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Abstract

Recently, a vector version of Witsenhausen’s counterexample was considered and it was shown that in that limit

of infinite vector length, certain quantization-based strategies are provably within a constant factor of the optimal

cost for all possible problem parameters. In this paper, finite vector lengths are considered with the vector length

being viewed as an additional problem parameter. By applying the “sphere-packing” philosophy, a lower bound to

the optimal cost for this finite-length problem is derived that uses appropriate shadows of the infinite-length bound.

We also introduce lattice-based quantization strategies for any finite length. Using the new finite-length lower bound,

we show that good lattice-based strategies achieve within a constant factor of the optimal cost uniformly over all

possible problem parameters, including the vector length. For Witsenhausen’s original problem — the scalar case

— regular lattice-based strategies are observed to numerically attain within a factor of 8 of the optimal cost.

I. INTRODUCTION

Distributed control problems have long proved challenging for control engineers. In 1968, Witsen-

hausen [1] gave a counterexample showing that even a seemingly simple distributed control problem can

be hard to solve. For the counterexample, Witsenhausen chose a two-stage distributed LQG system and

provided a nonlinear control strategy that outperforms all linear laws. It is now clear that the non-classical

information pattern of Witsenhausen’s problem makes it quite challenging1; the optimal strategy and the

optimal costs for the problem are still unknown — non-convexity of the problem makes the search for

1In words of Yu-Chi Ho [2], “the simplest problem becomes the hardest problem.”
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an optimal strategy hard [3]–[5]. Discrete approximations of the problem [6] are even NP-complete2 [7].

In the absence of a solution, research on the counterexample has bifurcated into two different directions.

Since the problem is non-convex, a body of literature (e.g. [4] [5] [8] and the references therein) is

dedicated to finding optimal solution by searching over the space of possible control actions for a few

choices of problem parameters. Work in this direction has yielded considerable insight into addressing

non-convex problems in general.

In the other direction the emphasis is on understanding the role of implicit communication in the

counterexample. In distributed control, control actions not only attempt to reduce the immediate control

costs, they can also communicate relevant information to other controllers to help them reduce costs.

Various modifications on the counterexample help understand if it is misalignment of these two goals of

control and communication that makes the problems hard [3], [9]–[12] (see [13] for a survey of other

such modifications). Of particular interest is the work of Rotkowitz and Lall [11] which shows that with

extremely fast external channels, design of optimal controllers is computationally efficient. This suggests

that allowing for an external channel between the two controllers in Witsenhausen’s counterexample might

simplify the problem. However, Martins [14] shows that finding optimal solutions can be hard even in the

presence of an external channel3. To design good distributed control strategies, it is therefore imperative

to develop good understanding of the implicit communication in the counterexample.

Witsenhausen [1, Section 6] and Mitter and Sahai [15] aim at developing systematic constructions based

on implicit communication. Witsenhausen’s two-point quantization strategy is motivated from the optimal

strategy for two-point symmetric distributions of the initial state [1, Section 5] and it outperforms linear

2More precisely, results in [7] imply that discrete approximations are NP-complete if the assumption of Gaussianity of the primitive

random variables is relaxed. Further, it is also shown in [7] that with this relaxation, a polynomial time solution to the original continuous

problem would imply P = NP , and thus conceptually the relaxed continuous problem is NP-complete (or harder).
3Martins shows that nonlinear strategies that do not even use the external channel can outperform linear ones even at high SNR on the

external channel. Indeed, the best a linear strategy can do is to communicate the initial state as well as possible on the external channel. But

if the uncertainty in the initial state is large, the external channel is only of limited help and there may be substantial advantage in having

the controllers talk through the plant.
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strategies for certain parameter choices. Mitter and Sahai [15] propose multipoint-quantization strategies

that, depending on the problem parameters, can outperform scalar strategies by an arbitrarily-large factor.

The fact that nonlinear strategies can be arbitrarily better brings us to a question that has received

little attention in the literature — how far are the proposed nonlinear strategies from the optimal? It is

believed that the strategies of Lee, Lau and Ho [5] are close to optimal. In Section VI, we will see that

these strategies can be viewed as an instance of the “dirty-paper coding” strategy in information theory,

and quantify their advantage over pure quantization based strategies. Despite their improved performance,

there is no guarantee that these strategies are indeed close to optimal4. Witsenhausen [1, Section 7] derived

a lower bound on the costs that is loose in the interesting regimes of small k and large σ2
0 [13], [16], and

hence is insufficient to obtain any guarantee on the gap from optimality.

Towards obtaining such a guarantee, a strategic simplification of the problem was proposed in [13],

[17] where we consider an asymptotically-long vector version of the problem. This problem is related to a

toy communication problem that we call “Assisted Interference Suppression” (AIS) which is an extension

of the dirty-paper coding (DPC) [18] model in information theory. There has been a burst of interest

in extensions to DPC in information theory mainly along two lines of work — multi-antenna Gaussian

channels, and the “cognitive-radio channel.” For multi-antenna Gaussian channels, a problem of much

theoretical and practical interest, DPC turns out to be the optimal strategy (see [19] and the references

therein). The “cognitive radio channel” problem was formulated by Devroye et al [20]. This work has

inspired many other works in asymmetric cooperation between nodes [21]–[25]. In our work [13], [17], we

developed a new lower bound to the optimal performance of the vector Witsenhausen problem. Using this

bound, we show that depending on the problem parameters, linear and vector-quantization based strategies

attain within a factor of 4.45 of the optimal cost for all problem parameters in the limit of infinite vector

length. Further, combinations of linear and DPC-based strategies attain within a factor 2 of the optimal

4The search in [5] is not exhaustive. The authors first find a good quantization-based solution. Inspired by piecewise linear strategies

(from the neural networks based search of Baglietto et al [4]), each quantization step is broken into several small sub-steps to approximate

a piecewise linear curve.



4

cost5. While a constant-factor result does not establish true optimality, such results are often helpful in

the face of intractable problems like those that are otherwise NP-hard [27]. This constant-factor spirit has

also been useful in understanding other stochastic control problems [28], [29] and in asymptotic analysis

of problems in multiuser wireless communication [30], [31].

While the lower bound in [13] holds for all vector lengths, and hence for the scalar counterexample

as well, the ratio of the costs attained by the strategies of [15] and the lower bound diverges in the limit

k → 0 and σ0 → ∞. This suggests that there is a significant finite-dimensional aspect of the problem

that is being lost in the infinite-dimensional limit: either quantization-based strategies are bad, or the

lower bound of [13] is very loose. This effect is elucidated in [16] by deriving a different lower bound

that shows that quantization-based strategies indeed attain within a constant6 factor of the optimal cost

for Witsenhausen’s original problem. The bound in [16] is in the spirit of Witsenhausen’s original lower

bound, but is more intricate. It captures the idea that observation noise can force a second-stage cost to

be incurred unless the first stage cost is large.

In this paper, we revert to the line of attack based on the vector simplification of [13]. Building upon

the vector lower bound, a new lower bound is derived in the spirit of information-theoretic bounds for

finite-length communication problems (e.g. [32]–[35]). In particular, it extends the tools in [35] to a setting

with unbounded distortion. The resulting lower bound (on numerical evaluation) shows that quantization-

based strategies attain within a factor of 8 of the optimal cost for the scalar problem. To understand the

significance of the result, consider the following. At k = 0.01 and σ0 = 500, the cost attained by optimal

linear scheme is close to 1. The cost attained by a quantization-based7 scheme is 8.894× 10−4. Our new

lower bound on the cost is 3.170 × 10−4. Despite the small value of the lower bound, the ratio of the

quantization-based upper bound and the lower bound for this choice of parameters is less than three!

