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ABSTRACT
An important primitive in the hardware implementations of linear
DSP transforms is a circuit that can multiply an input value by one
of several different preset constants. We propose a novel imple-
mentation of this circuit based on combining the addition chains of
the constituent constants. We present an algorithm to automatically
generate such a circuit for a given set of constants. The quality of
the resulting circuits is evaluated after synthesis for a commercial
0.18µm standard cell library. We compare the area and latency
efficiency of this addition chain based approach against a straight-
forward approach based on a constant table and a full multiplier.

Categories and Subject Descriptors
B.2.4 [High-Speed Arithmetic]: Cost/performance

General Terms
Algorithms, design

Keywords
Addition chains, multiplierless, directed acyclic graph, fusion

1. INTRODUCTION
This paper addresses the problem of creating optimal circuits for

multiplying a fixed-point input value by one of N preset constants
according to a dlog

2
Ne-bit control input. These circuits are im-

portant primitives in the hardware implementations of linear DSP
transforms (discrete Fourier transform, discrete cosine transforms,
and others). A straightforward approach to implementing this mul-
tiplication circuit is to store the different constants in a lookup ta-
ble and to use a control input to select one constant at a time from
the table to feed one input of a full multiplier (shown later in Fig-
ure 2(a)). Intuitively, the full generality of a full multiplier is un-
necessary for multiplying by a predetermined set of constants.

Our solution. This paper presents an alternative implementa-
tion that takes advantage of the redundancy and structure in the
constituent constants to reduce hardware cost. Specifically, our
proposed implementation leverages previous research on addition
chains [3, 4]—deriving optimal multiplication circuits for one con-
stant using only adders and wired shifts. We extend this work to
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create a reduced-area multiplication circuit for multiple constants
by optimally “fusing” the individual constants’ addition chains into
a single network of adders, wired shifts, and multiplexers. The re-
sulting fused addition chain circuit only requires as many adders as
needed by the largest of the constituent addition chains. A similar
idea was discussed in [2] but without an algorithm how to obtain or
optimize these circuits.

Our results. We present an algorithm to generate the multipli-
cation circuit based on fused additions chains. We evaluate our
automatically generated multiplication circuits after synthesis for a
commercial 0.18µm standard cell library. We compare our multi-
plication circuits against the straightforward implementations based
on full multipliers and lookup tables. When multiplying by a small
number of constants, our approach results in a considerably smaller
synthesized circuit area at a latency penalty of no more than a fac-
tor of two. As the number of constants is increased, our approach
incurs too much overhead to stay competitive. We report the break-
even point between our approach and the straightforward imple-
mentation for different combinations of input port bit-width and
constant bit-width. For example, for a 16-bit input port and 16-bit
constants, our approach results in a smaller synthesized circuit area
when supporting up to 15 constants.

Paper outline. Following this brief introduction, Section 2 dis-
cuses additional background and related work on the problem of
multiplying a value by one or several constants. Section 3 presents,
in detail, our approach to multiply by several constants using fused
addition chains. Section 4 presents an evaluation of our approach.
Section 5 offers conclusions.

2. MULTIPLICATION BY CONSTANTS
This section reviews the problem of multiplying an input by one

or several fixed-point constants using only additions and shifts.
Without loss of generality, we assume the multiplicative constants
are fixed-point numbers between 0 and 1 (i.e., 0 ≤ c < 1). The
number of fractional bits is denoted by w such that

c = 0.b1b2 · · · bw−1bw =

w
∑

i=1

bi2
−i, bi ∈ {0, 1}. (1)

Multiplication By One Constant. Eq. (1) shows that the prod-
uct cx of an input x and a w-bit constant c is given by

∑w

i=1
bi2

−ix.
This summation can be directly mapped into a series of shifts (scal-
ings by powers of 2) and additions. More commonly, both soft-
ware and hardware compilers generally use signed digit (SD) re-
coding to reduce the number of additions associated with multiply-
ing by a constant [5, chap. 6]. An SD constant is 0.b1...bw−1bw =
∑n

i=0
bi2

−i where bi ∈ {1, 0, 1} and 1 stands for -1. The most
salient aspect of SD recoding is in replacing the occurrences of se-
quences of k 1’s, 1 · · · 11, by 10 · · · 01, which yields a saving of
k − 2 additions. For example, SD recoding for 16-bit numbers re-
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Figure 1: The DAG corresponding to multiplying by c =

0.10011100100101.

sults in 27% less additions on average. (For brevity, we use in the
remainder of the paper the term “addition” for both additions and
subtractions since these operations are virtually identical in com-
plexity and map to similar hardware structures.)

