obtain the 3 types of symmetry shown in
Table 9.1. We omitted the type “irred-irred” since it requires B to be already sparse.

Algorithms for finding symmetry [19] and the algorithm [37] for the stepwise
decomposition of monomial representations have been implemented as part of the
GAP [22] share package AREP [17, 16] for constructive group representation theory.
Thus, AREP can find these factorizations automatically and can be used as a discover
tool for sparse matrix factorizations, i.e., fast algorithms.

In the remainder of this section, we will show that mon-irred symmetries as well
as mon-mon symmetries occur among the DTTs and how these symmetries can be
derived. We will also discuss the structure of the resulting algorithms.

9.2. Algorithms by Extension to Group Algebras. In this section we will
show which DTTs possess a mon-irred symmetry that can be used for deriving fast
algorithms. In [18] exactly 4 DTTs exhibited a mon-irred symmetry with dihedral
symmetry groups in all cases. The transforms were the DCT and DST of type 3
and 4. We will now explain and derive these symmetries. Note that we will deal
with right representations (arising from right modules) to comply with the symmetry
definition 9.1. A right representation is the transpose of a left representation.

We start with the general case of a scaled polynomial transform. As usual, let
b be a basis of A = C[x]/p and let α be the zero vector of p. Further let f be a
scaling function. If φ is the right representation afforded by the regular module A (or,
equivalently, f ·A), then, by Lemma 3.6,

φ · PT
f ·b,α = PTf ·b,α · ρ,

where ρ is a direct sum of one-dimensional irreducible representations of A. If φ
can be extended to a representation φ of a group algebra C[G] of a finite group G,
then ρ extends to a permuted direct sum of irreducible representations of C[G] (on
extension, the one-dimensional irreducibles in ρ—not necessarily adjacent ones—may
fuse to irreducibles of C[G] of larger dimension). In other words, PT

f ·b,α decomposes

φ, up to a permutation. We obtain the following result.
Lemma 9.2. We use previous notation. If the right regular representation φ of

A = C[x]/p can be extended to a representation φ of a group algebra C[G], where G
is finite, then

φ · PT
f ·b,α = PTf ·b,α · ρ,

where ρ is a permuted direct sum of irreducible representations of C[G]. If in particular
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φ is monomial, then PT
f ·b,α has a mon-irred symmetry, and Pf ·b,α has an irred-mon

symmetry, both with symmetry group G.
Now we will apply Lemma 9.2 to determine which DTTs possess a mon-irred

symmetry. Consider a fixed DTT with associated regular representation φ. The
representation φ can be extended to a monomial representation, iff all images φ(q),
q ∈ A can be written as a linear combination of monomial matrices. Since A is cyclic,
it is sufficient to consider the images of the generator φ(x), which is given by the
corresponding matrix B(·) in (5.1).

Theorem 9.3. The 4 transforms DCTn and DSTn of type 3 and 4, n ≥ 0, are
the only DTTs that have a mon-irred symmetry (φ, ρ). Denote with D2k = 〈σ, τ |
σ2 = τ2 = (στ)k = 1〉 the dihedral group with 2k elements. Further, let, for even n,

π1 = (1, 2)(3, 4) . . . (n− 1, n), and π2 = (2, 3)(4, 5) . . . (n− 2, n− 1),

and for odd n,

π1 = (1, 2)(3, 4) . . . (n− 2, n− 1), and π2 = (2, 3)(4, 5) . . . (n− 1, n)

(viewed as permutation on {1, . . . , n}). The symmetry group for DCT-3n and DST-3n
is D2n, for DCT-4n and DST-4n is D4n. The respective monomial representation φ
is given for even n by

DCT-3n : σ 7→ [π1, n], τ 7→ [π2, n],
DST-3n : σ 7→ [π1, n], τ 7→ [π2, (−1, 1, . . . , 1,−1)]
DCT-4n : σ 7→ [π1, n], τ 7→ [π2, (1, . . . , 1,−1)],
DST-4n : σ 7→ [π1, n], τ 7→ [π2, (−1, 1 . . . , 1, )],

and for odd n by

DCT-3n : σ 7→ [π1, n], τ 7→ [π2, n],
DST-3n : σ 7→ [π1, (1, . . . , 1,−1)], τ 7→ [π2, (−1, 1, . . . , 1)]
DCT-4n : σ 7→ [π1, (1, . . . , 1,−1)], τ 7→ [π2, n],
DST-4n : σ 7→ [π1, n], τ 7→ [π2, (−1, 1 . . . , 1, )].

