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1 Introduction

Distributed control problems have proved challenging for control engineers.
Witsenhausen (1968) gives a counterexample showing that even a seemingly
simple distributed control problem can be hard to solve. For the counterexample,
Witsenhausen chose a two-stage distributed LQG system. The choice is appropriate
because LQG systems that are not distributed are well understood – control laws
linear in the observations are optimal for such systems. For his counterexample,
Witsenhausen provided a nonlinear control strategy that outperforms all linear laws,
thus arguing that distributed systems might be harder to understand. It is now
clear that Witsenhausen’s problem itself is quite hard; the optimal strategy and the
optimal costs for the problem are still unknown. The non-convexity of the problem
makes the search for an optimal strategy hard (Bansal and Basar, 1987; Baglietto
et al., 1997; Lee et al., 2001). Discrete approximations of the problem (Ho and
Chang, 1980) are even NP-complete (Papadimitriou and Tsitsiklis, 1986).

In order to understand what makes the problem hard, modifications of the
problem have been considered that still admit linear optimal solutions. In Bansal
and Basar (1987), for example, Bansal and Basar consider a parametrised family
of two-stage stochastic control problems. The family includes the Witsenhausen
counterexample. Using results from information theory, they show that for
this family, whenever the cost function does not contain a product of two
decision variables, affine control laws are still optimal. Rotkowitz (2006) shows
that affine control laws continue to be optimal for a deterministic variant of
the counterexample if the cost function is the induced two-norm instead of
Witsenhausen’s original expected two-norm.

Ho et al. (1978) view the Witsenhausen problem as a close sibling of Shannon’s
problem of explicit communication. Mitter and Sahai (1999) build upon this
observation to suggest that the counterexample might be hard because there is
an implicit communication channel from the first controller to the second. The
first stage cost can be interpreted as the power that is input to this channel.
The second stage cost is the distortion in estimating the state at time 1. Using this
interpretation, they propose nonlinear control strategies based on state quantisation.
Over a range of possible problem parameters and corresponding quantisation levels,
these nonlinear strategies can outperform optimal linear strategies by an arbitrarily
large factor. Martins (2006) points out that even in the presence of a non-perfect
(but still pretty good) explicit communication link, nonlinear strategies continue to
outperform linear ones.

In this paper, we ask the following question: Can the problem actually be
simplified by using the observation that it has an implicit communication channel
(Mitter and Sahai, 1999)? Experience from information theory suggests that it is
often easier to analyse communication problems with asymptotically long vector
lengths, because they allow us to avoid the complications of the geometry of
finite-dimensional spaces. The asymptotically-long vector length setting also permits
the use of the laws of large numbers. However, as pointed out1 by Tatikonda
(2000), in control problems such limits need to be interpreted as wide-area spatial
asymptotics rather than the long-delay interpretation favoured in communications
theory. This motivates us to propose a vector version of the counterexample in
Section 2 that is illustrated in Figure 1(a). Section 3 interprets the vector problem
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as an information theory problem, shown in Figure 1(b) where the distributed
controllers C1 and C2 are interpreted as an encoder and a decoder. Section 3.1
provides a toy wireless communication problem, called Assisted Interference
Suppression, that can be modelled by the vector Witsenhausen counterexample.
Section 3.2 shows that the problem is one of many closely related information theory
problems, some of which have been recently addressed in the literature (Costa, 1983;
Merhav and Shamai, 2007; Kim et al., 2008).

From a control perspective, our claim that the vector formulation simplifies
the problem is counterintuitive because it might seem that the simplest version
of the problem must contain the fewest number of variables.2 In Section 4 we
show that the asymptotic vector extension is indeed easier to understand since it
permits us to characterise the optimal costs within a constant factor. This constant
factor is uniformly bounded over all values of the problem parameters k and σ2

0 .
This characterisation is performed in three steps. First, a new information-theoretic
lower bound to the cost is derived. Random-coding based upper bounds are then
provided on the cost by analysing nonlinear control strategies inspired by the
information-theoretic techniques of lossy source coding, channel coding and DPC
(Costa, 1983). Finally, the ratio of the upper bound to the lower bound is proved to
be no greater than 11. Numerical evaluation shows that this factor is actually two
in the worst case, and is close to one for most values of the problem parameters.
The characterisation is in the spirit of some recent advances in information theory
where approximate characterisations of rate-regions within a uniform bound have
been obtained for some long standing multiuser problems (Avestimehr et al., 2007;
Etkin et al., 2007; Avestimehr, 2008).

Section 4.1 also shows that even the scalar restriction of the new lower bound
is an improvement over Witsenhausen’s original lower bound for certain parameter
values. Proper selection of parameters shows that the ratio of our lower bound
to Witsenhausen’s bound can be arbitrarily large. Because of this looseness in
Witsenhausen’s bound, there could not have been analogous results characterising
the costs for the scalar problem within a constant factor. Whether such a result
is possible for the original scalar problem with the new lower bound is an open
question, but Section 5 explains why the assumption of asymptotically long vector
lengths is crucial to the particular results derived here.

2 The vector version of Witsenhausen’s counterexample

The scalar Witsenhausen problem is generalised to the vector case, and the resulting
block-diagram is shown in Figure 1(a). The system is still a two-stage control
system. The only change from Witsenhausen’s original problem is that the states
and the inputs are now vectors of length m. A vector is represented in bold font
(e.g., x). The space of possible control strategies, including randomised strategies, is
denoted by S, which is the space of all Borel measurable functions on the respective
observations of the two controllers. For expository convenience, we also allow
for strategies that rely on common randomness shared by the two controllers.3

As in conventional notation, x is used to denote the state, u the input, and y
the observation, and v̂ is used to denote the estimate of any random variable v.
The problem description is as follows:



200 P. Grover and A. Sahai

• The initial state x0 is Gaussian, distributed N (0, σ2
0I).

• The state transition functions describe the state evolution with time. The state
transitions are linear:

x1 = f1(x0,u1) = x0 + u1, and

x2 = f2(x1,u2) = x1 − u2.

• The outputs observed by the controllers:

y1 = g1(x0) = x0, and

y2 = g2(x1) = x1 + w,
(1)

where w ∼ N (0, σ2
wI) is Gaussian distributed observation noise.

As in Witsenhausen (1968), without loss of generality, we assume σ2
w = 1.

Figure 1 In (a), the m-length vector version of the Witsenhausen counterexample is posed
as a control problem. The total cost is given by k2

m
‖u1‖2 + 1

m
‖x2‖2, and the

objective is to minimise the expected cost. In (b), the same problem is cast as an
information theory problem, with C1 interpreted as the encoder E with input
power constraint P , and C2 interpreted as the decoder D. The objective is to

minimise the average distortion E[‖x1 − x̂1‖2]

• The control objective is to minimise the expected cost, averaged over the
random realisations of x0 and w, and potentially any randomisation in the
control strategy itself. The cost is a quadratic function of the state and the
input, given by:

C1(k2,x1,u1) =
1
m

k2‖u1‖2, and

C2(k2,x2,u2) =
1
m

‖x2‖2
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where ‖ · ‖ denotes the usual Euclidean 2-norm. The cost expressions are
normalised by the vector-length m so that they do not necessarily grow with
the problem size. The total cost, C(x1,u1,x2,u2) is given by

C(k2,x1,u1,x2,u2) = C1(k2,x1,u1) + C2(k2,x2,u2). (2)

Given a control strategy S ∈ S, the expected costs are denoted by C(k2, S)
and Ci(k2, S) for i = 1, 2. We define Cmin(k2) as follows

Cmin(k2) := inf
S∈S

C(k2, S). (3)

For notational simplicity, we drop the arguments of the various cost functions
when there is no ambiguity in doing so.

• The information pattern represents the information available to each
controller at each time it takes an action. Following Witsenhausen’s notation
in Witsenhausen (1971), the information pattern for the vector problem is

Y1 = {y1}; U1 = ∅; Q1 = {q},

Y2 = {y2}; U2 = ∅; Q2 = {q}.

