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Abstract

Standardized software architectures, such as AUTomotive
Open System ARchitecture (AUTOSAR), are being pursued
within the automotive industry in order to reduce the cost of
developing new vehicle features. Many of these features will
need to be highly dependable. Fault injection plays an im-
portant role during the dependability analysis of such soft-
ware. This work evaluates the feasibility of leveraging the
CANoe simulation environment to develop software-based
methods for injecting faults into AUTOSAR applications.
We describe a proof-of-concept fault-injection framework
with example fault-injection scenarios, as well as imple-
mentation issues faced and addressed, lessons learned, and
the suitability of using CANoe as a fault-injection environ-
ment.

1. Introduction

The automotive industry has become steadily more reliant
on software-intensive distributed systems to implement ad-
vanced vehicle features. In fact, it has been suggested that
“up to 90% of all innovations are driven by electronics and
software” [5]. It is further estimated [5] that 50-70% of an
Electronic Control Unit (ECU)’s development costs come
from software, with some vehicles having up to 70 ECUs.
Overall, electronics and software can account for up to 40%
of a vehicle’s cost [5]. Recently, the industry has seen the
emergence of standardized software architectures, such as
AUTOSAR [4], as a way to promote software reuse and
reduce the development costs incurred when introducing
new software-based features. AUTOSAR was developed
through the partnership of over 100 companies, including
the major automobile manufacturers and their suppliers [4].

When problems in software-based systems are uncov-
ered after a vehicle has gone to production, recall costs can
rival development costs [14]. Moreover, many of these ad-
vanced systems are critical to ensuring the safe operation

of the vehicle. Therefore, they must be designed to tolerate
faults and provide high levels of dependability.

If AUTOSAR is to be used in these systems, its own
fault and error handling capabilities must be characterized.
Formal verification methods are typically used to analyze
system dependability. Fault-injection can play a comple-
mentary role in this analysis by providing an empirical
way to study the system’s dependability in the presence of
faults and to analyze the system’s fault-handling capabili-
ties with respect to a particular fault model. This can aid in
fault-removal and fault-forecasting [2]. The upcoming ISO
26262 standard for functional safety in automotive electron-
ics highly recommends that fault-injection be included as
part of the dependability analysis of critical systems [8].

The automotive industry is traditionally cost-sensitive,
and hardware-based fault injection typically requires expen-
sive, specialized equipment. A low-cost, software-based
fault-injection framework could provide a substitute for
hardware-based techniques when their full functionality is
either not required (e.g., during software prototyping) or
not appropriate (e.g., for targeting specific software com-
ponents). Software-based techniques are also easier to re-
configure and to modify (e.g., by adding a new type of fault
or a new point of fault injection) than hardware-based tech-
niques, where new hardware might need to be created for
every new modification.

This report describes an experience using off-the-shelf
tools to build a low-cost fault-injection framework that
supports AUTOSAR. The framework uses software-
implemented techniques in a simulated execution environ-
ment, namely, Vector CANoe. The framework consists of
hooks that are inserted into the AUTOSAR codebase and
implemented in a separate Software Implemented Fault-
Injection (SWIFI) module. Hooks can manipulate specific
data structures or directly force error codes. Faults are man-
ually configured and activated at run-time using a CANoe
control-panel. The purpose of this proof-of-concept was to
evaluate the feasibility of building such a system, and not to
provide a dependability analysis of the AUTOSAR specifi-



cation or of the specific AUTOSAR implementation used.
To the best of our knowledge, this represents the first

published attempt to inject faults into an AUTOSAR ap-
plication running in a simulation environment. It provides
a starting point for researchers and practitioners to iden-
tify suitable fault-injection locations within the AUTOSAR
stack. This work suggests that CANoe is a suitable fault-
injection environment for some faults, but that other faults
cannot be represented using the level of abstraction that CA-
Noe provides. It provides an important first step in devel-
oping a more comprehensive fault-injection framework for
AUTOSAR applications that integrates both hardware- and
software-based techniques.

The remainder of this report is organized as follows. Sec-
tion 2 provides some background for our work, while Sec-
tion 3 outlines our specific goals. The fault-injection frame-
work is presented in Section 4. We evaluate the framework
in Section 5 and discuss lessons learned in Section 6. Sec-
tion 7 covers some related work. Section 8 summarizes this
report.