Proof. For all 16 DTTs and their associated representations φ, we have to consider
the matrices φ(x) = B(β1, β2, β3, β4), with βi as given in Table 5.2. Because of its
structure, B(·) can be written as a linear combination of monomial matrices, iff it can
be written as the sum of 2 monomial matrices. Assume β1 = 0. Writing B(0, . . . ) as
sum of 2 monomial matricesM1,M2 requires that both,M1 andM2 have an entry 6= 0
at position (1, 2). Since the entry (3, 2) of B(0, . . . ) is also 6= 0, this decomposition is
not possible. Analogously, a decomposition is not possible, if β4 = 0. In the remaining
4 cases the decomposition is possible and yields the desired results. We will give one
case as an example. It is readily verified that

B(1, 1, 1, 1) = [π1, n] + [π2, n].

The permutations π1, π2 are involutions and hence generate a dihedral group D2m.
The numberm is the order of the product π1π2, here n. By Theorem 6.2 and Table 5.2,
B(1, 1, 1, 1) is diagonalized by DCT-3n, which proves the result. The other 3 cases
can be treated analogously.

Remark. Theorem 9.3 explains the symmetries found in [18].
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We want to briefly sketch the decomposition procedure for a DCT-4. For full
details we refer the reader to [18, 19, 37].

Example 9.4 (DCT-4). We consider a DCT-4 of size n = 2k. By Theorem 9.3,
the matrix B = DCT-42k has a mon-irred symmetry (φ, ρ) with dihedral symmetry
group D2k+2 . We follow Figure 9.1. The decomposition algorithm will decompose φ
stepwise along the composition series

D2k+2 ≥ D2k+1 ≥ · · · ≥ D22 ,

using a recursion formula for the induction of representations. Note that the last
representation of D22 is decomposed since it is of dimension 1. This gives rise to a
factorized decomposition matrix A1 of φ. The representation ρ is a permuted direct
sum of irreducible representations and can thus be decomposed by a permutation
matrix A2. The correction matrix D is computed as D = A−1

1 ·B ·A2 to yield

DCT-42k = A1 ·D ·A−1
2 .

As an example, we give a factorization of a DCT-48 as it is automatically found by
AREP,

DCT-48 = [(1, 2, 8)(3, 6, 5), (1,−1, 1, 1, 1,−1, 1, 1)]·
(I2⊗((I2⊕ 1√

2
·DFT2) · [(3, 4), 4] · (DFT2⊗ I2)))·

[(1, 3)(2, 4)(5, 7)(6, 8), 8] · (I4⊕R 15
8
π ⊕R 11

8
π)·

(DFT2⊗ I4) · [(3, 5, 7)(4, 6, 8), 8]·
1
2 · (R 31

32
π ⊕R 19

32
π ⊕R 27

32
π ⊕R 23

32
π)·

[(1, 8, 5, 6, 3, 2)(4, 7), 8].

(9.1)

The (factorized) matrix A1 is given in lines 1-4, the matrix D in line 5, and the matrix
A−1

2 in line 6 (the last line).
We observe that the factorization in (9.1) contains rotation matrices

Ra =

[

cos(a) sin(a)
− sin(a) cos(a)

]

,

which do not occur in the algorithms derived in §8. The general (arbitrary n =
2k) version of this algorithm can be found in [7] (corrected in [51, 52]). Combining
this algorithm with Theorem 8.6, (iii) yields a factorization of DCT-2, and thus, by
transposition, of DCT-3, into rotation matrices [7]. The obtained algorithm coincides
with the one derived from the mon-irred symmetry of the DCT-3.

Note that the algorithms arising from a mon-irred symmetry occur only in an
iterative form in the literature, i.e., the transform matrix is completely factorized (as
in (9.1)) and not into transforms of smaller size. The reason is in the decomposition
procedure (cf. Figure 9.1), since not B, but A1 is decomposed recursively.

Remark. It is striking that, e.g., the algorithm for a DCT-32k arising from its
mon-irred symmetry and the algorithm from Theorem 8.8 have precisely the same
arithmetic cost [7, 28, 56].