Here Yi denotes the information about the outputs in equation (1) available at
the controller i ∈ {1, 2}. Similarly, Ui denotes the information about the
previously applied inputs available at the ith controller. Qi = q denotes the
randomness available to the two controllers. Here, q is independent of both x0
and w. Because it is available to both controllers, the allowed strategies have
common randomness.

Note that the second controller does not have knowledge of the output
observed or the input applied at the first stage. This makes the information
pattern non-classical (or non-nested), and the problem distributed.

We note that for the scalar case of m = 1, the problem above reduces
to Witsenhausen’s original counterexample (Witsenhausen, 1968). Furthermore,
because of the diagonal dynamics and diagonal covariance matrices, the optimal
linear strategies act on a component-by-component basis. So, even if m > 1, the
relevant linear strategies are still essentially scalar in nature.

3 Connections with information theory

Figure 1(a) is the vector version for Witsenhausen’s counterexample drawn in
traditional form with the state evolution forming the backbone of the figure.
This is transformed in Figure 1(b) by redrawing the blocks so that the implicit
communication channel is conspicuous. The first controller is interpreted as an
‘encoder’ that modifies the state to enable it to be better communicated to the second
controller. The encoder knows the ‘interference’ x0. Consider the second cost term

C2 =
1
m

‖x2‖2 =
1
m

‖x1 − u2‖2. (4)
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In order to minimise the expected cost C2, it is optimal to choose u2 = x̂1,
the MMSE estimate of x1, for the second input. The second controller can therefore
be interpreted as a ‘decoder’ that estimates x1. The cost C2 is the mean-square error
in estimating x1. We now impose a mean-square constraint on the input u1,

1
m

E[‖u1‖2] ≤ P. (5)

This is the average power with which the first controller can modify the state.
The greater the permitted power P , the smaller we can make the MMSE error C2.
We define

C2,min(P ) := inf
S∈S:E[‖u1(S)‖2]≤mP

E[C2(S)], (6)

The following lemma shows that finding C2,min(P ) for all P is equivalent to finding
the optimal cost Cmin(k2) for all k.

Lemma 1: The total minimum cost, Cmin(k2), can be obtained from the optimal
tradeoff between P and C2, given by C2,min(P ) for all P . Conversely, given
Cmin(k2) for all k, C2,min(P ) can be obtained.

Proof: The geometric intuition is illustrated in Figure 2. The proof is in
Appendix A. �

Figure 2 Shaded regions are the achievable (C2, P ) pairs and the achievable total costs,
respectively. The two problems of finding the optimal P and C2 tradeoff and
finding Cmin(k2) for all k are equivalent. Given the tradeoff curve (a), to find a
point on the minimum cost curve (b) for given k, draw a tangent to the curve in
(a) of slope − 1

k2 . The intercept on the C2 axis gives the minimum total cost.
Conversely, given the optimal expected cost Cmin(k2) for all choices of k, draw
the line segments given by equation k2P + C2 = Cmin(k2) as shown in (a).
The supremum over k of all these segments gives the P − C2 tradeoff curve

inderscience
Shaded
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Thus there are two equivalent formulations of the Witsenhausen problem.
The P and MMSE tradeoff is reminiscent of tradeoffs in information theory in that
an increase in the permitted power P reduces the distortion in estimating x1.

3.1 Assisted Interference Suppression (AIS)

The vector Witsenhausen problem can further be interpreted as a toy wireless
communication problem. Figure 3 illustrates this interpretation, which we refer to
as “Assisted Interference Suppression” (AIS). In AIS, the observation noise w is
instead interpreted as a vector of Gaussian symbols that transmitter Tx sends to the
receiver Rx in presence of interference x0 (from the interferer I). The interference
vector x0 is known non-causally (prior to transmission) at the ‘helper’ H (similar
to the formulation in, for example (Devroye et al., 2006; Jovicic and Viswanath,
2006)). The helper attempts to wirelessly suppress the effect of the interference at
the receiver Rx. The objective is to minimise the mean-square error in estimating w
at Rx under an average power constraint P on the u1 sent by the helper.

Figure 3 Assisted Interference Suppression problem, a model for which is given in
Figure 4. The transmitter Tx sends uncoded Gaussian symbols w to receiver Rx
in the presence of interference x0 from the interferer I. The helper H has
non-causal knowledge of x0. It attempts to suppress this interference at receiver
Rx (by modifying it using u1) so that the receiver Rx can better estimate the
symbols sent by the transmitter Tx

The signal received at Rx is given by

y = x0 + u1 + w

= x1 + w.
(7)

Let ŵ denote the MMSE estimate of w. Then,

ŵ = E[w |y]
and x̂1 = E[x1 |y]

Therefore, x̂1 + ŵ = E[y |y] = y.

inderscience
Assisted
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We conclude that

E[‖x̂1 − x1‖2] = E[‖ŵ − w‖2], (8)

and thus, minimising the LHS under a power constraint P on u1, which is the goal
of the vector Witsenhausen problem, is equivalent to minimising the RHS under the
same constraint, which is AIS.

3.2 Related problems in information theory

Table 1 shows four related problems discussed in the information-theoretic literature
and compares their features with AIS. All these problems are special cases of the
same block-diagram shown in Figure 4. Because these problems are closely related,
one expects that AIS (and hence the vector Witsenhausen problem) may also be
amenable to an information-theoretic analysis.

Table 1 A comparison of various information-theoretic problems

Performance Power H
Problem Reconstruct/hide measures constraint(s) on has M? Solved?

AIS Uncoded signal ŵ E[‖w − ŵ‖2] u1 No No

DPC Message M̂ R, Pe (u1 + w) Yes Yes
(Costa, 1983)

Distrib. DPC (Kotagiri Message M̂ R, Pe u1;w No No
and Laneman, 2008)

State amplif. Message M̂ , ‘state’ x̂0 R, Pe, (u1 + w) Yes Yes
(Kim et al., 2008) E[‖x0 − x̂0‖2]

State masking (Merhav Message M̂ , hide x0 R, Pe, (u1 + w) Yes Yes
and Shamai, 2007) min I(x0,y2)

Costa’s original DPC problem (Costa, 1983) addresses the problem of
communicating a message M (lying in a set {1, 2, . . . , 2mR} where R is the rate
of communication) reliably (with small error probability Pe) across a channel with
additive interference and additive white Gaussian noise. The interference vector x0 is
assumed to be known noncausally at the transmitter, that is, the switch in Figure 4 is
closed and H and Tx can fully cooperate. The Tx-H pair communicates a message M
to the receiver by modifying the interference x0 using the average power constrained
input u1 + w. Surprisingly, it turns out that asymptotically, the maximum rate R is
the same as that for a channel with no interference.

Recently, significant advances have been made in understanding long-standing
open problems in information theory by simplifying them using deterministic
models (Avestimehr et al., 2007). These models can sharpen the intuition for
designing strategies for multi-user communication problems. For example, an
approximate rate region has been found to within one bit for the two-user
interference channel (Etkin et al., 2007), where two transmitter-receiver pairs
transmit simultaneously in the same band, causing interference at each other’s
receiver. Similarly, achievable rates for the relay channel (Avestimehr, 2008) have
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been characterised to within a constant number of bits,4 where this constant is
independent of the noise variances and the transmit power constraints.