5This factor was later improved to 1.3 in [26].
6The constant is large in [16], but as this paper shows, this is an artifact of the proof rather than reality.
7The quantization points are regularly spaced about 9.92 units apart. This results in a first stage cost of about 8.2× 10−4 and a second

stage cost of about 6.7× 10−5.
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As a next step towards showing that approximately-optimal strategies can be found for all Witsenhausen-

like problems, we consider the vector Witsenhausen problem with a finite vector length. The lower bounds

derived here extend naturally to this case. For obtaining decent control strategies, we observe that the

action of the first controller in the quantization-based strategy of [15] can be thought of as forcing the

state to a point on a one-dimensional lattice. Extending this idea, we consider lattice-based strategies for

finite dimensional spaces. We show that the class of lattice-based quantization strategies performs within

a constant factor of optimal for any dimension. The approximation factor can be bounded by a constant

uniformly over all choices of problem parameters, including the dimension.

The organization of the paper is as follows. In Section II, we define the vector Witsenhausen problem

and introduce the notation. In Section III, lattice-based strategies for any vector length m are described.

Lower bounds (that depend on m) on optimal costs are derived in Section IV. Section V shows that

the ratio of the upper and the lower bounds is bounded uniformly over the dimension m and the other

problem parameters. The conclusion in Section VI outlines directions of future research and speculates

on the form of finite-dimensional strategies (following [13]) that we conjecture are optimal.

II. NOTATION AND PROBLEM STATEMENT
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Fig. 1. Block-diagram for vector version of Witsenhausen’s counterexample of length m.

Vectors are denoted in bold. Upper case tends to be used for random variables, while lower case symbols

represent their realizations. W (m, k2, σ2
0) denotes the vector version of Witsenhausen’s problem of length

m, defined as follows (shown in Fig. 1):

• The initial state Xm
0 is Gaussian, distributed N (0, σ2

0Im), where Im is the identity matrix of size
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m×m.

• The state transition functions describe the state evolution with time. The state transitions are linear:

Xm
1 = Xm

0 + Um
1 , and

Xm
2 = Xm

1 −Um
2 .

• The outputs observed by the controllers:

Ym
1 = Xm

0 , and

Ym
2 = Xm

1 + Zm, (1)

where Zm ∼ N (0, σ2
ZIm) is Gaussian distributed observation noise.

• The control objective is to minimize the expected cost, averaged over the random realizations of Xm
0

and Zm. The total cost is a quadratic function of the state and the input given by the sum of two

terms:

J1(xm1 ,u
m
1 ) =

1

m
k2‖um1 ‖2, and

J2(xm2 ,u
m
2 ) =

1

m
‖xm2 ‖2

where ‖ · ‖ denotes the usual Euclidean 2-norm. The cost expressions are normalized by the vector-

length m to allow for natural comparisons between different vector-lengths. A control strategy is

denoted by γ = (γ1, γ2), where γi is the function that maps the observation ymi at Ci to the control

input umi . For a fixed γ, xm1 = xm0 +γ1(xm0 ) is a function of xm0 . Thus the first stage cost can instead

be written as a function J
(γ)
1 (xm0 ) = J1(xm0 + γ1(xm0 ), γ1(xm0 )) and the second stage cost can be

written as J (γ)
2 (xm0 , z

m) = J2(xm0 + γ1(xm0 )− γ2(xm0 + γ1(xm0 ) + zm), γ2(xm0 + γ1(xm0 ) + zm)).

For given γ, the expected costs (averaged over xm0 and zm) are denoted by J̄ (γ)(m, k2, σ2
0) and

J̄
(γ)
i (m, k2, σ2

0) for i = 1, 2. We define J̄ (γ)
min(m, k2, σ2

0) as follows

J̄min(m, k2, σ2
0) := inf

γ
J̄ (γ)(m, k2, σ2

0). (2)
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• The information pattern represents the information available to each controller at the time it takes

an action (it has implicitly been specified above). Following Witsenhausen’s notation in [36], the

information pattern for the vector problem is

Y1 = {ym1 }; U1 = ∅,

Y2 = {ym2 }; U2 = ∅.

Here Yi denotes the information about the outputs in (1) available at the controller i ∈ {1, 2}. Simi-

larly, Ui denotes the information about the previously applied inputs available at the i-th controller.

Note that the second controller does not have knowledge of the output observed or the input applied

at the first stage. This makes the information pattern non-classical (and non-nested), and the problem

distributed.

We note that for the scalar case of m = 1, the problem is Witsenhausen’s original counterexample [1].

Observe that scaling σ0 and σZ by the same factor essentially does not change the problem — the

solution can also be scaled by the same factor. Thus, without loss of generality, we assume that the

variance of the Gaussian observation noise is σ2
Z = 1 (as is also assumed in [1]). The pdf of noise

Zm is denoted by fZ(·). In our proof techniques, we also consider a hypothetical observation noise

Zm
G ∼ N (0, σ2

G) with the variance σ2
G ≥ 1. The pdf of this test noise is denoted by fG(·). We use ψ(m, r)

to denote Pr(‖Zm‖ ≥ r) for Zm ∼ N (0, I).

Subscripts in expectation expressions denote the random variable being averaged over (e.g. EXm
0 ,Z

m
G

[·]

denotes averaging over the initial state Xm
0 and the test noise Zm

G ).

III. LATTICE-BASED QUANTIZATION STRATEGIES

We introduce lattice-based quantization strategies as the natural generalizations of scalar quantization-

based strategies [15]. An introduction to lattices can be found in [38], [39]. Relevant definitions are

reviewed below. B denotes the unit ball in Rm.
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Fig. 2. Covering and packing for the 2-dimensional hexagonal lattice. The packing-covering ratio for this lattice is ξ = 2√
3
≈ 1.15 [37,

Appendix C]. The first controller forces the initial state xm0 to the lattice point nearest to it. The second controller estimates bxm1 to be a

lattice point at the centre of the sphere if it falls in one of the packing spheres. Else it essentially gives up and estimates bxm1 = ym2 , the

received output itself. A hexagonal lattice-based scheme would perform better for the 2-D Witsenhausen problem than the square lattice (of

ξ =
√

2 ≈ 1.41 [37, Appendix C]) because it has a smaller ξ.

Definition 1 (Lattice): An m-dimensional lattice Λ is a set of points in Rm such that if xm,ym ∈ Λ,

then xm + ym ∈ Λ, and if xm ∈ Λ, then −xm ∈ Λ.

Definition 2 (Packing and packing radius): Given an m-dimensional lattice Λ and a radius r, the

set Λ + rB is a packing of Euclidean m-space if for all points xm,ym ∈ Λ, (xm + rB)
⋂

(ym + rB) = ∅.

The packing radius rp is defined as rp := sup{r : Λ + rB is a packing}.

Definition 3 (Covering and covering radius): Given an m-dimensional lattice Λ and a radius r, the

set Λ + rB is a covering of Euclidean m-space if Rm ⊂ Λ + rB. The covering radius rc is defined as

rc := inf{r : Λ + rB is a covering}.

Definition 4 (Packing-covering ratio): The packing-covering ratio (denoted by ξ) of a lattice Λ is the

ratio of its covering radius to its packing radius, ξ = rc
rp

.
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Because it creates no ambiguity, we do not include the dimension m and the choice of lattice Λ in the

notation of rc, rp and ξ, though these quantities depend on m and Λ.

For a given dimension m, a natural control strategy that uses a lattice Λ of covering radius rc and packing

radius rp is as follows. The first controller uses the input um1 to force the state xm0 to the quantization

point nearest to xm0 . The second controller estimates xm1 to be the quantization point nearest to ym2 . For

analytical ease, we instead consider an inferior strategy where the second controller estimates xm1 to be a

lattice point only if the lattice point lies in a sphere of radius rp around ym2 . If no lattice point exists in

the sphere, the second controller estimates xm1 to be ym2 , the received sequence itself. The actions γ1(·)

of C1 and γ2(·) of C2 are therefore given by

γ1(xm0 ) = −xm0 + arg min
xm1 ∈Λ

‖xm1 − xm0 ‖2,

γ2(ym2 ) =





x̃m1 if ∃ x̃m1 ∈ Λ s.t. ‖ym2 − x̃m1 ‖2 < r2
p

ym2 otherwise
.