9.3. Algorithms from Automorphism Groups. In §9.2 we showed how, in
certain cases, a mon-irred symmetry of a DTT can be derived from its interpretation as
a (scaled) polynomial transform. In the following we will show that the—completely
different—type of mon-mon symmetry also occurs among the DTTs. This type of
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symmetry, if present, arises from the automorphism group of the associated algebra.
All modules in this section will be right modules.

We introduce the following notation. Let A = C[x]/p. Automorphisms of A will
be denoted by letters g, h. We multiply automorphisms from left to right, i.e., in gh,
g is applied before h. This complies with applying automorphisms from the right, i.e.,
if q ∈ A, we write qg for the image of q under g. If φ is a representation of A, and
g an automorphism, then φg : q 7→ φ(qg) defines another representation of A. As
suggested by this notation, (φg)h = φgh.

A possible source of a mon-mon symmetry of a polynomial transform Pb,α is
described in the following theorem.

Theorem 9.5. Let A = C[x]/p be a regular module with basis b. The polynomial
p is separable and has zeros α = (α0, . . . , αn−1). Denote by φ the (right regular)
representation afforded by A and b. Assume that A has a group G of automorphisms
with the property that for each g ∈ G there exists a monomial matrix Mg with

φg = φMg
−1

. (9.2)

Then PT
b,α has a mon-mon symmetry (χ, ψ) with symmetry group G ∼= 〈Mg | g ∈ G〉.

It is G ∼= G/N , where N EG denotes the normal subgroup defined by

g′ ∈ N ⇔ φ(q) · χ(g′) = χ(g′) · φ(q), for all q ∈ A
⇔ χ(g′) ∈ φ(A).

If D is any invertible diagonal matrix, then (D · Pb,α)T = PTb,α · D has the same

mon-mon symmetry as PT
b,α.

Proof. First we note that the set S = {Mg | g ∈ G} is not a group since for
every g there are (if any) many possible choices for Mg, e.g., all a ·Mg, where a ∈ C.
Conversely, every Mg ∈ S uniquely defines an automorphism of A, since φg = φh,
and φ faithful, implies g = h. Now we reverse the situation by defining a mapping
γ : S → G, Mg 7→ g. Let G = 〈S〉 (the group generated by S). Then γ can be
extended to a homomorphism γ : G→ G, since, for M,M ′ ∈ S, and using (9.2),

φγ(MM ′) = φ(MM ′)−1

=
(

φM
′−1
)M−1

=
(

φγ(M ′)
)M−1

=
(

φM
−1
)γ(M ′)

= φγ(M)γ(M ′).

By definition, γ is surjective, and the kernel of γ is given by N = {M | φ = φM},
and thus G ∼= G/N . Since M ∈ N implies that M commutes with each φ(q), q ∈ A,
M ∈ φ(A). Viewing G as a monomial representation χ of itself shows all assertions
on G.

It remains to show that PT
b,α has a mon-mon symmetry (χ, ψ). To this end

we choose an arbitrary monomial matrix M = χ(M) in G. The representation φ is
decomposed by PT

b,α into a direct sum of irreducible representations ρ (cf. Lemma 3.2).

Thus, φγ(M) is also decomposed by PT
b,α into a direct sum of irreducible representations

ρ′. Following Figure 9.2 there is a unique matrix M ′ such that

M · PTb,α = PTb,α ·M ′.

SinceM ′ conjugates ρ′ onto ρ, it is monomial. Setting ψ(M) =M ′ defines a monomial
representation of G, and shows that PT

b,α has the mon-mon symmetry (χ, ψ).

If D is any invertible diagonal matrix, then ρD = ρ and ρ′D = ρ′, since all
irreducible summands of ρ, ρ′ are of dimension 1. Thus, we can replace PT

b,α by
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φγ(M)

M

²²

PTb,α
// ρ′

M ′

²²
φ

PTb,α
// ρ

Fig. 9.2. Constructing a mon-mon symmetry for PTb,α.

PTb,α · D in Figure 9.2 obtaining the same mon-mon symmetry. This completes the
proof.

Remarks. (1) PT
b,α has the mon-mon symmetry (χ, ψ) iff Pb,α has the mon-mon

symmetry (ψT , χT ). (2) The last assertion in Theorem 9.5 shows that we can apply
it to scaled polynomial transforms, and thus to the DTTs.