Figure 4 A generic information-theoretic block-diagram that can be used to represent each
of the four problems shown in Table 1. For z = 0, no message M , and w
Gaussian, the block-diagram represents the vector Witsenhausen problem (or the
AIS problem) with the reconstruction r = x̂1 (or equivalently, r = ŵ).
When w is a coded signal, r = M̂ , and the objective is to maximise the message
rate while keeping the probability of error Pe = P (M �= M̂) small, the
block-diagram represents Costa’s Dirty-Paper Coding (DPC) problem
(Costa, 1983) if the switch is closed, and the power constraint is on the power
of the sum w + u1. It represents distributed DPC (Kotagiri and Laneman, 2008)
under the same conditions if the switch is open and constraints are on the
individual powers of w and u1. With the switch closed and a sum-power
constraint, if the objective is to communicate M and estimate state x0, it is the
state amplification problem (Kim et al., 2008). If the objective were instead to
communicate M and hide state x0, it is the state masking problem

Source: Merhav and Shamai (2007)

The DPC result can be explained intuitively using the deterministic model shown
in Figure 5. The transmitter Tx first performs a partial cleaning on the channel
by zero-forcing the ‘low order bits’ of the interference vector, which corresponds
to using a power much smaller than the potentially high interference power.
The desired message is now encoded into these low order bits. Interestingly, this
deterministic interpretation suggests that a DPC scheme would work even if the
helper that cleans the channel and the transmitter that transmits the message are
different – a situation that can be thought of as distributed DPC. If the transmitter
and the helper have equal power, the helper can clean some space for use by the
transmitter, who can now communicate reliably at capacity for the power constraint
in the space cleaned up. The total power required is thus at most twice the power
required for communicating with zero interference. This suggests that a distributed
DPC implementation suffers a capacity-loss of at most half a bit.

The distributed DPC problem was addressed by Kotagiri and Laneman (2008)
as a special case of the multiple-access channel with partial state information at some
encoders. The authors provide upper bounds and lower bounds on achievable rates
for the second transmitter, given constraints on the average powers of P and σ2

w on
the two transmitters. There is, however, a subtle distinction between this problem
and AIS. In distributed DPC, the second user is interested in maximising its rate,
and can code its message on the channel. In AIS, the objective is to minimise the
distortion, and the transmissions w are uncoded Gaussian symbols.

inderscience
Source: Merhav and Shamai (2007)
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Figure 5 Deterministic model for Dirty-Paper Coding in which real-valued addition
is simplified to bitwise modulo-two addition by essentially dropping any
‘carry bits’. The bits Ii represent the interference signal. The transmitter
zero-forces the low order bits of the interference using this knowledge, and then
encodes the information bits Bi to take their place. This suggests that
Dirty-Paper Coding can be implemented in a distributed manner, since in this
model the zero-forcing of the interference bits does not require the knowledge of
the information bits, and encoding the desired information bits does not require
knowledge of the interference

Yet another related pair of problems are state amplification (recently solved by Kim
et al. (2008)) and state masking (recently solved by Merhav and Shamai (2007)).
For the system in Figure 4, the objective in Kim et al. (2008) is to reconstruct the
message and the original interference x0 at the receiver. The authors characterise
the tradeoff between the rate R and the mean-square error in estimating x0 under
an average power constraint. The optimal strategy splits its power – a part of it is
used to amplify the state, and the rest of it is used to communicate the message
by DPCing against the amplified state. The state-masking problem of Merhav and
Shamai (2007) is the opposite – the objective is to minimise the information about x0
that can be obtained from y2. The optimal strategy here turns out to attenuate5 the
state by using a part of the power, while using the rest of the power to communicate
by DPCing against the decreased interference. The crucial distinction between these
problems and the vector Witsenhausen problem is that for state-amplification and
state-masking the objective is to reconstruct/hide x0. In contrast, for the vector
Witsenhausen problem, the objective is to reconstruct x1. The helper H gets to
modify what is to be estimated. Interestingly, the fact that the helper does not know
the message is what seems to make the problem hard in Table 1.
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4 Characterisation of the optimal costs for the vector Witsenhausen problem
to within a constant factor

This section characterises the asymptotically optimal costs for the vector
Witsenhausen problem (in the limit m → ∞) within a constant factor for all values
of problem parameters k and σ2

0 .

Theorem 1: For the problem as stated in Section 2 with σ2
w = 1, in the limit of

m → ∞, the optimal expected cost Cmin(k2) for the vector Witsenhausen problem
satisfies

1
γ1

min
{

k2, k2σ2
0 ,

σ2
0

σ2
0 + 1

}
≤ Cmin(k2) ≤ min

{
k2, k2σ2

0 ,
σ2

0

σ2
0 + 1

}
. (9)

Alternatively, Cmin(k2) satisfies

inf
P≥0

k2P +
((√

κ(P ) −
√

P
)+)2 ≤ Cmin(k2)

≤ γ2 inf
P≥0

k2P +
((√

κ(P ) −
√

P
)+)2

, (10)

where (·)+ is shorthand for max(·, 0) and

κ(P ) =
σ2

0

σ2
0 + 2σ0

√
P + P + 1

. (11)

The factors γ1 and γ2 are no more than 11 (Numerical evaluation shows that
γ1 < 4.45, and γ2 < 2).

Proof: The proof proceeds in three steps. Section 4.1 states a new information-
theoretic lower bound on the expected cost that is valid for all vector lengths.
This provides the expressions in equation (10). An upper bound is then derived in
Section 4.2 by providing three schemes, and taking the best performance among
the three. This provides the expressions in equation (9). The first scheme (providing
the k2 in equation (9)) is a randomised nonlinear controller that we call the Joint
Source-Channel Coding (JSCC) scheme. A linear scheme that zero-forces x0 by

using u1 = −x0 achieves the second term k2σ2
0 . The third term of σ2

0
σ2
0+1 is achieved

by another trivial linear scheme using u1 = 0 and performing an MMSE estimation
for x1 on observing y2. Figure 6 partitions the (k2, σ2

0) parameter space into three
different regions, showing which of the three upper bounds is the tightest for various
values of k2 and σ2

0 . It is interesting to note that the nonlinear JSCC scheme is
required only in the small-k large-σ2

0 regime. A similar figure in Baglietto et al. (1997,
Figure 1) for the scalar problem shows that the same regime is interesting there as
well.

A 3-D plot of the ratio between the upper and lower bounds for varying k2

and σ2
0 is shown in Figure 7. The figure shows that the ratio is bounded by a

constant γ1, numerically evaluated to be 4.45, and attained at k2 = 0.5 and σ2
0 = 1.

The figure also shows that for most of the (k2, σ2
0) parameter space, the ratio is
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in fact close to 1 so the upper and lower bounds are almost equal there. This
asymptotic characterisation can be further tightened by improving the upper bound
using a balanced combination of DPC and linear control described in Section 4.3
and detailed in Appendix D.8. Numerical evaluation of this ratio leads us to
conclude that γ2 < 2, as is illustrated in Figure 8. The worst ratio of 2 is achieved
along σ2

0 =
√

5−1
2 , the golden ratio, and k small.

Figure 6 The plot maps the regions where each of the three schemes (JSCC, zero-forcing
x0, and zero input) perform better than the other two. For large k, zero input
performs best. For small k and small σ2

0 , the cost of zero-forcing the state is
small, and hence the zero-forcing scheme performs better than the other two.
For small k but large σ2

0 , the nonlinear JSCC cost is the smallest amongst the
three

Finally, Appendix E complements the plots by giving an explicit proof that the ratio
of the upper and lower bounds is always smaller than 11. �

4.1 A lower bound on the expected cost

Witsenhausen (1968, Section 6) derived the following lower bound on the optimal
costs for the scalar problem.