The event where there exists no such x̃m1 ∈ Λ is referred to as decoding failure. In the following, we

denote γ2(ym2 ) by x̂m1 , the estimate of xm1 .

Theorem 1: Using a lattice-based strategy (as described above) for W (m, k2, σ2
0) with rc and rp the

covering and the packing radius for the lattice, the total average cost is upper bounded by

J̄ (γ)(m, k2, σ2
0) ≤ inf

P≥0
k2P +

(√
ψ(m+ 2, rp) +

√
P

ξ2

√
ψ(m, rp)

)2

,

where ξ = rc
rp

is the packing-covering ratio for the lattice, and ψ(m, r) = Pr(‖Zm‖ ≥ r). The following

looser bound also holds

J̄ (γ)(m, k2, σ2
0) ≤ inf

P>ξ2
k2P +

(
1 +

√
P

ξ2

)2

e
−mP

2ξ2
+m+2

2

“
1+ln

“
P
ξ2

””
.

Remark: The latter loose bound is useful for analytical manipulations when deriving bounds on the ratio

of the upper and lower bounds in Section V.

Proof: Note that because Λ has a covering radius of rc, ‖xm1 − xm0 ‖2 ≤ r2
c . Thus the first stage

cost is bounded above by 1
m
k2r2

c . A tighter bound can be provided for a specific lattice and finite m (for
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example, for m = 1, the first stage cost is approximately k2 r
2
c

3
if r2

c � σ2
0 because the distribution of xm0

conditioned on it lying in any of the quantization bins is approximately uniform in the most likely bins).

For the second stage, observe that

EXm
1 ,Z

m

[
‖Xm

1 − X̂m
1 ‖2
]

= EXm
1

[
EZm

[
‖Xm

1 − X̂m
1 ‖2|Xm

1

]]
. (3)

Denote by Em the event {‖Zm‖2 ≥ r2
p}. Observe that under the event Ecm, X̂m

1 = Xm
1 , resulting in a zero

second-stage cost. Thus,

EZm

[
‖Xm

1 − X̂m
1 ‖2|Xm

1

]
= EZm

[
‖Xm

1 − X̂m
1 ‖211{Em}|Xm

1

]
+ EZm

[
‖Xm

1 − X̂m
1 ‖211{Ecm}|X

m
1

]

= EZm

[
‖Xm

1 − X̂m
1 ‖211{Em}|Xm

1

]
.

We now bound the squared-error under the error event Em, when either xm1 is decoded erroneously, or

there is a decoding failure. If xm1 is decoded erroneously to a lattice point x̃m1 6= xm1 , the squared-error

can be bounded as follows

‖xm1 − x̃m1 ‖2 = ‖xm1 − ym2 + ym2 − x̃m1 ‖2

≤ (‖xm1 − ym2 ‖+ ‖ym2 − x̃m1 ‖)
2

≤ (‖zm‖+ rp)
2 .

If xm1 is decoded as ym2 , the squared-error is simply ‖zm‖2, which we also upper bound by (‖zm‖+ rp)
2.

Thus, under event Em, the squared error ‖xm1 − x̂m1 ‖2 is bounded above by (‖zm‖+ rp)
2, and hence

EZm

[
‖Xm

1 − X̂m
1 ‖2|Xm

1

]
≤ EZm

[
(‖Zm‖+ rp)

2 11{Em}|Xm
1

]

(a)
= EZm

[
(‖Zm‖+ rp)

2 11{Em}
]
, (4)

where (a) uses the fact that the pair (Zm, 11{Em}) is independent of Xm
1 . Now, let P = r2c

m
, so that the first

stage cost is at most k2P . The following lemma helps us derive the upper bound.

Lemma 1: For a given lattice with r2
p = r2c

ξ2
= mP

ξ2
, the following bound holds

1

m
EZm

[
(‖Zm‖+ rp)

2 11{Em}
]
≤

(√
ψ(m+ 2, rp) +

√
P

ξ2

√
ψ(m, rp)

)2

.
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Fig. 3. A pictorial representation of the proof for the lower bound assuming σ2
0 = 30. The solid curves show the vector lower bound of [13]

for various values of observation noise variances, denoted by σ2
G. Conceptually, multiplying these curves by the probability of that channel

behavior yields the shadow curves for the particular σ2
G, shown by dashed curves. The scalar lower bound is then obtained by taking the

maximum of these shadow curves. The circles at points along the scalar bound curve indicate the optimizing value of σG for obtaining that

point on the bound.

The following (looser) bound also holds as long as P > ξ2,

1

m
EZm

[
(‖Zm‖+ rp)

2 11{Em}
]
≤

(
1 +

√
P

ξ2

)2

e
−mP

2ξ2
+m+2

2

“
1+ln

“
P
ξ2

””
.

Proof: See Appendix I.

The theorem now follows from (3), (4) and Lemma 1.

IV. LOWER BOUNDS ON THE COST

Bansal and Basar [3] use information theoretic techniques related to rate-distortion and channel capacity

to show the optimality of linear strategies in a modified version of Witsenhausen’s counterexample where

the cost function does not contain a product of two decision variables. Following the same spirit, in [13]

we derive the following lower bound for Witsenhausen’s counterexample itself.

Theorem 2: For W (m, k2, σ2
0), if for a strategy γ(·) the average power 1

m
EXm

0
[‖Um

1 ‖2] = P , the

following lower bound holds on the second stage cost

J̄
(γ)
2 (m, k2, σ2

0) ≥

((√
κ(P, σ2

0)−
√
P

)+
)2

,
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where (·)+ is shorthand for max(·, 0) and

κ(P, σ2
0) =

σ2
0

σ2
0 + P + 2σ0

√
P + 1

. (5)

The following lower bound thus holds on the total cost

J̄ (γ)(m, k2, σ2
0) ≥ inf

P≥0
k2P +

((√
κ(P, σ2

0)−
√
P

)+
)2

.

Proof: We refer the reader to [13] for the full proof. We outline it here because these ideas are used

in the derivation of the new lower bound in Theorem 3.

Using a triangle inequality argument, we show
√

1

m
EXm

0 ,Z
m

[
‖Xm

0 − X̂m
1 ‖2
]
≤
√

1

m
EXm

0 ,Z
m [‖Xm

0 −Xm
1 ‖2] +

√
1

m
EXm

0 ,Z
m

[
‖Xm

1 − X̂m
1 ‖2
]
. (6)

The first term on the RHS is
√
P . It therefore suffices to lower bound the term on the LHS to obtain a

lower bound on EXm
0 ,Z

m

[
‖Xm

1 − X̂m
1 ‖2
]
. To that end, we interpret X̂m

1 as an estimate for Xm
0 , which is a

problem of transmitting a source across a channel. For an iid Gaussian source to be transmitted across a

memoryless power constrained additive noise Gaussian channel (with one channel use per source symbol),

the optimal strategy that minimizes the mean-square error is merely scaling the source symbol so that the

average power constraint is met [40]. The estimation at the second controller is then merely the linear

MMSE estimation of Xm
0 , and the obtained MMSE is κ(P, σ2

0). The lemma now follows from (6).

Observe that the lower bound expression is the same for all vector lengths. In the following, sphere-

packing style arguments [41], [42] are extended following [33]–[35] to a joint source-channel setting

where the distortion measure is unbounded. The obtained bounds are tighter than those in Theorem 2 and

depend on the vector length m.