In the remainder of this section, we will use Theorem 9.5 to derive the mon-
mon symmetries for the DTTs whose transposes are in the T -group, i.e., those with
associated algebra C[x]/Tn (cf. Table 6.1) for the special case where n = 2m is a
2-power. A complete investigation of all DTTs and sizes would exceed the space
available.

First we need a suitable group G of automorphisms of A = C[x]/Tn.
Lemma 9.6. Let n = 2m and A = C[x]/Tn. Each mapping

gk : T1 7→ Tk, and g−k : T1 7→ −Tk, 1 ≤ k ≤ n, k odd,

defines an automorphism of the algebra A. The set Gn of all such g±k is a cyclic
group of order n.

Proof. Before we start the proof we investigate the sequence Tk, k ≥ 0 in A. The
following two equations allow the reduction of each Tk modulo Tn.

0 ≡ TnTn−k = 1
2 (T2n−k + Tk) ⇒ Tk ≡ −T2n−k, and

0 ≡ TnTn+k = 1
2 (T2n+k + Tk) ⇒ Tk ≡ −T2n+k.

(9.3)

The latter equation also shows that Tk ≡ Tk+4n, i.e., the sequence Tk, k ≥ 1 has
period 4n (in A). Using (9.3) we can compute the reduced Tk, k = 0 . . . 4n− 1, as

T0 . . . Tn−1 | 0 −Tn−1 . . .−T1 | −T0 . . .−Tn−1 | 0 Tn−1 . . . T1 |, (9.4)

where the vertical lines indicate the reflection points at multiples of n.
Now we start the proof of Lemma 9.6. Let n = 2m. We will repeatedly use that

Tn is an even function, and that Tk, k odd, is an odd function. Also note that g±k
maps T` = T`(T1) 7→ T`(±Tk).

(1) g±k is a homomorphism, since Tn(±Tk) = Tn(Tk) = Tk(Tn) ≡ 0 (Lemma 4.2,
(i)), i.e., the defining equation Tn = 0 in A is preserved. (2) g±k is invertible; Gn is
a group. Let gk be given, k odd. We choose an ` with k` ≡ 1 mod 4n. The mapping
T1 7→ T` inverts gk, since Tk` ≡ T1 (see beginning of this proof). Similarly, T1 7→ −T`
inverts g−k. Using (9.3), we can reduce T` ≡ T`′ or ≡ −T`′ for a suitable odd `′ < n.
This shows that Gn is closed under inversion. Also g±kg±` : T1 7→ ±T`(±Tk) = ∓Tk`,
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which can be reduced analogously. Thus, Gn is a group. (3) Gn is cyclic. For n = 2,
g−1 has order 2. For n = 4, g3 has order 4 (T3(T3) = T9 ≡ −T1). For n > 4 we show
that g5 has order n. Observing (9.4), we get that ge5 is the identity, iff 5e ≡ ±1 mod 4n.
Since 5e is never ≡ −1, and 5 has order n mod 4n (n = 2m) we get the assumption.

Now we will use the group Gn of automorphisms (Lemma 9.6) and Theorem 9.5
to derive mon-mon symmetries for all DTTs whose inverses are in the T -group.

Theorem 9.7. Let n = 2m ≥ 4 and Gn as defined in Lemma 9.6. The transforms
DCT-2n,DST-2n,DCT-4n,DST-4n have a mon-mon symmetry (χ, ψ) with non-zero
matrix entries ±1 arising from the group of automorphisms Gn of C[x]/Tn (cf. Theo-
rem 9.5). Denote with Zn = 〈σ | σn = 1〉 the cyclic group of order n. The symmetry
group for DCT-2n,DST-2n is Zn, for DCT-4n,DST-4n it is Z2n. The respective
monomial representation χ is given by