Theorem 2 (Witsenhausen’s lower bound): The optimal cost for the scalar
Witsenhausen counterexample is lower bounded by

Cscalar
min (k2) ≥ 1

σ0

∫ +∞

−∞
φ

(
ξ

σ0

)
Vk(ξ)dξ, (12)

where φ(t) = 1√
2π

exp(− t2

2 ) is the standard Gaussian density and

Vk(ξ) := min
a

[k2(a − ξ)2 + h(a)], (13)
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Figure 7 Ratio of the upper bound in equation (9) to the lower bound in equation (10) for
varying σ0 and k. The ratio is upper bounded by 4.45. This shows that the
proposed schemes achieve performance within a constant factor of optimal for
the vector Witsenhausen problem in the limit of long vector lengths. Notice the
ridges along the parameter values where we switch from one control strategy to
another in Figure 6 (see online version for colours)

Figure 8 Ratio of the performance of the combined DPC/linear scheme of Section 4.3
(analysed in Appendix D.8) to the lower bound of equation (10) as σ0 and k
vary. Relative to Figure 7, this new scheme has a maximum ratio of two attained
on the ridge of σ2

0 =
√

5−1
2 and small k. Also, the ridge along k = 1 is reduced as

compared to Figure 7. It is eliminated for small σ2
0 , while its asymptotic peak

value of about 1.29 is attained at k ≈ 1.68 and large σ2
0 (see online version

for colours)

inderscience
Ratio

inderscience
Ratio
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where

h(a) :=
√

2πa2φ(a)
∫ +∞

−∞

φ(y)
cosh(ay)

dy. (14)

However, Witsenhausen’s scalar-specific proof of this lower bound does not
generalise to the vector case. The following theorem provides a new (and simpler to
work with) lower bound that is valid for all vector lengths.

Theorem 3 (Lower bound to the vector problem): For all m ≥ 1, and all
strategies S, given an average power P of u1, the second stage cost, C2(S) is lower
bounded by

C2(S) ≥ C2,min(P ) ≥ ((√
κ(P ) −

√
P

)+)2
, (15)

where κ(P ) is the function of P given by equation (11).
Equivalently, the optimal total cost is lower bounded by

Cmin(k2) ≥ inf
P≥0

k2P +
((√

κ(P ) −
√

P
)+)2

. (16)

Proof: See Appendix B. �

Figure 9 plots Witsenhausen’s lower bound from Witsenhausen (1968) and
compares it with the lower bound of Theorem 3. A particular sequence of k = 100

n2

and σ2
0 = 0.01n2 is chosen to visually demonstrate that for this sequence of problem

parameters, in the limit of n → ∞, the ratio of the bounds diverges to infinity.
Thus, we conclude that prior to this work, it was not possible to provide a uniform
(over problem parameters) characterisation of the optimal cost to within a constant
factor for the scalar problem. Whether such a characterisation is now possible with
this new lower bound is an open question, although we indicate in Section 5 that a
further tightening of the bound in Theorem 3 is probably needed in order to obtain
such a characterisation.

4.2 An upper bound on the asymptotic expected cost

In Theorem 1, the upper bound is a minimum of three terms. This section describes
a nonlinear strategy that asymptotically (in the vector length) attains the cost of k2

given by the first term of equation (9). We call the strategy the JSCC scheme. The
proof uses a randomised code that exploits common randomness.

This is a quantisation-based control strategy and is illustrated in Figure 10, where
‘+’ denotes the JSCC quantisation points. The quantisation points are generated
randomly according to the distribution N (0, (σ2

0 − P )I). This set of quantisation
points is referred to as the codebook. Given a particular realisation of the initial
state x0, the first controller essentially6 finds the point x1 in the codebook closest
to x0. The input u1 = x1 − x0 then drives the state to this point. The number
of quantisation points is chosen carefully – there are sufficiently many of them
to ensure that the required average power of u1 is close to P , but not so many
that there could be confusion at the second controller. With this careful choice, we
show in Appendix C that on average the state x1 can be recovered perfectly in the
limit m → ∞ as long as the input power P > σ2

w = 1. Thus, asymptotically, C2 = 0,
C1 = σ2

w = 1 and the total cost approaches k2.
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Figure 9 Plot of the two lower bounds on the optimal cost as a function of n, with
kn = 100

n2 , σ0,n = 0.01n2 on a log-log scale for comparing the two lower bounds.
The figure shows that the vector lower bound derived here is tighter than
Witsenhausen’s scalar lower bound in certain cases (see online version
for colours)

Figure 10 Geometric representation of the Joint Source-Channel Coding scheme of
Section 4.2 and the Dirty-Paper Coding scheme of Section 4.3 for the parameter
α = 1. The grey shell contains the typical x0 realisations. The JSCC scheme
quantises to points inside this shell. The DPC scheme for α = 1 quantises the
state to points outside this shell (for the same input power), making it robust to
larger observation noise variances

4.3 Improved upper bound using Dirty-Paper Coding and
optimal linear scheme

In Theorem 1, for analytical simplicity, we used the JSCC scheme and two trivial
linear schemes for getting an upper bound on the cost. For numerical evaluation,
it is clear that optimal linear schemes can be used instead. This could certainly

inderscience
Geometric
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improve the cost ratio in the regime where the two linear schemes outperform the
JSCC scheme in Figure 6. However, the key small-k large-σ2

0 region is not clear
because JSCC outperforms the two linear schemes there.

For a given value of σ2
0 , the cost for the optimal linear scheme is Mitter and

Sahai (1999, equation (1))

min
a

k2a2σ2
0 +

(1 + a)2σ2
0

1 + (1 + a)2σ2
0
. (17)

The ratio of the optimal linear cost to the k2 cost for the JSCC scheme is therefore:

inf
a

a2σ2
0 +

(1 + a)2 1
k2

1
σ2
0

+ (1 + a)2
. (18)

Now let k → 0 and σ2
0 → ∞. If a is close to 0, the second term is unbounded.

If a is close to −1, the first term is unbounded. For any other value of a, both terms
are unbounded. Thus for any sequence of (k, σ2

0) such that k → 0 and σ2
0 → ∞, the

ratio diverges to infinity. Thus an improvement over the JSCC scheme is needed to
improve the upper bound in the interesting small-k large-σ2

0 region.
Such an improvement is obtained by using a nonlinear control strategy based

on the concept of DPC (Costa, 1983). DPC techniques (Costa, 1983) can also be
thought of as performing a (possibly soft) quantisation. The quantisation points are
chosen randomly in the space of realisations of x1 according to the distribution
N (0, (P + α2σ2

0)I). For α = 1 the quantisation is hard and a pictorial representation
is given in Figure 10, with ‘◦’ denoting the DPC quantisation points. Given the
vector x0, the first controller finds the quantisation point x1 closest to x0 and again
uses u1 = x1 − x0 to drive the state to the closest point. For σ2

0 > σ2
w = 1, we show

in Appendix D that asymptotically, C2 = 0, and that this scheme performs better
than JSCC.

For α 
= 1, the transmitter does not drive the state all the way to a quantisation
point. Instead, the state x1 = x0 + u1 is merely correlated with the quantisation
point, given by v = x0 + αu1. With high probability, the second controller can
decode the underlying quantisation point, and using the two observations y = x0 +
u1 + w and v = x0 + αu1, it can estimate x1 = x0 + u1. This scheme has C2 
= 0,
but when k is moderate, the total cost can be lower than that for DPC with
α = 1. Appendix D describes this strategy and analyses its performance in detail.
Interestingly, for α 
= 1, the DPC scheme turns out to be a vector extension of the
‘neural schemes’ (Baglietto et al., 1997) or the soft quantisation schemes developed
in Lee et al. (2001). This correspondence is explained through Figure 11. Since the
schemes in Baglietto et al. (1997), Lee et al. (2001) were developed using numerical
optimisation techniques, Figure 11 helps us understand why they outperform hard
quantisation based schemes.