2. Background

AUTOSAR is an emerging standard software-architecture
for automotive applications. It is a layered architecture,
with each layer containing components that provide ser-
vices to higher layers [3]. Components in the Basic
Software (BSW) layers provide services based on hardware
abstractions, while application-layer components imple-
ment application functionality. The Runtime Environment
(RTE) layer enables information exchange between compo-
nents in the application and BSW layers. Typically, vendors
provide their own proprietary AUTOSAR-compliant imple-
mentations of the BSW and RTE, which the vehicle manu-
facturer then uses to develop application-level software.

Built-in error-handling mechanisms allow components
to be informed of errors as they occur, with low-level er-
rors being abstracted as they are passed up the stack [4].
Exercising the AUTOSAR error handling mechanisms at
different layers would provide empirical insight into how
errors are abstracted between components. To that end, a
fault-injection framework should provide the capability to
cause errors in specific AUTOSAR components at different
layers. This could occur directly by forcing a component
to return an error code, or indirectly by corrupting a data
structure (i.e., a memory location) within the component.

There are various ways to inject faults into a system (see
Section 7). Any adopted fault-injection framework should
account for the cost-sensitive nature of the automotive in-
dustry. In order to minimize costs, it is desirable to utilize
existing resources and off-the-shelf tools as much as pos-
sible. The costs incurred in developing the fault-injection
framework can be further amortized by encouraging porta-

bility between systems and applications. A significant por-
tion of the AUTOSAR codebase is contained in files that
are auto-generated from network-, system- and application-
specific configuration files. Therefore, any changes re-
quired to facilitate fault injection in the AUTOSAR code-
base should avoid auto-generated files completely. Modi-
fying configuration files (e.g., CANdb, FIBEX) should be
avoided as well.

We decided to explore a proof-of-concept fault-injection
framework based on a common and readily available soft-
ware tool: Vector CANoe. CANoe provides a simulation
and evaluation environment for automotive applications.
During early stages in development, it allows networks of
ECUs to be simulated using behavioral models. Communi-
cation Access Programming Language (CAPL) is a script-
ing language used within CANoe to define the functionality
of simulated nodes and to control the simulation environ-
ment. An AUTOSAR application can be simulated in CA-
Noe by compiling the AUTOSAR codebase as a Dynamic-
Link Library (DLL) and associating the DLL with a sin-
gle simulated node. As development progresses, simulated
nodes can be mixed with physical networks to aid integra-
tion testing.

3. Goals

The initial question that we wanted to answer was whether
or not faults could be injected in AUTOSAR using only the
tools available to us (i.e., CANoe). If so, we wished to gain
a practical understanding of such a framework’s strengths
and weaknesses. Therefore, this proof-of-concept was de-
veloped without regard for any single fault model. After
all, if the proof-of-concept is not feasible in the first place,
then it is irrelevant to question whether or not the frame-
work supports a particular fault model. Once the the general
advantages and disadvantages of the framework have been
identified, future work can formally assess its applicability
to various fault models.

The proof-of-concept will be evaluated with respect to
six specific goals, which are outlined below.

• Functionality. The framework should be able to exer-
cise the AUTOSAR error-handling mechanisms. The
user should be able to control fault injection parame-
ters and view the effects of injected faults at run-time
within CANoe.

• Controllability. The user should be able to specify
and perform experiments with parameters that are re-
peatable in time (e.g., fault duration) and space (e.g.,
fault location).

• Observabilty. The effect(s) – or lack thereof – of an
injected fault should be readily apparent. It should be
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Figure 1. An overview of the fault-injection
framework.

possible to distinguish between a fault that has no ef-
fect (e.g., injected into “dead code”) versus a fault that
is masked by some error-handling mechanism.

• Portability. The modifications needed to apply the
framework to different AUTOSAR-based applications,
and to port it between AUTOSAR implementations,
should be minimal.

• Flexibility. The framework should be flexible enough
to support a wide range of fault-injection scenarios and
fault types.

• Probe effects. It is important for the fault-injection
framework to avoid probe effects, which are unin-
tended and undesired alterations to the system caused
by the fault injection process itself (as opposed to ef-
fects attributed to the faults being injected).

4. A Fault-Injection Framework for CANoe

Our fault-injection framework consists of two major com-
ponents: an AUTOSAR DLL that implements application
functionality, and a SWIFI DLL that implements fault-
injection functionality (see Figure 1).