DCT-2n : σ 7→ (Ti 7→ Tki mod Tn)
−1,

DST-2n : σ 7→ (Ui 7→ Uk−1+ki mod Tn)
−1,

DCT-4n : σ 7→ (Vi 7→ V(k−1)/2+ki mod Tn)
−1,

DST-4n : σ 7→ (Wi 7→W(k−1)/2+ki mod Tn)
−1,

(9.5)

where i = 0 . . . n− 1, and k = 3 for n = 4, and k = 5 for n ≥ 8.
Proof. Let gk ∈ Gn, i.e., T

gk
1 = Tk. We consider the first case DCT-2n = DCT-3Tn

with associated algebra A = C[x]/Tn and b = (T0, . . . , Tn−1), i.e., DCT-2n decomposes
the right regular representation of A (Theorem 6.2). Following Theorem 9.5 we have
to find a monomial base change matrix Mgk : b → b′, such that T1 operates on
b as T gk1 = Tk on b′. This is afforded by b′ = (Tk·0, Tk·1, . . . , Tk·n−1), since, using
Lemma 4.1 (ii),

T1 on b Tk on b′

T1 · T0 = T1 T1 · Tk·0 = Tk·1
T1 · Ti = (Ti−1 + Ti+1)/2 T1 · Tki = (Tk(i−1) + Tk(i+1))/2
T1 · Tn−1 = Tn−1/2 T1 · Tk(n−1) = Tk(n−1)/2

where i = 2 . . . n− 2, and in the last line we used Tn ≡ 0, and thus Tkn = Tk(Tn) ≡ 0,
since Tk is an odd function. The base change b→ b′ is given by the matrix Mk : Ti 7→
Tki, i = 0 . . . n− 1, and thus

φgk = φMk .

(Note that we consider right representations, where φ is conjugated into φM
−1

by
a base change with matrix M .) As in the proof of Lemma 9.6, we see that Mk is
monomial, since every Tki can be reduced to a suitable ±T` mod Tn, 0 ≤ ` ≤ n − 1.
Theorem 9.5 establishes a mon-mon symmetry for (χ, ψ). It remains to show that
the symmetry group is cyclic of order n. To this end we need the sequence of T`,
` ≥ 0, reduced mod Tn, given in the first row of Table 9.2. We see that M e

k = In iff
Tkei ≡ Ti mod Tn (i = 0 . . . n−1) iff ke ≡ ±1 mod 4n. As in the proof of Lemma 9.6,
this shows that the maximum order e = n is obtained for k = 3, if n = 4, and k = 5
for n ≥ 8.

The proof of the other three cases is analogous. The base b is replaced by b =
(P0, . . . , Pn−1), where P = U, V,W , respectively.

The respective base change b→ b′ given by the matrix Mk corresponding to the
automorphism gk is given in lines 2-4 of (9.5) (without the inversion). The operation
of Tk on b′ can again be established using Lemma 4.1 (ii). To determine the order of
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Table 9.2
For P ∈ {T, U, V,W} the sequence of polynomials P0, . . . , P4n−1 (i.e., one period) reduced mod

Tn. The vertical lines indicate multiples of n.

DCT-3 : T0 . . . Tn−1|0 −Tn−1 . . . −T1|−T0 . . . −Tn−1|0 Tn−1 . . . T1|
DST-3 : U0 . . . Un−1|Un−2 . . . U0 0|−U0 . . . −Un−1|−Un−2 . . . −U0 0|
DCT-4 : V0 . . . Vn−1|−Vn−1 . . . −V0|−V0 . . . −Vn−1|Vn−1 . . . V0|
DST-4 : W0 . . . Wn−1|Wn−1 . . . W0|−W0 . . . −Wn−1|−Wn−1 . . . −W0|

Mk we need, in each case, the sequence of P` reduced mod Tn given in Table 9.2 (each
of these sequences has period 4n). Surprisingly, it turns out that for the DCT-4 and
DST-4, the symmetry group is factor of 2 larger than Gn. We consider the example
DCT-4n. Denote with Vae,i the image of Vi under M

e
k , i = 0 . . . n − 1. We get the

recurrence, and its solution

a0,i = i, ae,i = (k − 1)/2 + k · ae−1,i, ⇒ ae,i = (ke − 1)/2 + ike.

Using the third row of Table 9.2, we get

V(ke−1)/2+ike ≡ Vi mod Tn (i = 0 . . . n− 1)

⇔ (ke − 1)/2 + ike ≡ i or − i− 1 mod 4n (i = 0 . . . n− 1)

⇔ ke(2i+ 1) ≡ ±(2i+ 1) mod 8n (i = 0 . . . n− 1)

⇔ ke ≡ ±1 mod 8n,

which shows that the maximum order e = 2n is obtained for k = 3, if n = 4, and
k = 5 for n ≥ 8.