Minor further improvements can be obtained by using a combination scheme
that divides its power into two parts: a linear part and a part dedicated to DPC.
The linear component is used first to reduce the variance in x0 by scaling it down in
a manner reminiscent of state-masking (Merhav and Shamai, 2007). The remaining
power is used to DPCing against the resulting reduced interference. Appendix D.8
provides the details of this combination strategy. As shown in Figure 8, using the
combination scheme, the approximation ratio γ2 is 2.
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Figure 11 DPC scheme is a vector extension of the ‘soft quantisation’ schemes found by
numerical optimisation techniques in Baglietto et al. (1997), Lee et al. (2001).
These scalar soft quantisation schemes can be interpreted as a sequence of three
operations. First, as shown in the upper part of (a), the initial state x0 is scaled
by a constant α. The resulting ‘shadow state’ αx0 is then quantised to the
nearest quantisation point. The input u1 that would force αx0 to the
quantisation point is then used as the actual input at time 1. The resulting
output x1 will be sloped as a function of x0, as shown in the lower part of (a),
and will take values in intervals on the y-axis. The same sequence
of operations – scaling down by α, quantising the resulting shadow state αx0,
and then using the u1 required for quantising the shadow state as the actual
input – yields a continuum of points where x1 can take values. These values
resemble soccer-ball style caps over a sphere, in much the same way as intervals
on the real line (see online version for colours)

The performance of the various schemes is compared in Figure 12 by finding
tradeoffs between the power P and C2 for fixed σ2

0 = 2.5, 0.75, and 0.25 respectively.
The plot on the top-left that corresponds to σ2

0 = 2.5 also shows Witsenhausen’s
lower bound (obtained by appealing to Lemma 1 and drawing tangents to
Witsenhausen’s lower bound). The plot shows that this lower bound can exceed
the vector upper bound of the combination (‘DPC + linear’) scheme. We conclude
that Witsenhausen’s lower bound is not a valid bound for the vector problem. This
also implies that using scalar schemes for the vector problem is strictly suboptimal.
Also shown in Figure 12 is the performance attained by the DPC scheme and the
balanced combination of DPC and linear control. For σ2

0 = 0.75, the combination
scheme performs better than both the pure DPC scheme and the optimal linear
scheme. Figure 13 illustrates for what values of P the combination scheme is useful
over the pure DPC and the pure linear scheme. At low power, DPC performs better
than the linear scheme, and all the power is dedicated to the DPC scheme. As the
power increases, the fraction η dedicated to the linear scheme increases until the
point when all the power is dedicated to the linear scheme.

inderscience
DPC
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Figure 12 We normalise C2 by the maximum possible C2 that is attained when P = 0 since
in the limit of P → 0, the lower bound and the performance of the linear
scheme match. For large σ2

0 (top figure), the DPC scheme performs better than
the linear scheme, and the optimal combination of linear and DPC scheme
reduces to the DPC scheme. For small σ2

0 (bottom figure), the purely linear
scheme outperforms DPC. For σ2

0 = 0.75, we see that neither scheme is
completely dominant for all values of C2. The combination scheme performs
better than either for some values of C2. In the top figure, we also plot
Witsenhausen’s lower bound on the tradeoff, obtained by drawing tangents to
Witsenhausen’s lower bound on total cost at 22 different points. Observe that
for small C2, Witsenhausen’s lower bound exceeds the upper bound achieved by
the DPC scheme, showing that Witsenhausen’s lower bound is not valid for the
vector problem (see online version for colours)
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Figure 13 η denotes the fraction of power that is dedicated to the linear scheme. In the
optimal combination of DPC/linear control, η is close to 1 for low P , implying
that all the power is dedicated to the linear part. As η increases, the power is
shared between DPC and linear control, until at high power, when a pure
DPC-based approach performs best (see online version for colours)

5 Discussions and conclusions

5.1 The case of finite vector lengths

It is important to note that our characterisation of the optimal cost within
a uniformly bounded factor is proved only in the limit of infinite vector length.
For finite vector lengths, the probability of error in reconstructing x1 is non-zero,
and hence whether the results would continue to apply is an open question. The
scalar case, which corresponds to vector length 1, is of particular interest.

It seems to us that even our new lower bound, together with the scalar
quantisation-based schemes of Mitter and Sahai (1999), would not suffice to provide
a constant-factor guarantee. Consider the interesting regime of k → 0 and σ2

0 → ∞.
Figure 6 shows that in this region the vector JSCC scheme outperforms the two
linear schemes for the vector problem. In the optimisation of the total cost, a natural
heuristic strategy is to equate the costs of the two stages, since the total cost can
converge to zero only as fast as the larger of the two terms. We denote the bin size
for scalar quantisation by B. In the limit σ2

0 → ∞, the first stage cost scales like to
k2 B2

12 , because the distribution of x0 conditioned on it falling in any particular bin is
approximately uniform. The second stage cost is the mean-square error introduced
due to incorrect decoding. The error event corresponds to the noise realisation
making x1 look like it is in a different quantisation bin. The probability of this event

is approximately e− B2
8 . Any incorrect decoding incurs a mean-square error of at

least B2. Equating the two costs, e− B2
8 B2 ≈ k2B2

12 , suggests that the optimal bin size

B is approximately
√

16 ln(2
√

3
k ). The ratio of the costs for the scalar quantisation
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scheme and the JSCC scheme is thus approximately k2B2

6k2 = B2

6 , which diverges since
ln

( 1
k

) → ∞ as k → 0.

5.2 Conclusions and further work

Using tools from information theory, the asymptotically optimal cost for the
vector version of Witsenhausen’s counterexample is characterised to within a factor
of two for all parameter values. Sections 4.2 and 4.3 provide costs that are
attained by randomised JSCC and DPC strategies. However, within the collection
of deterministic control strategies over which the randomisation is being performed,
there exists a deterministic strategy that attains a cost no larger than the average.
So our characterisation holds even when randomised strategies are not allowed.

Since such a constant-factor result is not known for the original scalar problem,
we conclude that the counterexample is indeed simplified by considering the vector
extension with asymptotically long vector lengths. The results also reaffirm the
notion that implicit communication is central to Witsenhausen’s counterexample.
From an information-theoretic perspective, there are three main remaining issues:
closing the gap between the upper and lower bounds, understanding what happens
for finite-length vectors, and showing how to exploit known DPC codes to get
reasonably good explicit nonlinear control strategies.

The tools we develop in this work might be useful in understanding general
distributed control problems. After all, this is a positive result. So it would be
interesting to consider a more realistic version of Witsenhausen’s counterexample
where the first controller receives a noisy observation of the state x0, and there
are also quadratic costs associated with both x1 and u2. It might be possible to
characterise the asymptotic costs within a constant factor for all these problems
as well.
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Notes

1Tatikonda used a similar long-vector formulation with parallel dynamics but joint control
to show that the sequential-rate distortion function was indeed the right choice to bound
performance in the special case when only the state is penalised (Tatikonda, 2000).

2Witsenhausen himself states “There does not appear to exist any counterexample involving
fewer variables . . . ” than the one presented in Witsenhausen (1968).

3The common randomness can be viewed as allowing averaging between different strategies
at different times. As we use long vector lengths, such performance can in fact be
asymptotically attained by cutting the vector into segments and using different strategies on
different segments. Thus, all asymptotic results in this paper continue to hold even without
the common-randomness assumption.

4At large power, the rates scale logarithmically in power. Therefore, in this regime,
characterising the rate within a constant number of bits is equivalent to characterising the
power required to achieve a specified rate within a constant factor. So the results in this
work are similar in spirit to these recent results in information theory.

5The deterministic-model perspective on amplification and attenuation is that they both
perform a bit-shift operation on the interference.

6For the purpose of simplifying the exposition, the proof actually includes a few
exponentially-rate cases when this is not done.

Appendix

A Proof of Lemma 1

We note that in the definition of C2,min(P ) in equation (6), the inequality constraint
can in in fact be replaced by equality. Suppose a strategy S has average input power
P − ε for some ε > 0. Using a randomised strategy, the first controller can add a
random vector (known at the second controller) of power ε independent of the the
input u1 chosen according to strategy S. The second controller can simply subtract
this random component and attain the performance of S.

We first show that we can obtain Cmin(k2) given C2,min(P ) for all P .