Theorem 3: For W (m, k2, σ2
0), if for a strategy γ(·) the average power 1

m
EXm

0
[‖Um

1 ‖2] = P , the

following lower bound holds on the second stage cost for any choice of σ2
G ≥ 1 and L > 0

J̄
(γ)
2 (m, k2, σ2

0) ≥ η(P, σ2
0, σ

2
G, L).

where

η(P, σ2
0, σ

2
G, L) =

σmG
cm(L)

exp

(
−mL

2(σ2
G − 1)

2

)((√
κ2(P, σ2

0, σ
2
G, L)−

√
P

)+
)2

,
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where κ2(P, σ2
0, σ

2
G, L) :=

σ2
0σ

2
G

c
2
m
m (L)e1−dm(L)

(
(σ0 +

√
P )2 + dm(L)σ2

G

) ,

cm(L) := 1
Pr(‖Zm‖2≤mL2)

= (1− ψ(m,L
√
m))

−1, dm(L) := Pr(‖Zm+2‖2≤mL2)
Pr(‖Zm‖2≤mL2)

= 1−ψ(m+2,L
√
m)

1−ψ(m,L
√
m)

,

0 < dm(L) < 1, and ψ(m, r) = Pr(‖Zm‖ ≥ r). Thus the following lower bound holds on the total cost

J̄min(m, k2, σ2
0) ≥ inf

P≥0
k2P + η(P, σ2

0, σ
2
G, L), (7)

for any choice of σ2
G ≥ 1 and L > 0 (the choice can depend on P ). Further, these bounds are at least as

tight as those of Theorem 2 for all values of k and σ2
0 .

Proof: From Theorem 2, for a given P , a lower bound on the average second stage cost is
((√

κ−
√
P
)+
)2

. We derive another lower bound that is equal to the expression for η(P, σ2
0, σ

2
G, L).

The high-level intuition behind this lower bound is presented in Fig. 3.

Define SGL := {zm : ‖zm‖2 ≤ mL2σ2
G} and use subscripts to denote which probability model is being

used for the second stage observation noise. Z denotes white Gaussian of variance 1 while G denotes

white Gaussian of variance σ2
G ≥ 1.

EXm
0 ,Z

m

[
J

(γ)
2 (Xm

0 ,Z
m)
]

=

∫

zm

∫

xm0

J
(γ)
2 (xm0 , z

m)f0(xm0 )fZ(zm)dxm0 dz
m

≥
∫

zm∈SGL

(∫

xm0

J
(γ)
2 (xm0 , z

m)f0(xm0 )dxm0

)
fZ(zm)dzm

=

∫

zm∈SGL

(∫

xm0

J
(γ)
2 (xm0 , z

m)f0(xm0 )dxm0

)
fZ(zm)

fG(zm)
fG(zm)dzm.

The ratio of the two probability density functions is given by

fZ(zm)

fG(zm)
=

e−
‖zm‖2

2

(√
2π
)m

(√
2πσ2

G

)m

e
− ‖z

m‖2
2σ2
G

= σmG e
− ‖z

m‖2
2

„
1− 1

σ2
G

«
.

Observe that zm ∈ SGL , ‖zm‖2 ≤ mL2σ2
G. Using σ2

G ≥ 1, we obtain

fZ(zm)

fG(zm)
≥ σmG e

−mL
2σ2
G

2

„
1− 1

σ2
G

«
= σmG e

−mL
2(σ2

G−1)

2 . (8)
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Thus,

EXm
0 ,Z

m

[
J

(γ)
2 (Xm

0 ,Z
m)
]
≥ σmG e

−mL
2(σ2

G−1)

2

∫

zm∈SGL

(∫

xm0

J
(γ)
2 (xm0 , z

m)f0(xm0 )dxm0

)
fG(zm)dzm

= σmG e
−mL

2(σ2
G−1)

2 EXm
0 ,Z

m
G

[
J

(γ)
2 (Xm

0 ,Z
m
G )11{ZmG∈SGL}

]

= σmG e
−mL

2(σ2
G−1)

2 EXm
0 ,Z

m
G

[
J

(γ)
2 (Xm

0 ,Z
m
G )|Zm

G ∈ SGL
]

Pr(Zm
G ∈ SGL ). (9)

Analyzing the probability term in (9),

Pr(Zm
G ∈ SGL ) = Pr

(
‖Zm

G‖2 ≤ mL2σ2
G

)

= Pr

((
‖Zm

G‖
σG

)2

≤ mL2

)

= 1− Pr

((
‖Zm

G‖
σG

)2

> mL2

)

= 1− ψ(m,L
√
m) =

1

cm(L)
, (10)

because ZmG
σG
∼ N (0, Im). From (9) and (10),

EXm
0 ,Z

m

[
J

(γ)
2 (Xm

0 ,Z
m)
]
≥ σmG e

−mL
2(σ2

G−1)

2 EXm
0 ,Z

m
G

[
J

(γ)
2 (Xm

0 ,Z
m
G )|Zm

G ∈ SGL
]

(1− ψ(m,L
√
m))

=
σmG e

−mL
2(σ2

G−1)

2

cm(L)
EXm

0 ,Z
m
G

[
J

(γ)
2 (Xm

0 ,Z
m
G )|Zm

G ∈ SGL
]
. (11)

We now need the following lemma, which connects the new finite-length lower bound to the infinite-length

lower bound of [13].

Lemma 2:

EXm
0 ,Z

m
G

[
J

(γ)
2 (Xm

0 ,Z
m
G )|Zm

G ∈ SGL
]
≥

((√
κ2(P, σ2

0, σ
2
G, L)−

√
P

)+
)2

,

for any L > 0.

Proof: See Appendix II.

The lower bound on the total average cost now follows from (11) and Lemma 2.

We now verify that dm(L) ∈ (0, 1). That dm(L) > 0 is clear from definition. dm(L) < 1 because

{zm+2 : ‖zm+2‖2 ≤ mL2σ2
G} ⊂ {zm+2 : ‖zm‖2 ≤ mL2σ2

G}, i.e., a sphere sits inside a cylinder.
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Finally we verify that this new lower bound is at least as tight as the one in Theorem 2. Choosing

σ2
G = 1 in the expression for η(P, σ2

0, σ
2
G, L),

η(P, σ2
0, σ

2
G, L) ≥ sup

L>0

1

cm(L)

((√
κ2(P, σ2

0, 1, L)−
√
P

)+
)2

.

Now notice that cm(L) and dm(L) converge to 1 as L → ∞. Thus κ2(P, σ2
0, 1, L)

L→∞−→ κ(P, σ2
0) and

therefore, η(P, σ2
0, σ

2
G, L) is lower bounded by

((√
κ−
√
P
)+
)2

, the lower bound in Theorem 2.

V. COMBINATION OF LINEAR AND LATTICE-BASED STRATEGIES ATTAIN WITHIN A CONSTANT

FACTOR OF THE OPTIMAL COST

Theorem 4 (Constant-factor optimality): The costs for W (m, k2, σ2
0) are bounded as follows

inf
P≥0

sup
σ2
G≥1,L>0

k2P + η(P, σ2
0, σ

2
G, L) ≤ J̄min(m, k2, σ2

0) ≤ µ

(
inf
P≥0

sup
σ2
G≥1,L>0

k2P + η(P, σ2
0, σ

2
G, L)

)
,

where µ = 100ξ2, ξ is the packing-covering ratio of any lattice in Rm, and η(·) is as defined in Theorem 3.

For any m, µ < 1600. Further, depending on the (m, k2, σ2
0) values, the upper bound can be attained by

lattice-based quantization strategies or linear strategies. For m = 1, a numerical calculation (MATLAB

code available at [43]) shows that µ < 8.

Proof: Let P ∗ denote the power P in the lower bound in Theorem 3. We show here that for any

choice of P ∗, the ratio of the upper and the lower bound is bounded.

Consider the two simple linear strategies of zero-forcing (um1 = −xm0 ) and zero-input (um1 = 0) followed

by LLSE estimation at C2. It is easy to see [13] that the average cost attained using these two strategies

is k2σ2
0 and σ2

0

σ2
0+1

< 1 respectively. An upper bound is obtained using the best amongst the two linear

strategies and the lattice-based quantization strategy.

Case 1: P ∗ ≥ σ2
0

100
.