The addition chain method for multiplying by a constant can fur-
ther reduce the number of additions by allowing the results of inter-
mediate additions to be shifted and reused in arbitrary subsequent
additions (a more precise name would be addition/shift chain; we
use addition chain for brevity). Addition chains are best computer-
represented and visualized as directed acyclic graphs (DAGs). An
example DAG for multiplying x by c = 0.10011100100101 is
given in Figure 1. The nodes of the graph represent additions and
the edges represent the dataflow between additions. Each addi-
tion/subtraction node has an in-degree of 2, i.e., two operands.
Each edge is labelled by a positive or negative integer k, which
represents the shift, or scaling by 2k, applied to the operand at this
edge. In the trivial case k = 0, we omit the label. Each node can be
labelled by the intermediate result f computed at this node. These
numbers are called fundamentals of the DAG. In other words, if x is
the DAG input and f the fundamental of a node, then the output of
this node is fx. Every DAG can be transformed into an equivalent
normalized DAG of equal cost where 1) for each addition node, one
of the operands is not shifted and 2) all fundamentals are odd [3,
theorem 2]. (The example in Figure 1 is normalized.) In this paper,
we will only consider normalized DAGs.

In the example in Figure 1, only 4 additions are required to com-
pute cx, compared to 5 additions required by the best SD method.
The problem of finding an optimal addition chain for a constant is
know to be NP-hard [1] and has been frequently studied in the lit-
erature, e.g., [3, 4]. Recently, [4] has developed an algorithm that
finds optimal addition chains for constants up to a maximal bit-
width of 19, and showed that 5 additions are sufficient in all cases.
In this paper, we use a re-implementation of this method.

Multiplying by Several Constants. In this paper, we are inter-
ested in developing an area efficient combinational logic block that
can multiply a fixed-point input value by one of the N preset con-
stants c1, . . . , cN according to a dlog

2
Ne-bit control input. This

is a different problem from multiplying an input by several con-
stants simultaneously (e.g., in an FIR filter). The most straightfor-
ward implementation of the current problem is shown in Figure 2(a)
where the preset constants are stored in a lookup table.

Addition chains provide an appealing alternative, since, beyond
their optimality for one constant, they allow for potential additional
savings through “overlapping”. A simple proposal for an addition
chain-based approach is given in Figure 2(b). The leaf-shaped ob-
jects depict the DAGs for c1, . . . , cN . A multiplexer before the
output selects one of the output products according to the control
input. The shaded region represent overlaps between two DAGs
where the same fundamental nodes are used for both constants. In
other words, the shaded regions represents implementation savings
due to sharing common subexpressions between different DAGs.
Whether (b) presents any savings compared to (a) depends on the
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Figure 2: (a) A logic block that can multiply an input by sev-
eral preset constants stored in a lookup table. (b) An alternate
solution using addition chains.

number N of multiplicative constants included and the degrees of
overlaps between the individual DAGs.

The simple proposal in Figure 2(b) instantiates one adder for
each unique fundamental in the overlapping DAGs. This is, in gen-
eral, suboptimal for our problem. Since only one product is visible
through the output multiplexer at any moment, the results of some
adders are unused. This opens the opportunity for the fundamen-
tals from different DAGs, equal or not, to share the same adders
by time-multiplexing, thus exploiting the topological similarities
between the DAGs to a much larger degree. As the central contri-
bution of this paper, we offer in the next section an algorithm to
fuse addition chains in a way suitable for time-multiplexing.

3. DAG FUSION
This section describes an algorithm to generate a multiplierless

hardware functional block for multiplying an input value by one
of N given preset constants c1, . . . , cN according a dlog

2
Ne-bit

control input. The input to the algorithm is a set of N DAGs rep-
resenting optimal additions chains for c1, . . . , cN ; the output is a
composite (or fused) DAG that consists exclusively of additions,
shifts, and multiplexers. The composite DAG has the same input-
output behavior as Figure 2(a). The number of additions in the
composite DAG is equal to the largest number of additions required
by any of the input DAGs. In the discussion below, we first provide
the details of the fusion algorithm for N = 2 and then extend to
the general case of N DAGs.

3.1 Fusing Two DAGs
Let DAGL and DAGR be the addition chains for two constants

with n and m addition nodes, respectively. We denote the re-
spective node sets by NodesL = {NL,0, NL,1, ...., NL,n−1} and
NodesR = {NR,0, NR,1, ..., NR,m−1}. Without loss of generality,
we assume n ≥ m. Intuitively, the fusion algorithm tries to find
and exploit similarities in the two DAGs’ topology. These similar
regions are fused and allow the additions in DAGL and DAGR to
time-multiplex the same adder instantiations with little hardware
overhead. In regions that are dissimilar, adders can still be time-
multiplexed by the additions in DAGL and DAGR, but multiplexers
must be inserted to connect the correct input sources to the shared
adders or to correct for different shifts of the addition’s operands.