Cmin(k2) = inf
S∈S

1
m

k2E[‖u1‖2] + C2(S)

= inf
P≥0

inf
S∈S: 1

m E[‖u1‖2]=P
k2P + C2(S)
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= inf
P≥0

k2P + inf
S∈S: 1

m E[‖u1‖2]=P
C2(S)

= inf
P≥0

k2P + C2,min(P ). (19)

Thus Cmin(k2) can be obtained from C2,min(P ). Now we show that we can find
C2,min(P ) if we know Cmin(k2). We first need the following lemma.

Lemma 2: C2,min(P ) is convex in P .

Proof: For any P1 and P2, we want to show that C2,min(λP1 + (1 − λ)P2) is no
greater than λC2,min(P1) + (1 − λ)C2,min(P2).

Consider strategies S1 and S2 that operate at power P1 and P2 respectively
such that C2(Si) < C2,min(Pi) + ε. A randomised strategy Sr that chooses S1 with
probability λ and S2 with probability 1 − λ achieves cost that is λC2,min(P1) +
(1 − λ)C2,min(P2) + ε. Also, the power required by Sr is clearly the average power
λP1 + (1 − λ)P2. Thus,

C2,min(λP1 + (1 − λ)P2) ≤ λC2,min(P1) + (1 − λ)C2,min(P2) + ε.

The convexity follows because ε can be made as small as desired.
Now, define g(·) as the conjugate function (Boyd and Vandenberghe, 2004, p.91)

of C2,min(·),

g(z) := sup
z

(zP − C2,min(P2)). (20)

Since C2,min(·) is convex, it is the conjugate function of its conjugate function,
g(·) (Boyd and Vandenberghe, 2004, p.94). Thus, we can obtain C2,min(·) from g(·).
Now, observe that

Cmin(k2) = −g(−k2). (21)

Therefore, we can obtain C2,min(·) from Cmin(·).

B Derivation of the lower bound on the cost for vector Witsenhausen problem

In this section, we derive a lower bound on the cost for the vector Witsenhausen
problem. Since the bound is valid for any vector length m, it is also valid for m = 1.
This bound is needed because the techniques of the lower bound in Witsenhausen
(1968), Section 6 do not generalise to m > 1.

First, a simple lemma.

Lemma 3: For any three vector random variables A, B and C,

√
E[d(B, C)] ≥ |

√
E[d(A, C)] −

√
E[d(A, B)]|, (22)

where d(A, B) = ‖A − B‖2.



220 P. Grover and A. Sahai

Proof: Using the triangle inequality on Euclidian distance, �
√

d(B, C) ≥
√

d(A, C) −
√

d(A, B). (23)

Similarly,

√
d(B, C) ≥

√
d(A, B) −

√
d(A, C). (24)

Thus,

√
d(B, C) ≥ |

√
d(A, C) −

√
d(A, B)|, (25)

Squaring both sides,

d(B, C) ≥ d(A, C) + d(A, B) − 2
√

d(A, C)
√

d(A, B). (26)

Taking the expectation on both sides,

E[d(B, C)] ≥ E[d(A, C)] + E[d(A, B)]

− 2E[
√

d(A, C)
√

d(A, B)]. (27)

Now, using the Cauchy-Schwartz inequality (Durrett, 2005, p.13),

(
E[

√
d(A, C)

√
d(A, B)]

)2 ≤ E[d(A, C)]E[d(A, B)]. (28)

Using equations (27) and (28),

E[d(B, C)] ≥ E[d(A, C)] + E[d(A, B)] − 2
√

E[d(A, C)]
√

E[d(A, B)]

=
(√

E[d(A, C)] −
√

E[d(A, B)]
)2

.

Taking square-roots on both the sides completes the proof.
Substituting x0 for A, x1 for B, and u2 for C in Lemma 3, we get

√
E[d(x1,u2)] ≥

√
E[d(x0,u2)] −

√
E[d(x0,x1)]. (29)

We wish to lower bound E[d(x1,u2)] = E[‖x1 − u2‖2]. The second term on the RHS
is

√
mP . Therefore, it now suffices to lower bound the first term on the RHS of

equation (29). To that end, we will interpret u2 as an estimate for x0. Now,

y2 = x1 + w

= x0 + u1 + w.

This is an implicit AWGN channel with ‘input’ x1, noise w, and output y2.
The input power, which is the power of x1, is at most Pch = P + σ2

0 + 2
√

Pσ2
0

(attained when x0 and u1 are perfectly aligned). The channel capacity can be upper
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bounded by C, the maximum mutual information at power Pch (Cover and Thomas,
1991, p.242).

C =
1
2

log2

(
1 +

Pch

σ2
w

)
. (30)

Now, E
[‖x0 − u2‖2

]
can be lower bounded by the distortion-rate function

D(R) = σ2
02−2R (Cover and Thomas, 1991, pp.344–346) (for the Gaussian source

that generates x0) evaluated at rate R equal to C.

D(C) = σ2
02−2C

= σ2
0

σ2
w

Pch + σ2
w

=
σ2

0σ2
w

σ2
0 + P + 2

√
Pσ0 + σ2

w

= κ(P ).

Thus, E
[‖x0 − u2‖2

] ≥ mκ(P ).
If κ(P ) > P , using E

[‖x0 − x̂1‖2
] ≥ mκ(P ) and E

[‖x0 − x1‖2
] ≤ mP in

equation (29),

E
[‖x1 − x̂1‖2] ≥ m

(√
κ(P ) −

√
P

)2
(31)

where we use u2 = x̂1. If κ(P ) ≤ P , we lower bound E
[‖x1 − x̂1‖2

]
by zero.

The lower bound follows.

C The joint source-channel scheme

We now describe in detail the randomised JSCC scheme and characterise its average
performance, averaged over the realisations of (q,x0,w), where q denotes the
common randomness. We assume σ2

0 > σ2
w, because for σ2

w ≥ σ2
0 , we can just always

force the state to zero by choosing u1 = −x0 and paying a lower cost of k2σ2
0 .

Because the scheme borrows from both Gaussian source coding (Gallager, 1971,
Ch. 9) and Additive White Gaussian Noise (AWGN) channel coding (Cover and
Thomas, 1991, pp.241–245), slight modifications to the textbook proofs are needed
to put the two together.

In the following, S1 denotes the m-dimensional sphere centred at zero with radius
2
√

mσ2
0 , and S2 denotes a sphere centred at zero with radius 6

√
mσ2

0 . Also, 11{A}
denotes the indicator function of an event A in the relevant space. We first describe
the randomised strategy (the encoding and the decoding) and then analyse its
performance.

C.1 Codebook construction and encoding

The encoding is performed at the first controller C1. The strategy has a single

parameter δ. A list Q of 2mR + 1 quantisation points {xq(0),xq(1), . . . ,xq(2mR)} is
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chosen by drawing the quantisation points iid in Rm randomly from the distribution
N (0, (σ2

0 − P )I), where the operating ‘rate’ R and the power P satisfy the pair of
equalities

R = R(P ) +
δ

2
=

1
2

log2(σ
2
0/P ) +

δ

2
(32)

C(P ) =
1
2

log2

(
1 +

σ2
0 − P

σ2
w

)
= R +

δ

2
, (33)

for small δ > 0 where R(·) is the rate-distortion function for a Gaussian source
of variance σ2

0 (Cover and Thomas, 1991, p.345), and C(·) is the capacity of an
AWGN channel with input power constraint σ2

0 − P . That this pair of equalities has
a solution with P < σ2

0 is shown in Appendix C.4. The probability space therefore
consists of three independent random variables, the common randomness Q, the
initial state x0 and the noise w.

The encoding now proceeds in three steps.

Step 1: In the case that Q is pathological so that the first quantisation point
xq(0) /∈ S1, the encoder just uses u1 = −x0 to push the state to zero.

Step 2: If x0 /∈ S1, the encoder uses u1 = −x0 to force x0 to zero.