The first stage cost is larger than k2 σ2
0

100
. Consider the upper bound of k2σ2

0 obtained by zero-forcing. The

ratio of the upper bound and the lower bound is no larger than 100.
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Fig. 4. The ratio of the upper and the lower bounds for the scalar Witsenhausen problem (top), and the 2-D Witsenhausen problem (bottom,

using hexagonal lattice of ξ = 2√
3

) for a range of values of k and σ0. The ratio is bounded above by 17 for the scalar problem, and by

14.75 for the 2-D problem.

Case 2: P ∗ < σ2
0

100
and σ2

0 < 16.

Using the bound from Theorem 2 (which is a special case of the bound in Theorem 3),

κ =
σ2

0

(σ0 +
√
P ∗)2 + 1„

P ∗<
σ2
0

100

«
≥ σ2

0

σ2
0

(
1 + 1√

100

)2

+ 1

(σ2
0<16)

≥ σ2
0

16
(

1 + 1√
100

)2

+ 1
=

σ2
0

20.36
≥ σ2

0

21
.

Thus, for σ2
0 < 16 and P ∗ ≤ σ2

0

100
,

J̄min ≥
(

(
√
κ−
√
P ∗)+

)2

≥ σ2
0

(
1√
21
− 1√

100

)2

≈ 0.014σ2
0 ≥

σ2
0

72
.

Using the zero-input upper bound of σ2
0

σ2
0+1

, the ratio of the upper and lower bounds is at most 72
σ2
0+1
≤ 72.
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Fig. 5. An exact calculation of the first and second stage costs yields an improved maximum ratio smaller than 8 for the scalar Witsenhausen

problem.

Case 3: P ∗ ≤ σ2
0

100
, σ2

0 ≥ 16, P ∗ ≤ 1
2
.

In this case,

κ =
σ2

0

(σ0 +
√
P ∗)2 + 1

(P ∗≤ 1
2

)

≥ σ2
0

(σ0 +
√

0.5)2 + 1
(a)

≥ 16

(
√

16 +
√

0.5)2 + 1
≈ 0.6909 ≥ 0.69,

where (a) uses σ2
0 ≥ 16 and the observation that x2

(x+b)2+1
= 1

(1+ b
x)

2
+ 1
x2

is an increasing function of x for

x, b > 0. Thus,

(
(
√
κ−
√
P )+

)2

≥ ((
√

0.69−
√

0.5)+)2 ≈ 0.0153 ≥ 0.015.

Using the upper bound of σ2
0

σ2
0+1

< 1, the ratio of the upper and the lower bounds is smaller than 1
0.015

< 67.

Case 4: σ2
0 > 16, 1

2
< P ∗ ≤ σ2

0

100

Using L = 2 in the lower bound,

cm(L) =
1

Pr(‖Zm‖2 ≤ mL2)
=

1

1− Pr(‖Zm‖2 > mL2)
(Markov’s ineq.)
≤ 1

1− m
mL2

(L=2)
=

4

3
,
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Similarly,

dm(2) =
Pr(‖Zm+2‖2 ≤ mL2)

Pr(‖Zm‖2 ≤ mL2)

≥ Pr(‖Zm+2‖2 ≤ mL2)

= 1− Pr(‖Zm+2‖2 > mL2)

(Markov’s ineq.)
≥ 1− m+ 2

mL2

= 1−
1 + 2

m

4

(m≥1)

≥ 1− 3

4
=

1

4
.

In the bound, we are free to use any σ2
G ≥ 1. Using σ2

G = 6P ∗ > 1,

κ2 =
σ2
Gσ

2
0(

(σ0 +
√
P ∗)2 + dm(2)σ2

G

)
c

2
m
m (2)e1−dm(2)

(a)

≥ 6P ∗σ2
0(

(σ0 + σ0

10
)2 +

6σ2
0

100

) (
4
3

) 2
m e

3
4

(m≥1)

≥ 1.255P ∗.

where (a) uses σ2
G = 6P ∗, P ∗ <

σ2
0

100
, cm(2) ≤ 4

3
and 1 > dm(2) ≥ 1

4
. Thus,

(
(
√
κ2 −

√
P ∗)+

)2

≥ P ∗(
√

1.255− 1)2 ≥ P ∗

70
. (12)

Now, using the lower bound on the total cost from Theorem 3, and substituting L = 2,

J̄min(m, k2, σ2
0) ≥ k2P ∗ +

σmG
cm(2)

exp

(
−mL

2(σ2
G − 1)

2

)((√
κ2 −

√
P ∗
)+
)2

(σ2
G=6P ∗)

≥ k2P ∗ +
(6P ∗)m

cm(2)
exp

(
−4m(6P ∗ − 1)

2

)
P ∗

70
(a)

≥ k2P ∗ +
3m

4
3

e2me−12P ∗m 1

70× 2

(m≥1)

≥ k2P ∗ +
3× 3× e2

4× 70× 2
e−12mP ∗

> k2P ∗ +
1

9
e−12mP ∗ , (13)
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where (a) uses cm(2) ≤ 4
3

and P ∗ ≥ 1
2
. We loosen the lattice-based upper bound from Theorem 1 and

bring it in a form similar to (13). Here, P is a part of the optimization:

J̄min(m, k2, σ2
0)

≤ inf
P>ξ2

k2P +

(
1 +

√
P

ξ2

)2

e
−mP

2ξ2
+m+2

2

“
1+ln

“
P
ξ2

””

≤ inf
P>ξ2

k2P +
1

9
e
− 0.5mP

ξ2
+m+2

2

“
1+ln

“
P
ξ2

””
+2 ln

“
1+
q

P
ξ2

”
+ln(9)

≤ inf
P>ξ2

k2P +
1

9
e
−m

“
0.5P
ξ2
−m+2

2m

“
1+ln

“
P
ξ2

””
− 2
m

ln
“

1+
q

P
ξ2

”
− ln(9)

m

”

= inf
P>ξ2

k2P +
1

9
e
− 0.12mP

ξ2 × e
−m

„
0.38P
ξ2
− 1+ 2

m
2

“
1+ln

“
P
ξ2

””
− 2
m

ln
“

1+
q

P
ξ2

”
− ln(9)

m

«

(m≥1)

≤ inf
P>ξ2

k2P +
1

9
e
− 0.12mP

ξ2 e
−m

“
0.38P
ξ2
− 3

2

“
1+ln

“
P
ξ2

””
−2 ln

“
1+
q

P
ξ2

”
−ln(9)

”

≤ inf
P≥34ξ2

k2P +
1

9
e
− 0.12mP

ξ2 , (14)

where the last inequality follows from the fact that 0.38P
ξ2

> 3
2

(
1 + ln

(
P
ξ2

))
+ 2 ln

(
1 +

√
P
ξ2

)
+ ln (9)

for P
ξ2
> 34. This can be checked easily by plotting it.8

Using P = 100ξ2P ∗ ≥ 50ξ2 > 34ξ2 (since P ∗ ≥ 1
2
) in (14),

J̄min(m, k2, σ2
0) ≤ k2100ξ2P ∗ +

1

9
e
−m 0.12×100ξ2P∗

ξ2

= k2100ξ2P ∗ +
1

9
e−12mP ∗ . (15)

Using (13) and (15), the ratio of the upper and the lower bounds is bounded for all m since

µ ≤
k2100ξ2P ∗ + 1

9
e−12mP ∗

k2P ∗ + 1
9
e−12mP ∗

≤ k2100ξ2P ∗

k2P ∗
= 100ξ2. (16)

For m = 1, ξ = 1, and thus in the proof the ratio µ ≤ 100. For m large, ξ ≈ 2 [39], and µ . 400. For

arbitrary m, using the recursive construction in [44, Theorem 8.18], ξ ≤ 4, and thus µ ≤ 1600 regardless

of m.