A small example. Figure 3(c) gives the composite DAG after
fusing the optimal DAGs for multiplying by 45 (a) and 19 (b). Each
of the initial DAGs requires 2 additions, and thus the composite
DAG shown in (c) also requires max{2, 2} = 2 additions. With
both multiplexers set to select their left inputs, the active datapaths
in the composite DAG correspond to DAG (a), and with both mul-
tiplexers set to their right input it corresponds to DAG (b). Note
that in the fusion process, we replaced 2 additions by 2 multiplex-
ers. This saving would not be possible in the simple proposal in
Figure 2 (b).
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Figure 3: (a) DAG for 45, (b) DAG for 19, and (c) a composite
DAG for both 45 and 19.

The algorithm. The fusion algorithm, called FusePairDags, is
given below in pseudo code.

FusePairDags(DAGL, DAGR) {
// assume DAGL has equal or more additions than DAGR

best cost = ∞;
foreach (unique assignment of NodesR to NodesL) {
current dag = FusePair(DAGL, DAGR, current assignment);
current cost = ComputeCostCoarse(current dag);
if (current cost < best cost) {

best cost = current cost;
best dag = current dag;

}
}
return best dag;

}

The algorithm enumerates all admissible assignments (injective
mapping) of NodesR to NodesL. Admissible means that the assign-
ment respects the partial ordering of the nodes in both DAGs. For
each such assignment, the function FusePair merges the edges of
DAGL and DAGR in the best possible way w.r.t. the cost function
ComputeCostCoarse. Since it is clear that the composite DAG
has as many additions as DAGL, ComputeCostCoarse counts the
number of full bit-width multiplexers, e.g., 2 in Figure 3(c). Finally,
the composite DAG with the lowest cost among all enumerated as-
signments is returned. Details on the node assignment and on the
edge merging procedure are given next.

Node assignment. To fuse DAGL and DAGR, one must assign
each node NR,i in DAGR to a unique node NL,j in DAGL, which
means NR,i and NL,j will share the same addition in the composite
DAG. Each assignment is an injective mapping φ : NodesR →
NodesL, i.e., no two nodes in DAGR are mapped to the same node
in DAGL. Further, to allow fusion, φ has to respect the respective
orderings provided by the two DAGs. In the simplest and most
frequent case, both DAGL and DAGR are totally ordered, which
means there are

(

n

m

)

possible assignments φ. In the general case,
FusePairDags will enumerate all possible φ. In the worst case,
DAGR can be embedded into m! total orderings (when all nodes
are parallel) and the number of unique φ is n!/(n − m)!. For the
bit-widths considered in this paper, we have n, m ≤ 6, and thus
the number of φs does not impose a computational problem.

Merging Edges. Assume an assignment of nodes has been fixed.
The function FusePair then creates a composite DAG starting from
the input node. Consider the fusion of two addition nodes NR,i

and NL,j . Now one of three cases applies (note that addition nodes
have exactly two operands):
• The two incoming edges of both nodes are shifted by the same

values and belong to the same operand (predecessor node). Then
the composite DAG does not need any multiplexers for this node.

• Exactly one incoming edge of each node is shifted by the same

value and belongs to the same operand. In this case one multi-
plexer is needed in the composite DAG for this node to accom-
modate for the other respective edges. This case occurs for both
nodes in Figure 3.

• In any other case, two multiplexers are needed for this node to
accommodate for different input shifts and/or different operands.

Note that FusePair also tries to flip the incoming edges of a node
(since addition is commutative) to improve the result. Thus, at most
2m fusions are tried for each call of FusePair. However, if an addi-
tion node and a subtraction node are fused, the result is a combined
addition/subtraction node, and commutativity is lost.

3.2 Fusing Multiple DAGs
In this section we explain the algorithm for fusing N constant

DAGs in the general case N ≥ 2. We first provide a pseudo code
description of the algorithm, which is essentially an iterative appli-
cation of the fusion algorithm FusePairDags for two DAGs com-
bined with a search over different orderings of fusing these DAGs.
This section also analyzes the impact of reordering the DAGs and
describes a more detailed cost function for selecting the best com-
posite DAG among the re-ordered alternatives.