Step 3: If xq(0) ∈ S1 and x0 ∈ S1, the encoding is performed by finding the
quantisation point x1 ∈ S2 such that

x1(x0) = arg min
x∈Q∩S2

‖x0 − x‖, (34)

and using u1 = x1 − x0 to drive the state to x1.

C.2 Decoding

The decoder C2 is assumed to know the realisation of Q because of the shared
common randomness.

Case 1: If xq(0) /∈ S1, the second controller decodes to zero and applies u2 = 0.

Case 2: If xq(0) ∈ S1, the second controller examines the noisy observation
y2 =x1 + w. It decodes to the quantisation point x̂1 given by

x̂1(y2) = arg min
x∈Q∩S2

‖y2 − x‖, (35)

and applies the control u2 = x̂1.

C.3 Performance analysis

We now show that the average cost of the encoding and the decoding can be made
arbitrarily close to k2σ2

w and zero respectively by choosing m large enough and δ
small enough. We first need the following lemma.
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Lemma 4: Let x ∼ N (0, σ2I) be an m-dimensional random vector and let Am be
sets such that lim

m→∞ Pr(Am) = 0. Then,

lim
m→∞

1
m

E
[‖x‖211{Am}

]
= 0. (36)

Further, if Am
L = {‖x‖2 ≥ mL} for some fixed L > σ2

0 , then Pr(Am
L ) and

E[‖x‖2I{Am
L }] → 0 exponentially in m.

Proof: First, observe that Tm = ‖x‖2

σ2 is a Chi-square random variable with m
degrees of freedom with mean m and variance 2m (Simon, 2002, p.14). Thus,

1
σ4 E

[‖x‖4] = E
[
T 2

m

]
= Var(Tm) + (E [Tm])2 = 2m + m2. (37)

By the Cauchy-Schwartz inequality (Durrett, 2005, p.13),

(
1
m

E
[‖x‖211{Am}

])2

≤ E
[‖x‖4

]
m2 E

[
112
{Am}

]

=
1

m2 E
[‖x‖4] Pr(Am)

=
(

2
m

+ 1
)

σ4 Pr(Am) (38)

which converges to zero as m → ∞ since Pr(Am) → 0.
Now for the second part, since the elements of x are iid Gaussian random

variables, by Cramer’s theorem (Dembo and Zeitouni, 1998, p.27), the probability
of the event Am

L =
{ 1

m

∑m
i=1 x2

i > σ2 + ε
}
converges to zero exponentially in m for

any ε > 0. From equation (38), E

[
‖x‖211{Am

L }
]

→ 0 exponentially in m as well.

Let E1 := {xq(0) /∈ S1} denote the event of pathological Q, E2 := {x0 /∈ S1} ∩ Ec
1

and E3 := {x0 ∈ S1} ∩ Ec
1 , where Ac denotes the complement of the event A. Since

the choice of Q is independent of x0, E1 is independent of the event {x0 ∈ S1}.
The total expected cost is given by

E [C] = E [C|E1] Pr(E1) + E [C|E2] Pr(E2) + E [C|E3] Pr(E3) (39)

= E [C1 + C2|E1] Pr(E1) + E [C1 + C2|E2] Pr(E2) + E [C1 + C2|E3] Pr(E3). (40)

We will now upper bound each of the three terms in equation (39).

Cost for E1: E [C|E1] Pr(E1).

Consider the pathological event E1. By the independence of x0 and E1,

E [C1|E1] Pr(E1) = k2σ2
0 Pr(E1).
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Pr(E1) converges to zero by Lemma 4. Therefore, for any ε1 > 0 there exists
m1(ε1, δ) such that for all m ≥ m1(ε1, δ), E [C1 | E1] Pr(E1) < ε1.

For the decoding cost, since the decoder correctly decodes to zero,

E [C2 | E1] Pr(E1) = 0.

Thus the first term in equation (39) is smaller than ε1 for m ≥ m1(ε1, δ).

Cost for E2: E [C | E2] Pr(E2).

E [C1 | E2] Pr(E2) =
k2

m
E

[‖x0‖211{E2}
]
,

which converges to zero as m → ∞ by Lemma 4.
Since the decoder always decodes to a quantisation point inside S2, which has

diameter 6
√

mσ2
0 ,

E [C2 | E2] Pr(E2) ≤ 36σ2
0 Pr(E2).

By Lemma 4, Pr(E2) also converges to zero.
Thus the second term in equation (39) can be made smaller than ε1 for

m ≥ m2(ε1, δ).

Cost for E3: E [C | E3] Pr(E3).

Gallager (1971, pp.471,472) constructs quantisation codebooks for Gaussian vectors
by the same random generation as in Appendix C.1, except that the construction in
Appendix C.1 has one extra point xq(0).

Since xq(0) ∈ S1, for any initial state realisation x0 ∈ S1, ‖x0 − xq(0)‖ ≤
4
√

mσ2
0 , the diameter of S1. Also, for any x0 ∈ S1, and any quantisation

point x∗
q /∈ S2, ‖x0 − x∗

q‖ ≥ 4
√

mσ2
0 . Thus any x0 ∈ S1 is encoded to inside S2.

Any x0 /∈ S1 is encoded to 0 ∈ S2, and thus all initial state realisations are encoded
to within S2.

In Gallager (1971, pp.471, 472), it is shown that for a randomly constructed
source codebook of 2mR quantisation points, as long as R = R(P) + δ for some
δ > 0,

lim
m→∞ Pr

(
1
k2 C1 > P + ε1

)
→ 0, (41)

for all ε1 > 0. Since adding an extra quantisation point can only decrease the
distortion,

lim
m→∞ Pr

(
1
k2 C1 > P + ε1

∣∣∣∣ E3

)
→ 0. (42)
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Thus, there exists m3(ε1, δ) such that for all m > m3(ε1, δ), Pr
( 1

k2 C1 > P + ε1|E3
)

< ε1
4σ2

0
. Therefore,

E [C1|E3] = E

[
C1

∣∣∣∣ E3,
1
k2 C1 > P + ε1

]
Pr

(
1
k2 C1 > P + ε1

∣∣∣∣ E3

)

+E

[
C1

∣∣∣∣ E3,
1
k2 C1 ≤ P + ε1

]
Pr

(
1
k2 C1 ≤ P + ε1

∣∣∣∣ E3

)

≤ 4σ2
0k2 Pr

(
1
k2 C1 > P + ε1

∣∣∣∣ E3

)
+ k2(P + ε1)

≤ 2k2ε1 + k2P.

Thus, E [C1|E3] ≤ k2(P + 2ε1) for all m > m3(ε1, δ).
Now we analyse the cost of decoding under the event E3. The key observation

is that a randomly generated Gaussian codebook also achieves the capacity of a
Gaussian channel (Cover and Thomas, 1991, p. 244) for an average power constraint
equal to the average power of the codebook. By construction, the average power of
the codebook, that is, 1

mE
[‖x1‖2

]
is σ2

0 − P . The channel capacity C for a Gaussian
channel with power constraint σ2

0 − P is

C =
1
2

log2

(
1 +

σ2
0 − P

σ2
w

)
. (43)

We know that as long as log2
(
2mR + 1

)
< C, the average error probability

E [Pe(Q)] for a random Gaussian codebook of 2mR + 1 codewords converges
to zero (Cover and Thomas, 1991, p.244). There exists m4(δ) such that for all
m > m4(δ), C = R + δ

2 > log2
(
2mR + 1

)
+ δ

4 . Now,

E [Pe(Q)] ≥ E [Pe(Q)|E3] Pr(E3) (44)

= E [Pe(Q)|E3] (1 − Pr(E1) − Pr(E2)). (45)

Since Pr(E1) and Pr(E2) converge to zero as m → ∞, 1 − Pr(E1) − Pr(E2) → 1.
Also, E [Pe(Q)] → 0. Thus E [Pe(Q)|E3] → 0 as well.