Fault-injection hooks are defined in the SWIFI DLL
and called from the AUTOSAR DLL. Two types of fault-
injection hooks can be inserted into the AUTOSAR code-
base. Suppression hooks cause errors directly. When a
suppression hook is active, it signals that an AUTOSAR

Application Programming Interface (API) call should abort
immediately and, depending on the API, return an error
code to the caller. Manipulation hooks cause errors in-
directly by manipulating specific data structures. The argu-
ments passed to manipulation hooks can be either modifi-
able or non-modifiable. Modifiable arguments represent the
data structures that can be manipulated inside of the hook.
Non-modifiable arguments are not manipulated inside of the
hook. Rather, they can be used to provide additional context
to the hook (e.g., current slot, global time, etc). In general,
active suppression hooks take precedence over active ma-
nipulation hooks (i.e., the target API call will be aborted
before its data structures are manipulated).

The SWIFI DLL also implements six fault-injection
parameters that define faults, as well as CAPL exten-
sions that allow the parameters to be changed by CAPL
scripts (see Figure 1). The location parameter refers to
the AUTOSAR API call where the fault is to be injected.
The argument parameter represents a specific data structure
(e.g., local or global variable) within the scope of that call,
which is to be manipulated by applying a mask using a bit-
wise operation. For large data structures, an optional offset
can specify which bytes the mask should be applied to. The
sixth parameter is a flag that specifies whether a suppression
hook is active at the selected location. In this case, the ar-
gument, mask, operation and offset parameters are ignored.

A CANoe panel provides a user interface that allows
manual control over the fault-injection process. However,
this panel cannot access the fault-injection parameters di-
rectly. Instead, the panel modifies CANoe system-variables.
These system variables are then mapped to fault-injection
parameters by a CAPL script, which is associated with the
target node (e.g., Node 1 in Figure 1).

4.1. Fault-Injection Hooks

We selected three components at different BSW layers to
target for fault injection. We did not add hooks to the RTE
because it is mostly auto-generated by the AUTOSAR con-
figuration tools. The Watchdog Manager (WdgM) is part
of the System Services layer and provides a service that
monitors selected AUTOSAR components for timing vio-
lations. Hooks added to the WdgM allow watchdog time-
outs to be triggered manually. The AUTOSAR COM (Com)
component resides in the Communication Services layer,
just below the RTE, and provides a signal-based gateway
for routing data between components. Injecting faults in
the Com component allows both inter-node (i.e., compo-
nents on different ECUs) and intra-node (i.e., components
on the same ECU) communication to be disrupted. It also
provides a basis for comparison with faults injected at lower
layers. The FlexRay Driver (Fr) provides an abstraction of
the FlexRay controller hardware. It is part of the Commu-
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AUTOSAR Layer AUTOSAR API Description Manipulated data
System Services WdgM UpdateAliveCounter Notifies the WdgM that a supervised

entity is still alive.
entity identifier

Communication Services Com SendSignal Sends data to the RTE as an AUTOSAR
signal.

signal identifier, data buffer

Communication Services Com ReceiveSignal Receives data from the RTE as an
AUTOSAR signal.

signal identifier, data buffer

Communication Drivers Fr TransmitTxLPdu Transfers data to the FlexRay controller
as a PDU.

data buffer, buffer length, channel, slot
identifier, controller flags

Communication Drivers Fr ReceiveRxLPdu Receives data from the FlexRay con-
troller as a PDU.

data buffer, buffer length, controller
flags

Table 1. Hooks were added to manipulate data structures in five AUTOSAR API calls.

nication Drivers layer, which is the lowest-level BSW layer.
These hooks are meant to cause low-level FlexRay proto-
col errors that are then passed to higher layers or onto the
FlexRay bus directly.

Hooks were added to a total of five AUTOSAR API calls,
listed in Table 1. Complete descriptions of these APIs, in-
cluding their arguments and error codes, can be found in
the AUTOSAR specifications. The functions implement-
ing each call were modified to contain both manipulation
hooks and suppression hooks. Suppression hooks were gen-
erally placed at the very beginning of the function, before
any built-in error checking takes place. Thus, the entire API
call was aborted and any side effects of the call (intended or
otherwise) were avoided. Manipulation hooks were gener-
ally placed after the target argument had been initialized,
but before it was first used.

5. Evaluation

For this evaluation, we used a demo version of CANoe
(v7.1, running on Windows XP) and a vendor-supplied im-
plementation of the AUTOSAR 3.0 specification. We ap-
plied the fault-injection framework to a simple “by-wire”
application developed specifically for CANoe demonstra-
tions. We should note that this application was not designed
to be fault-tolerant, and does not provide any application-
level error handling. However, it is sufficient for demon-
strating that faults can be injected and visualized. In fact,
application-level error handling could make it more difficult
to verify that the fault injection framework itself is func-
tional by masking errors that would otherwise be visible.