We conclude this section with a small example.
Example 9.8 (DCT-4, size 4). Using Theorem 9.7, the DCT-44 has a mon-

mon symmetry (χ, ψ) with a cyclic symmetry group Z8 = 〈σ〉. The image χ(σ) is
determined by the inverse of Vi 7→ V1+3i mod T4, i = 0 . . . 3. Using Table 9.2 we get
V4 ≡ −V3, V7 ≡ −V0, V10 ≡ −V2, and thus

χ(σ) =









0 0 −1 0
1 0 0 0
0 0 0 −1
0 −1 0 0









, ψ(σ) =









0 −1 0 0
0 0 0 −1
1 0 0 0
0 0 −1 0









.

The matrix ψ(σ) was computed using AREP. Both matrices have order 8.
The mon-mon symmetry of the DCT-44 given in Example 9.8 has been used in

[21] to derive a fast algorithm (the symmetry is stated in a different way), and, using
Theorem 8.6 (iii), as fast algorithm for the DCT-28. The derivation essentially follows
Figure 9.1, but the two monomial representations φ1, φ2 are decomposed over Q. This
concentrates all non-rational operations in the correction matrix D.

Remark. Using AREP we have verified (up to a certain size) that all 16 types
of DTTs possess mon-mon symmetries for every size n.

10. Other Fast Algorithms. The algebraic methods presented in §8 and 9
explain most of the algorithms from the literature. There is one class of algorithms,
however, that can not be explained by the methods presented so far. We will briefly
discuss these algorithms to make this paper a comprehensive overview on DTT algo-
rithms.
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In short, it is possible to compute DTTs by embedding the transform matrix into
a larger transform that can be computed efficiently. As an example we consider the
first algorithm proposed for the DCT-2n = [cos k(`+ 1

2 )π/n] [1]. If we define the DFT
by

DFTn = [e2πikl/n]k,`=0...n−1,

we can readily derive

re
(

diag2n−1
k=0 (eπik/2n) ·DFT2n

)

= [cos k(`+
1

2
)π/n]k,`=0...2n−1,

where re(M) denotes the real part of the matrix M . This shows that a DCT-2n can
be computed by padding an input vector x of length n with n zeros, followed by
multiplying with a scaled DFT of size 2n. The first n entries contain the result.

Similar constructions allow the computation of each DTT via a DFT of appro-
priate length. This shows that the arithmetic complexity of each DTTn is O(n log n),
independent of the size n. In particular, this includes the DTTs of type 5-8, for which
no other algorithms exist in literature.

Embeddings into other transforms are also possible. For example, Theorem 8.7
allows to embed a DTT of type 5-8 into a DTT of type 1 or 2.

11. Summary. We gave a complete characterization of all 16 types of DTTs as
scaled polynomial transforms corresponding to appropriate A-modules M with basis
b, where A = C[x]/p(x), M = f · A with a scaling function f , and b is a sequence of
Chebyshev polynomials (Theorem 6.2). Every DTT is uniquely determined by this
algebraic property.

Then we used the algebraic characterization to derive by algebraic means most
of the fast DTT algorithms known in the literature, and identified the mathematical
principles behind each algorithm. In particular we derived

1. Algorithms by direct manipulation/decomposition of M (§8): (1) Translation
between DTTs by duality (Theorem 8.2); (2) Translation between DTTs by base
change (Theorem 8.5); (3) Decomposition by polynomial factorization (Theorems 8.6
and 8.7); (4) Decomposition by polynomial decomposition (Theorem 8.8).

2. Algorithms by group symmetries (§9): (1) Decomposition by mon-irred sym-
metry (Theorem 9.3); (2) decomposition by mon-mon symmetry (Theorem 9.5).

3. Algorithms by embedding (§10).
Our results show that the connection between digital signal processing and the

representation theory of algebras goes clearly beyond the DFT. The question that
remains is to what extent this connection can be extended to include other transforms
and their fast algorithms and how this connection can be exploited for applications in
signal processing. We want to conclude with this question: To what extent is signal
processing algebraic?

Appendix. Orthonormal DCTs and DSTs.

Table A.1 gives the orthonormal versions of the 16 DTTs.
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