8It can also be verified symbolically by examining the expression g(b) = 0.38b2− 3
2
(1+ ln b2)−2 ln(1+ b)− ln (9), taking its derivative

g′(b) = 0.76b − 3
b
− 2

1+b
, and second derivative g′′(b) = 0.76 + 3

b2
+ 2

(1+b)2
> 0. Thus g(·) is convex-∪. Further, g′(

√
34) ≈ 3.62 > 0,

and g(
√

34) ≈ 0.09 and so g(b) > 0 whenever b ≥
√

34.
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Though the proof above succeeds in showing that the ratio is uniformly bounded by a constant, it is not

very insightful and the constant is large. However, since the underlying vector bound can be tightened

(as shown in [26]), it is not worth improving the proof for increased elegance at this time. The important

thing is that such a constant exists.

A numerical evaluation of the upper and lower bounds (of Theorem 1 and 3 respectively) shows that

the ratio is smaller than 17 for m = 1 (see Fig. 4). A precise calculation of the cost of quantization

strategy improves the upper bound to yield a maximum ratio smaller than 8 (see Fig. 5).

Simple grid lattice has a packing-covering ratio ξ =
√
m. Therefore, while the grid lattice has the best

possible packing-covering ratio of 1 in the scalar case, it has a rather large packing covering ratio of
√

2 (≈ 1.41) for m = 2. On the other hand, a hexagonal lattice (for m = 2) has an improved packing-

covering ratio of 2√
3
≈ 1.15. In contrast with m = 1, where the ratio of upper and lower bounds of

Theorem 1 and 3 is approximately 17, a hexagonal lattice yields a ratio smaller than 14.75, despite having

a larger packing-covering ratio. This is a consequence of tightening of the sphere-packing lower bound

(Theorem 3) as m gets large9.

VI. DISCUSSIONS AND CONCLUSIONS

Though lattice-based quantization strategies allow us to get within a constant factor of the optimal

cost for the vector Witsenhausen problem, they are not optimal. This is known for the scalar [5] and

the infinite-length case [13]. It is shown in [13] that the “slopey-quantization” strategy of Lee, Lau and

Ho [5] that is believed to be very close to optimal in the scalar case can be viewed as an instance of a

linear scaling followed by a dirty-paper coding (DPC) strategy. Such DPC-based strategies are also the

best known strategies in the asymptotic infinite-dimensional case, requiring optimal power P to attain 0

asymptotic mean-square error in the estimation of xm1 , and attaining costs within a factor10 of 1.3 of the

9Indeed, in the limit m → ∞, the ratio of the asymptotic average costs attained by a vector-quantization strategy and the vector lower

bound of Theorem 2 is bounded by 4.45 [13].
10Because of the looseness in the lower bound of [26], the ratio of the costs attained by DPC to the optimal cost is even smaller.
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Optimal linear
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Fig. 6. Ratio of the achievable costs to the scalar lower bound along kσ0 = 10−0.5 for various strategies. Quantization with MMSE-

estimation at the second controller performs visibly better than quantization with MLE, or even scaled MLE. For slopey-quantization with

heuristic DPC-parameter, the parameter α in DPC-based scheme is borrowed from the infinite-length analysis. The figure suggests that along

this path (kσ0 =
√

10), the difference between optimal-DPC and heuristic DPC is not substantial. However, Fig. 7 shows that this is not

true in general.

optimal [26] for all (k, σ2
0). This leads us to conjecture that a DPC-based strategy would be optimal for

finite-vector lengths as well.

It is natural to ask how much is there to gain using a DPC-based strategy over a simple quantization

strategy? Notice that the DPC-strategy gains not only from the slopey quantization, but also from the

MMSE-estimation at the second controller. In Fig. 6, we eliminate the latter advantage by considering first

a quantization-based strategy with an appropriate scaling of the MLE so that it approximates the MMSE-

estimation performance, and then the actual MMSE-estimation strategy. Along the curve kσ0 =
√

10,

there is significant gain in using this approximate-MMSE estimation over MLE, and further gain in using

MMSE-estimation itself, bringing out a tradeoff between the complexity of the second controller and the

performance.

From Fig. 6, DPC strategy performs only negligibly better than a quantization-based strategy with
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Fig. 7. Ratio of cost attained by linear+quantization (with MMSE decoding) to DPC with parameter α obtained by brute-force optimization.

DPC can do up to 15% better than the optimal quantization strategy. Also the maximum is attained along k ≈ 0.6 which is different from

k = 0.2 of the benchmark problem [5].

Fig. 8. Ratio of cost attained by linear+quantization to DPC with α borrowed from infinite-length optimization. Heuristic DPC does not

outperform linear+quantization substantially.

MMSE estimation along kσ0 =
√

10. Fig. 7 shows that this is not true in general. A DPC-based strategy can

perform up to 15% better than a simple quantization-based scheme depending on the problem parameters.

Interestingly, the advantage of using DPC at the benchmark case of k = 0.2, σ0 = 5 [5], [8] is quite small!

The maximum gain of about 15% is obtained at k ≈ 10−0.2 ≈ 0.63, and σ0 > 1.

Given that there may be substantial advantage in using the DPC strategy, an interesting question is

whether the DPC parameter α that optimizes the DPC-strategy’s performance at infinite-lengths gives

good performance for the scalar case as well. The answer to this question turns out to be negative.
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Finally, it is questionable whether our strategies (quantization or DPC) that use uniform bin-size are

almost as good as using nonuniform bins. Table I compares the cost obtained for uniform-bin strategies

(plain quantization and DPC) with the cost attained in [5], which allows for nonuniform quantization bins.

Clearly, the advantage in having nonuniform bins is not substantial, at least for this benchmark case. This

observation is consistent with that in [8].

TABLE I

COSTS ATTAINED FOR THE BENCHMARK CASE OF k = 0.2, σ0 = 5.

linear+quantization Slopey-quantization

Lee, Lau and Ho [5] 0.171394644442 0.167313205368

This paper 0.171533547912493 0.167365453179507

There are plenty of open problems that arise naturally. Both the lower and the upper bounds have room

for improvement. The lower bound can be improved by tightening the lower bound on the infinite-length

problem (one such tightening is performed in [26]) and obtaining corresponding finite-length results using

the sphere-packing tools developed here.

Tightening the upper bound can be performed by using the DPC-based technique over lattices. Further,

an exact analysis of the required first-stage power when using a lattice would yield an improvement (as

pointed out earlier, for m = 1, 1
m
k2r2

c overestimates the required first-stage cost), especially for small m.

Improved lattice designs with better packing-covering ratios would also improve the upper bound.

Perhaps a more significant set of open problems are the next steps in understanding more realistic

versions of Witsenhausen’s problem, specifically those that include costs on all the inputs and all the

states [12], with noisy state evolution and noisy observations at both controllers. The hope is that solutions

to these problems can then be used as the basis for provably-good nonlinear controller synthesis in larger

distributed systems. Further, tools developed for solving these problems could help address multiuser

problems in information theory, in the spirit of [45], [46].
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APPENDIX I

PROOF OF LEMMA 1

EZm
[
(‖Zm‖+ rp)

2 11{Em}
]

= EZm
[
‖Zm‖211{Em}

]
+ r2

p Pr(Em) + 2rpEZm
[(

11{Em}
) (
‖Zm‖11{Em}

)]

(a)

≤ EZm
[
‖Zm‖211{Em}

]
+ r2

p Pr(Em) + 2rp

√
EZm

[
11{Em}

]√
EZm

[
‖Zm‖211{Em}

]

=

(√
EZm

[
‖Zm‖211{Em}

]
+ rp

√
Pr(Em)

)2

, (17)

where (a) uses the Cauchy-Schwartz inequality [47, Pg. 13].

We wish to express EZm
[
‖Zm‖211{Em}

]
in terms of ψ(m, rp) := Pr(‖Zm‖ ≥ rp) =

∫
‖zm‖≥rp

e−
‖zm‖2

2

(
√

2π)
m dzm.