The algorithm. The fusion algorithm FuseNDags is given in
pseudo code below. The input is an array of N DAGs, representing
N constants c1, . . . , cN , and an integer No Iterations. The out-
put is a composite DAG that multiplies by the ci, 1 ≤ i ≤ N ,
according to a dlog

2
Ne-bit control input.

FuseNDags(DAG[N], No Iterations) {
best cost = ∞;
repeat for No Iterations {
randomly permute input DAG array;
current dag = FusePairDags(DAG[1], DAG[2]);
for (i = 3 to N) do
current dag = FusePairDags(current dag, DAG[i]);

}
current cost = ComputeCostFine(current dag);
if (current cost < best cost) {
best cost = current cost;
best dag = current dag;

}
}
return best dag;

}

The algorithm enumerates, for No Iterations, different order-
ings of the input DAG array. For a given ordering, the array is
fused iteratively using the function FusePairDags. The lowest
cost DAG among all different orderings is returned. The cost func-
tion ComputeCostFine used to distinguish between the DAGs
computes a finer grain area estimate than ComputeCostCoarse
in FusePairDags, which only counted the number of multiplex-
ers. The subroutine FusePairDags needs to handle the case where
DAGL is already composite, i.e., may contain multiplexers before
each node. This generalization does not affect the node assignment
procedure, but the edge merging subroutine now considers all mul-
tiplexed input edges to a node in DAGL as candidates for fusing
with the input edges to the corresponding node in DAGR.

Effect of ordering. The order in which DAGs are fused affects
the final outcome. In one experiment, we generated ten different
random sets of sixteen 16-bit constants, each requiring 5 additions
(the maximum possible). In each case we fused the DAGs using
10,000 random orderings and evaluated the results using the area
estimation function ComputeCostFine. The spread was about
10–15%. These differences arises because FusePairDags makes
a local decision about where multiplexers are inserted, and these
decisions can impact the options available to subsequent calls to
FusePairDags for the remaining DAGs. For N DAGs, N ! dif-



Table 1: Area efficiency crossover points.
input constant bit-width
bit-width 8 12 16 20

8 12
16 15 16 15
32 20 12 11 10

ferent ordering must be considered to find the optimal ordering.
Exhaustive enumeration is clearly impractical for large N . In-
stead, FuseNDags is parameterized to select the best result from
No Iterations many randomly chosen orderings. A small number
of trials is sufficient in practice, and the worst case penalty is bound
by the 10–15% margin discussed above.

Area estimation. To select among all fusion orders the com-
posite DAG with the least area, FuseNDags uses the area es-
timation function ComputeCostFine. This function makes one
pass through the composite DAG and recursively computes the
bit-widths (bw’s) needed for each of the occurring multiplexers,
adders, subtractors, and adder/subtractors. Knowing the bit-width,
say k, for any of these blocks, the area can be estimated in square
micron as a · k, where a is a constant depending on the ASIC tech-
nology and library used for mapping. The total DAG cost is then
obtained by multiplying all bw’s with the respective factors a above
and summing them. We conducted several experiments comparing
the area estimate computed by ComputeCostFine with the post-
synthesis area. The average error was below 10% in all cases.

4. EXPERIMENTAL RESULTS
In this section we evaluate the serial constant multiplier design

generated by the DAG fusion algorithm in Section 3 with the stan-
dard solution using a generic multiplier shown in Figure 2(a). For
a fair comparison, the I/O for each design and the parameters for
synthesis were the same in all cases. The designs are synthesized
using the Synopsys design compiler v. 2002.05-SP2, a commercial
0.18µm standard cell library, and optimizing for area. All presented
sizes are measured in square microns; all presented latencies are
measured in nanoseconds.

We evaluated the design space comprised of the Cartesian prod-
uct of n ∈ {8, 16, 32}, w ∈ {8, 12, 16, 32}, N = 2, 3, . . . , 20,
and M = 10, where
• n = bit-width of the input to the multiplication block;
• w = maximum bit-width of the constants considered;
• N = number of constants to be fused;
• M = number of random constant sets to be averaged over.
Figures 4 and 5 report two exemplary set of results for the cases
n = 8, w = 8 and n = 32, w = 8, respectively. The x-axis is the
number of constants N fused for N = 2, 3, . . . , 20. In both figures,
latency and area are shown. The area cross-over point of N = 12
constants in Figure 4 was among the lowest in the experiments, the
cross-over point of N = 20 in Figure 5 was the largest. The area
reduction of our method in both Figures decays approximately lin-
early starting from 40% and 50% for N = 2 to 0% at the crossover,
respectively. The increase in latency is about constant around 40%
and 120% percent, respectively. The not reported configurations of
n and w exhibited similar behaviors; the area cross-over points are
given in Table 1.

5. CONCLUSIONS
We proposed a new multiplication logic to support multiplication

by one of several preset constants according to a control input. Our
design is based on fusing the addition chains of the given constants
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Figure 4: Area and latency comparison between fused DAGs
and a generic multiplier solution; input bit-width = 8, constant
bit-width = 8.
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Figure 5: As Figure 4, but with input bit-width = 32 and con-
stant bit-width = 8.

to time-multiplex a minimum number of adders. We presented an
algorithm for generating such multiplication logic. Using the gen-
erated multiplication circuit, we evaluated the practicality of this
new approach against a standard approach based on a constant table
and a full multiplier. Our result showed that, for an interesting and
relevant space of problems, our approach can offer considerable
saving in circuit area albeit for the penalty of increased latency.
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