The application consists of two FlexRay nodes, a single
Controller Area Network (CAN) node and a CAN/FlexRay
gateway. The CAN node sends throttle and brake inputs
through the gateway to the FlexRay nodes. The FlexRay
nodes calculate the wheel speed for the front and rear
wheels, respectively. A CANoe control panel provides user-
adjustable throttle and brake controls, as well as a graphical
display of the calculated front and rear wheel speed. The
functionalities of the CAN node, the gateway node and the
front FlexRay node are implemented with CAPL scripts.

The functionality of the rear FlexRay node is provided by
an AUTOSAR DLL that has been instrumented with fault-
injection hooks at the locations listed in Table 1. When no
faults are active, the speed reported by the front and rear
wheels changes smoothly with respect to changes in the
throttle value, and identically with respect to each other.

Some manipulations designed to manifest at the FlexRay
protocol level worked as expected. For example, modify-
ing the channel argument caused otherwise valid frames
to be sent on the wrong channel, while null frames were
registered on the correct channel. Applying a mask to set
the null-frame indicator bit in Fr TransmitTxLPdu also
caused null frames to be sent. In this case, the rear-wheel
speed did not change when the throttle increased. Other
manipulations designed to cause FlexRay protocol errors
were not as effective. For example, the FlexRay protocol
is designed to register a ContentError when a static frame
is received with the startup frame indicator set to 1 while
the sync frame indicator is set to 0. However, applying a
mask to set these bits in the controller flags prior to send-
ing the frame from Fr TransmitTxLPdu did not result
in a ContentError being recorded by CANoe. It is likely
that the simulated controller ignores these bits in favor of
the preconfigured FlexRay parameters.

Suppression hooks in components at different layers
caused visible differences in temporal manifestation. Per-
manently forcing Com ReceiveSignal to return an er-
ror code caused the wheel speed at the rear FlexRay
node to drop immediately and no longer respond to throt-
tle changes. However, when the same hook was ac-
tivated in Fr ReceiveRxLPdu, no differences in front
vs. rear wheel speed were visible until the throttle in-
put was changed. A possible explanation is that sup-
pressing Fr ReceiveRxLPdu prevents the receive buffer
from being updated when a frame is received. How-
ever, the previous value contained in this buffer can still
be read and passed through the AUTOSAR stack to the
application. In contrast, suppressing the higher-level
Com ReceiveSignal call seems to prevent any data
from reaching the application software.

Targetting the WdgM UpdateAliveCounter API
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call exercised two of AUTOSARs built-in error-handling
mechanisms. Modifying the entity-identifier parameter
caused errors to be reported by the AUTOSAR Develop-
ment Event Tracer (DET). Suppressing the API call entirely
caused the watchdog timer to expire and report an error.

6. Lessons Learned

This proof-of-concept framework showed promise in sev-
eral ways, but there were also significant drawbacks to us-
ing CANoe in this manner.

Functionality. The functionality of the framework was
mostly satisfactory. By forcing API calls to return error
codes and modifying certain data structures, it is possible to
exercise AUTOSAR error-handling mechanisms such as the
DET and WdgM. Furthermore, manual control of the sim-
ulation allows faults to be visualized as they are injected.
This feature was particularly useful while developing the
framework because it gave us rapid insight into whether the
framework itself was functioning correctly.

Portability. Using hooks in the AUTOSAR code allows
fault injection logic to be implemented in a separate mod-
ule, keeping the required changes to AUTOSAR codebase
minimal. No auto-generated code or system-specific config-
uration files need to be modified, which allows the same in-
strumented AUTOSAR codebase to be used across projects.
However, some of the hooks target arguments that corre-
spond to implementation-specific data-structures. In the fu-
ture, it might be desirable to target only the API parame-
ters that are defined in the AUTOSAR specification. This
would allow greater portability of the SWIFI DLL across
AUTOSAR implementations from different vendors.

Controllability. Manipulating data structures, as opposed
to arbitrary memory locations, allows specific components
and functionality within the AUTOSAR stack to be tar-
geted. Even if the physical memory address associated with
a data structure changes (e.g., due to recompilation), the
semantic meaning of the fault location does not. Temporal
repeatability is currently limited by our initial focus on man-
ual triggering. The activation and duration of faults is only
as accurate as the user “flipping the switch”. However, this
is an implementation issue and not an inherent design issue.
As noted in Section 4, non-modifiable arguments are avail-
able to provide extended context to fault-injection hooks.
Such context can be used to define more specific trigger
conditions, which could then be automated using scripts.