Denote by Am(r) := 2π
m
2 rm−1

Γ(m2 )
the surface area of a sphere of radius r in Rm [48, Pg. 458], where Γ(·)

is the Gamma-function satisfying Γ(m) = (m − 1)Γ(m − 1), Γ(1) = 1, and Γ(1
2
) =
√
π. Dividing the

space Rm into shells of thickness dr and radii r,

EZm
[
‖Zm‖211{Em}

]
=

∫

‖zm‖≥rp
‖zm‖2 e

− ‖z
m‖2
2

(√
2π
)mdzm

=

∫

r≥rp
r2 e−

r2

2

(√
2π
)mAm(r)dr

=

∫

r≥rp
r2 e−

r2

2

(√
2π
)m

2π
m
2 rm−1

Γ
(
m
2

) dr

=

∫

r≥rp

e−
r2

2 2π
(√

2π
)m+2

2π
m+2

2 rm+1

π 2
m

Γ
(
m+2

2

)dr = mψ(m+ 2, rp). (18)

Using (17), (18), and rp =
√

mP
ξ2

EZm
[
(‖Zm‖+ rp)

2 11{Em}
]
≤ m

(√
ψ(m+ 2, rp) +

√
P

ξ2

√
ψ(m, rp)

)2

,
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which yields the first part of Lemma 1. To obtain a closed-form upper bound we consider P > ξ2. It

suffices to bound ψ(·, ·).

ψ(m, rp) = Pr(‖Zm‖2 ≥ r2
p) = Pr(exp(ρ

m∑

i=1

Z2
i ) ≥ exp(ρr2

p))

(a)

≤ EZm

[
exp(ρ

m∑

i=1

Z2
i )

]
e−ρr

2
p = EZ1

[
exp(ρZ2

1)
]m
e−ρr

2
p

(for 0<ρ<0.5)
=

1

(1− 2ρ)
m
2

e−ρr
2
p ,

where (a) follows from the Markov inequality, and the last inequality follows from the fact that the

moment generating function of a standard χ2
2 random variable is 1

(1−2ρ)
1
2

for ρ ∈ (0, 0.5) [49, Pg. 375].

Since this bound holds for any ρ ∈ (0, 0.5), we choose the minimizing ρ∗ = 1
2

(
1− m

r2p

)
. Since r2

p = mP
ξ2

,

ρ∗ is indeed in (0, 0.5) as long as P > ξ2. Thus,

ψ(m, rp) ≤
1

(1− 2ρ∗)
m
2

e−ρ
∗r2p

=

(
r2
p

m

)m
2

e
− 1

2

„
1−m

r2p

«
r2p

= e
−
r2p
2

+m
2

+m
2

ln

„
r2p
m

«
.

Using the substitutions r2
c = mP , ξ = rc

rp
and r2

p = mP
ξ2

,

Pr(Em) = ψ(m, rp) = ψ

(
m,

√
mP

ξ2

)
≤ e

−mP
2ξ2

+m
2

+m
2

ln
“
P
ξ2

”
, and (19)

EZm
[
‖Zm‖211{Em}

]
≤ mψ

(
m+ 2,

√
mP

ξ2

)
≤ me

−mP
2ξ2

+m+2
2

+m+2
2

ln
“

mP
(m+2)ξ2

”
. (20)

From (17), (19) and (20),

EZm
[
(‖Zm‖+ rp)

2 11{Em}
]

≤
(√

me
−mP

4ξ2
+m+2

4
+m+2

4
ln
“

mP
(m+2)ξ2

”√
mP

ξ2
e
−mP

4ξ2
+m

4
+m

4
ln
“
P
ξ2

”)2

(since P>ξ2)
<

(
√
m

(
1 +

√
P

ξ2

)
e
−mP

4ξ2
+m+2

4
+m+2

4
ln
“
P
ξ2

”)2

= m

(
1 +

√
P

ξ2

)2

e
−mP

2ξ2
+m+2

2
+m+2

2
ln
“
P
ξ2

”
.

APPENDIX II

PROOF OF LEMMA 2

The following lemma is taken from [13].
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Lemma 3: For any three random variables A, B and C,

E
[
‖B − C‖2

]
≥
((√

E [‖A− C‖2]−
√

E [‖A−B‖2]
)+
)2

.

Proof: See [13, Appendix II].

Choosing A = Xm
0 , B = Xm

1 and C = X̂m
1 ,

EXm
0 ,Z

m
G

[
J

(γ)
2 (Xm

0 ,Z
m
G )|Zm

G ∈ SGL
]

=
1

m
EXm

0 ,Z
m
G

[
‖Xm

1 − X̂m
1 ‖2|Zm

G ∈ SGL
]

≥
((√

1

m
EXm

0 ,Z
m
G

[
‖Xm

0 − X̂m
1 ‖2|Zm

G ∈ SGL
]
−
√

1

m
EXm

0 ,Z
m
G

[‖Xm
0 −Xm

1 ‖2|Zm
G ∈ SGL ]

)+)2

=

((√
1

m
EXm

0 ,Z
m
G

[
‖Xm

0 − X̂m
1 ‖2|Zm

L ∈ SGL
]
−
√
P

)+)2

, (21)

since Xm
0 −Xm

1 = Um
1 is independent of Zm

G and E [‖Um
1 ‖2] = mP . Define Ym

L := Xm
1 + Zm

L to be the

output when the observation noise Zm
L is distributed as a truncated Gaussian distribution:

fZL(zmL ) =





cm(L) e
−
‖zmL ‖

2

2σ2
G“√

2πσ2
G

”m zmL ∈ SGL

0 otherwise.

(22)

Let the estimate at the second controller on observing ymL be denoted by X̂m
L . Then, by the definition of

conditional expectations,

EXm
0 ,Z

m
G

[
‖Xm

0 − X̂m
1 ‖2|Zm ∈ SGL

]
= EXm

0 ,Z
m
G

[
‖Xm

0 − X̂m
L ‖2
]
. (23)

To get a lower bound, we now allow the controllers to optimize themselves with the additional knowledge

that the observation noise zm must fall in SGL . In order to prevent the first controller from “cheating” and

allocating different powers to the two events (i.e. zm falling or not falling in SGL ), we enforce the constraint

that the power P must not change with this additional knowledge. Since the controller’s observation Xm
0 is

independent of Zm, this constraint is satisfied by the original controller (without the additional knowledge)

as well, and hence the cost for the system with the additional knowledge is still a valid lower bound to

that of the original system.
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The rest of the proof uses ideas from channel coding and rate-distortion theorem [50, Ch. 13] from

information theory. We view the problem as a problem of implicit communication from the first controller

to the second. Notice that for a given γ(·), Xm
1 is a function of Xm

0 , Ym
L = Xm

1 + Zm
L is conditionally

independent of Xm
0 given Xm

1 (since the noise Zm
L is additive and independent of Xm

1 and Xm
0 ). Further,

X̂m
L is a function of Ym

L . Thus Xm
0 −Xm

1 −Ym
L − X̂m

L form a Markov chain. Using the data-processing

inequality [50, Pg. 33],

I(Xm
0 ; X̂m

L ) ≤ I(Xm
1 ; Ym

L ), (24)

where I(A,B) is the expression for mutual information expression between two random variables A and

B (see, for example, [50, Pg. 18, Pg. 231]). To estimate the distortion to which Xm
0 can be communicated

across this truncated Gaussian channel (which, in turn, helps us lower bound the MMSE in estimating

Xm
1 ), we need to upper bound the term on the RHS.

Lemma 4:

1

m
I(Xm

1 ; Ym
L ) ≤ 1

2
log2

(
e1−dm(L)(P̄ + dm(L)σ2

G)c
2
m
m (L)

σ2
G

)
.