Observability. Observability is restricted to application-
level failure modes and existing error-handling mecha-
nisms. If a fault is masked by an error-handling mechanism,

it will only be observable if the mechanism logs the error or
otherwise notifies the user.

Flexibility. It is not possible to inject many protocol-
level faults (e.g., frame decoding errors) directly using
this framework. In general, fault-injection hooks imple-
mented in software simply have limited access to the in-
ternal functions of hardware communication controllers.
However, methods using simulated hardware models have
been successfully employed to inject faults directly in CAN
[10, 12] and FlexRay [9] controllers. We had hoped that the
simulated controller in CANoe would allow similar trans-
parency. However, the level of abstraction provided by CA-
Noe is more high-level, and the simulated controller can
only be accessed through its external interfaces.

Another limitation is that the SWIFI DLL cannot dif-
ferentiate between calls to hooks made from multiple
AUTOSAR DLLs. Therefore, the framework can only sup-
port a single fault-injection node. Removing this limitation
would allow the framework to support scenarios involving
cascading and correlated faults among multiple ECUs

Probe effects. The principal drawback to this approach
is that it is difficult to avoid simulation-wide probe effects
when injecting certain types of faults. For example, modi-
fications to certain arguments (such as the length of a data
buffer) would normally be expected to cause memory cor-
ruption on the faulty node. However, because nodes share
memory space with and within the CANoe simulator, in-
jecting such a fault crashes the entire simulation. Similarly,
attempting to cause timing violations directly by inserting
artificial delays into tasks can potentially block the entire
simulation.

7. Related Work

A useful overview of general fault injection techniques is
available in [7]. Here, we focus on fault injection techniques
that specifically target the automotive domain.

Faults can be injected directly into hardware by expos-
ing it to heavy-ion radiation or Electromagnetic Interference
(EMI). Heavy ion fault injection was used to investigate
the fail-silence assumption and membership service of the
Time-Triggered Protocol/Class-C (TTP/C) protocol [13].
Another study compared error propagation in TTP/C bus
and star network topologies [1].

Fault-injection hardware can also work at the bus-level
in order to target the communication protocol specifically.
These devices can be used to inject physical faults directly
(e.g, by shorting the bus lines) or to inject fault manifes-
tations indirectly (e.g., by employing CRC recalculation).
One such device, the TTPDisturbance Node, was used along
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with EMI injection to evaluate a strategy for diagnosing
connector faults in TTP/C [11].

Software-implemented fault injection (SWIFI) tech-
niques have been proposed specifically for use in automo-
tive time-triggered networks. The FITS fault injection en-
vironment follows a modularized approach that separates
target-specific code from system-independent code [6]. The
use of hooks in our framework was inspired by FITS.

Software-based and hardware-based techniques are com-
plementary. Hardware-based fault-injection using heavy
ions or EMI can access physical locations (e.g., in the com-
munication controller) that software hooks simply cannot.
However, hardware-based techniques cannot accurately tar-
get specific software modules due to the random nature of
the process. Bus-level devices are very effective at inject-
ing a variety of protocol-level faults, but they cannot inject
faults into the internal memory of individual ECUs.

8. Summary

The framework developed here uses software-implemented
techniques (e.g., code insertion) in a simulated environment
(e.g., CANoe). Manipulation hooks cause errors indirectly,
by injecting faults into the memory occupied by specific
data structures. Suppression hooks cause errors directly, by
forcing AUTOSAR API calls to return error codes.

The errors caused by injected faults were able to be visu-
alized quickly in CANoe. Visible differences in application-
level manifestation were observed when similar faults were
injected into different components. However, CANoe did
not provide an ideal environment for injecting certain faults
due to simulation-wide probe effects. Value faults can
be injected into specific AUTOSAR BSW components us-
ing this framework, but specialized bus-level fault injection
hardware would be better suited to injecting protocol-level
faults. Overall, faults can be successfully injected and vi-
sualized when they fit within the level of abstraction that
CANoe provides. Considering that we were dancing on the
boundaries of what the tool was designed to do, CANoe
performed quite satisfactorily.

While this study cannot, and should not, be construed as
a dependability study of AUTOSAR, the described frame-
work could be further developed to provide the basis for
such a study. Given that this was a feasibility study, the
focus was on determining how faults could be injected us-
ing the tools available to us, but not necessarily which faults
could be, or should be, injected. A more in-depth study
is required to determine the most appropriate AUTOSAR
locations and data structures to target with fault-injection
hooks, and how the injected faults correspond to common
fault models.
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