Proof: We first obtain an upper bound the power of Xm
1 (this bound is the same as that used in [13]):

EXm
0

[
‖Xm

1 ‖2
]

= EXm
0

[
‖Xm

0 + Um
1 ‖2
]

= EXm
0

[
‖Xm

0 ‖2
]

+ EXm
0

[
‖Um

1 ‖2
]

+ 2EXm
0

[
Xm

0
TUm

1

]

(a)

≤ EXm
0

[
‖Xm

0 ‖2
]

+ EXm
0

[
‖Um

1 ‖2
]

+ 2
√

EXm
0

[‖Xm
0 ‖2]

√
EXm

0
[‖Um

1 ‖2]

≤ m(σ0 +
√
P )2,

where (a) follows from the Cauchy-Schwartz inequality. We use the following definition of differential

entropy h(A) of a continuous random variable A [50, Pg. 224]:

h(A) = −
∫

S

fA(a) log2 (fA(a)) da, (25)

where fA(a) is the pdf of A, and S is the support set of A. Conditional differential entropy is defined

similarly [50, Pg. 229].
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Let P̄ := (σ0 +
√
P )2. Now, E

[
Y 2
L,i

]
= E

[
X2

1,i

]
+ E

[
Z2
L,i

]
(since X1,i is independent of ZL,i and

by symmetry, ZL,i are zero mean random variables). Denote P̄i = E
[
X2

1,i

]
and σ2

G,i = E
[
Z2
L,i

]
. In the

following, we derive an upper bound C(m)
G on 1

m
I(Xm

1 ; Ym
L ).

C
(m)
G := sup

p(Xm
1 ):E[‖Xm

1 ‖2]≤mP̄

1

m
I(Xm

1 ; Ym
L )

(a)
= sup

p(Xm
1 ):E[‖Xm

1 ‖2]≤mP̄

1

m
h(Ym

L )− 1

m
h(Ym

L |Xm
1 )

= sup
p(Xm

1 ):E[‖Xm
1 ‖2]≤mP̄

1

m
h(Ym

L )− 1

m
h(Xm

1 + Zm
L |Xm

1 )

(b)
= sup

p(Xm
1 ):E[‖Xm

1 ‖2]≤mP̄

1

m
h(Ym

L )− 1

m
h(Zm

L |Xm
1 )

(c)
= sup

p(Xm
1 ):E[‖Xm

1 ‖2]≤mP̄

1

m
h(Ym

L )− 1

m
h(Zm

L )

(d)

≤ sup
p(Xm

1 ):E[‖Xm
1 ‖2]≤mP̄

1

m

m∑

i=1

h(YL,i)−
1

m
h(Zm

L )

(e)

≤ sup
P̄i:
Pm
i=1 P̄i≤mP̄

1

m

m∑

i=1

1

2
log2

(
2πe(P̄i + σ2

G,i)
)
− 1

m
h(Zm

L )

(f)

≤ 1

2
log2

(
2πe(P̄ + dm(L)σ2

G)
)
− 1

m
h(Zm

L ). (26)

Here, (a) follows from the definition of mutual information [50, Pg. 231], (b) follows from the fact that

translation does not change the differential entropy [50, Pg. 233], (c) uses independence of Zm
L and Xm

1 ,

and (d) uses the chain rule for differential entropy [50, Pg. 232], and the fact that conditioning reduces

entropy [50, Pg. 232]. In (e), we used the fact that Gaussian random variables maximize differential

entropy. The inequality (f) follows from the concavity of the log(·) function and an application of

Jensen’s inequality [50, Pg. 25]. We also use the fact that 1
m

∑m
i=1 σ

2
G,i = dm(L)σ2

G, which can be proven
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as follows

1

m
E

[
m∑

i=1

Z2
L,i

]
(using (22))

=
σ2
G

m

∫

zm∈SGL

‖zm‖2

σ2
G

cm(L)
exp

(
−‖z

m
G ‖

2

2σ2
G

)

(√
2πσ2

G

)m dzmG

=
cm(L)σ2

G

m
E
[
‖Zm

G‖211n‖ZmG ‖≤√mL2σ2
G

o]

(eZm:=
ZmG
σG

)

=
cm(L)σ2

G

m
E
[
‖Z̃m‖211{‖eZm‖≤√mL2}

]

=
cm(L)σ2

G

m

(
E
[
‖Z̃m‖2

]
− E

[
‖Z̃m‖211{‖eZm‖>√mL2}

])

(using (18))
=

cm(L)σ2
G

m

(
m−mψ(m+ 2,

√
mL2)

)

= cm(L)
(
1− ψ(m+ 2, L

√
m)
)
σ2
G = dm(L)σ2

G.

We now compute h(Zm
L )

h(Zm
L ) =

∫

zm∈SGL
fZL(zm) log2

(
1

fZL(zm)

)
dzm

=

∫

zm∈SGL
fZL(zm) log2




(√
2πσ2

G

)m

cm(L)e
− ‖z

m‖2
2σ2
G


 dzm

= − log2 (cm(L)) +
m

2
log2

(
2πσ2

G

)
+

∫

zm∈SGL
cm(L)fG(zm)

‖zm‖2

2σ2
G

log2 (e) dzm. (27)

Analyzing the last term of (27),

∫

zm∈SGL
cm(L)fG(zm)

‖zm‖2

2σ2
G

log2 (e) dzm =
log2 (e)

2σ2
G

∫

zm∈SGL
cm(L)

e
− ‖z

m‖2

2σ2
G(√

2πσ2
G

)m‖zm‖2dzm

=
log2 (e)

2σ2
G

∫

zm
fZL(zm)‖zm‖2dzm

(using (22))
=

log2 (e)

2σ2
G

EG

[
‖Zm

L ‖2
]

=
log2 (e)

2σ2
G

EG

[
m∑

i=1

Z2
L,i

]

(using (27))
=

log2 (e)

2σ2
G

mdm(L)σ2
G =

m log2

(
edm(L)

)

2
. (28)

The expression C(m)
G can now be upper bounded using (26), (27) and (28) as follows.

C
(m)
G ≤ 1

2
log2

(
2πe(P̄ + dm(L)σ2

G)
)

+
1

m
log2 (cm(L))− 1

2
log2

(
2πσ2

G

)
− 1

2
log2

(
edm(L)

)

=
1

2
log2

(
2πe(P̄ + dm(L)σ2

G)
)

+
1

2
log2

(
c

2
m
m (L)

)
− 1

2
log2

(
2πσ2

G

)
− 1

2
log2

(
edm(L)

)

=
1

2
log2

(
2πe(P̄ + dm(L)σ2

G)c
2
m
m (L)

2πσ2
Ge

dm(L)

)
=

1

2
log2

(
e1−dm(L)(P̄ + dm(L)σ2

G)c
2
m
m (L)

σ2
G

)
. (29)
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Now, recall that the rate-distortion function Dm(R) for squared error distortion for source Xm
0 and

reconstruction X̂m
L is,

Dm(R) := inf
p(bXm

L |X
m
0 )

1
m
I(Xm

0 ; bXm
L ) ≤ R

1

m
EXm

0 ,Z
m
G

[
‖Xm

0 − X̂m
L ‖2
]
, (30)

which is the dual of the rate-distortion function [50, Pg. 341]. Since I(Xm
0 ; X̂m

L ) ≤ mC
(m)
G , using the

converse to the rate distortion theorem [50, Pg. 349] and the upper bound on the mutual information

represented by C(m)
G ,

1

m
EXm

0 ,Z
m
G

[
‖Xm

0 − X̂m
L ‖2
]
≥ Dm(C

(m)
G ). (31)

Since the Gaussian source is iid, Dm(R) = D(R), where D(R) = σ2
02−2R is the distortion-rate function

for a Gaussian source of variance σ2
0 [50, Pg. 346]. Thus, using (21), (23) and (31),

EXm
0 ,Z

m
G

[
J

(γ)
2 (Xm

0 ,Z
m)|Zm ∈ SGL

]
≥

((√
D(C

(m)
G )−

√
P

)+
)2

.

Substituting the bound on C(m)
G from (29),

D(C
(m)
G ) = σ2

02−2C
(m)
G =

σ2
0σ

2
G

c
2
m
m (L)e1−dm(L)(P̄ + dm(L)σ2

G)

Using (21), this completes the proof of the lemma. Notice that cm(L) → 1 and dm(L) → 1 for fixed m

as L → ∞, as well as for fixed L > 1 as m → ∞. So the lower bound on D(C
(m)
G ) approaches κ of

Theorem 2 in both of these two limits.
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