In case of a decoding error, since x̂1 and x1 are both in S2, they are separated
by a distance no more than the diameter 12

√
mσ2

0 of S2. Thus the cost introduced
by decoding error is bounded as follows

E [C2|E3] ≤ 144σ2
0E [Pe(Q)|E3] (46)

which goes to zero as m → ∞. Thus there exists m6(ε1, δ) such that for all
m > m6(ε1, δ), E [C2|E3] Pr(E3) ≤ ε1.

Total average cost:

The total average cost is given by

E [C] = E [C1 + C2|E1] Pr(E1) + E [C1 + C2|E2] Pr(E2)

+ E [C1|E3] Pr(E3) + E [C2|E3] Pr(E3)

≤ ε1 + ε1 + k2(P + 2ε1) + ε1 ≤ k2P + (3 + 2k2)ε1,
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for m > max{m1(ε1, δ), m2(ε1, δ), m3(ε1, δ), m4(ε1, δ), m5(δ), m6(ε1, δ)}. Thus, by
letting m → ∞, ε1 → 0, and the total cost converges to k2P . In the next section,
we show that the required P can be made as small as σ2

w in the limit m → ∞.

C.4 Required P for error probability converging to zero

Now we calculate the required P that satisfies equations (32) and (33). Let ξ satisfy
1
2 log2 (1 + ξ) = δ. Then equations (32) and (33) are satisfied whenever

1
2

log2

(
σ2

w + σ2
0 − P

σ2
w

)
=

1
2

log2

(
σ2

0

P

)
+

1
2

log2 (1 + ξ) ,

i.e.,
σ2

w + σ2
0 − P

σ2
w

=
σ2

0

P
(1 + ξ)

i.e., P 2 − P (σ2
0 + σ2

w) + σ2
wσ2

0(1 + ξ) = 0. (47)

Now, some algebra reveals that equation (47) is satisfied if

P =
σ2

0 + σ2
w −

√
(σ2

0 − σ2
w)2 − 4σ2

0σ2
wξ2

2

= σ2
0

(
1 −

√
1 − 4σ2

0σ2
wξ2

(σ2
0−σ2

w)2

2

)
+ σ2

w

(
1 +

√
1 − 4σ2

0σ2
wξ2

(σ2
0−σ2

w)2

2

)
,

which is along the line segment joining σ2
w and σ2

0 , and is hence smaller than σ2
0 .

For this P to exist

ξ <
σ2

0 − σ2
w

2σ0σw
, and δ <

1
2

log2

(
1 +

σ2
0 − σ2

w

2σ0σw

)
.

Also, in the limit ξ → 0 (or equivalently, δ → 0), P converges to σ2
w.

D Dirty-Paper Coding (DPC) based schemes

As noted in Section 3.1, the vector Witsenhausen counterexample is similar to
the communication problem of multiaccess channels with states known to some
encoders (Kotagiri and Laneman, 2008), and so the strategy we propose in this
section is also similar to that in Kotagiri and Laneman (2008).

D.1 A pure Dirty-Paper Coding scheme: encoding and decoding

Encoding

In this section, we describe the encoding and decoding of the DPC-based scheme.
The scheme has two parameters α and ε. The variable P is a function of α and ε
and can be evaluated from equation (55).
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Step 1: Generate a list Q of 2m(T−ε) Gaussian random vectors v ∼ N (0, P + α2σ2
0),

where

T =
1
2

log2

(
(P + σ2

0 + σ2
w)(P + α2σ2

0)
Pσ2

0(1 − α)2 + σ2
w(P + α2σ2

0)

)
. (48)

Step 2: Given x0, the encoder C1 finds a ṽ ∈ Q such that (ṽ,x0) satisfy,

∣∣∣∣
(

1
m

m∑
i=1

x2
0,i

)
− σ2

0

∣∣∣∣ < ε

∣∣∣∣
(

1
m

m∑
i=1

ṽ2
i

)
− (P + α2σ2

0)
∣∣∣∣ < ε (49)

∣∣∣∣
(

1
m

m∑
i=1

x0,iṽi

)
− ασ2

0

∣∣∣∣ < ε.

If more than one ṽ ∈ Q satisfy equation (49) for the given x0, then break the tie by
choosing any one such ṽ. The control input is u1 = ṽ − αx0. If no such ṽ exists, we
call the event an encoding error, and the chosen u1 = −x0.

Decoding

The decoder C2 receives the noisy observation y2 = x0 + u1 + w. The decoding then
proceeds in two steps.

Step 1: The decoder finds a v̂ ∈ Q such that (v̂,y2) satisfy

∣∣∣∣ 1
m

m∑
i=1

v̂2
i − (P + α2σ2

0)
∣∣∣∣ < ε

∣∣∣∣ 1
m

m∑
i=1

y2
2,i − (σ2

0 + P + σ2
w)

∣∣∣∣ < ε (50)

∣∣∣∣ 1
m

m∑
i=1

y2,iv̂i − (P + ασ2
0)

∣∣∣∣ < ε.

If no such v̂ exists, or more than one such v̂’s exist, the decoder decodes to u2 = y2
and does not continue to Step 2.

Step 2: If α = 1, the decoder declares v̂ as the decoded codeword and sets u2 = v̂.
If α 
= 1, the decoder estimates the component x1,i using the column vector ζi of

length 2, where

ζ1,i = v̂i,

ζ2,i = y2,i = u1,i + x0,i + wi.
(51)

The estimate is given by

x̂1,i = Qζi = q1ζ1,i + q2ζ2,i. (52)
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where Q = [q1, q2] = Kx1ζK
−1
ζ , where

Kx1ζ = [P + ασ2
0 , P + σ2

0 ],

and

Kζ =

[
P + α2σ2

0 P + ασ2
0

P + ασ2
0 P + σ2

0 + σ2
w

]
.

The second control u1 = x̂1.
Simple manipulations reveal that the determinant of Kζ is α2(σ2

0 + σ2
w) +

(α − 1)2Pσ2
0 + Pσ2

w, which is strictly positive for all values of α. Thus Kζ is always
invertible.

D.2 Probability of encoding/decoding error

Let E1 denote the event of encoding error, E2 the event of successful encoding and
decoding error, and E3 the event of successful encoding and correct decoding.

Let v = u1 + αx0 represent an auxiliary random variable, where u1 and x0 are
independent random variables with u1 ∼ N (0, P ) and x0 ∼ N (0, σ2

0). The variable
T in the number of codewords 2m(T−ε) is then given by

T = I(v; y2), (53)

where y2 = x0 + u1 + w. With this interpretation, the encoding is based on finding
ṽ that is ε-jointly typical7 with x0. The joint-typicality conditions (El Gamal and
Cover, 1980),∣∣∣∣ − 1

m
log2 (fv(v)) − h(v)

∣∣∣∣ < η1(ε)∣∣∣∣ − 1
m

log2 (fx0(x0)) − h(x0)
∣∣∣∣ < η1(ε)∣∣∣∣ − 1

m
log2 (fv,x0(v,x)) − h(v, x0)

∣∣∣∣ < η3(ε),

for appropriate ηj(ε), j = 1, 2, 3, are equivalent to the conditions in equation (49).
Here fv(·) represents the pdf of v, and similarly for x0 and (v, x0), and h(·) is the
differential entropy function.

Now, by the weak-law of large numbers, for x0 and v generated independently,
the probability that the two are ε-jointly typical is bounded below by
(1 − ε)2−m(I(v;x0)+3ε) for m large Cover and Thomas (1991, p.195). The number of
v-codewords is 2m(I(v;y2)−ε). If

I(v; y2) = I(v; x0) + 5ε, (54)

which is equivalent to

C(α, P ) =
1
2

log2

(
P (P + σ2

0 + σ2
w)

Pσ2
0(1 − α)2 + σ2

w(P + α2σ2
0)

)
= 5ε, (55)
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then the average number of v-codewords jointly typical with a typical x0 increases
exponentially in m, and the probability of encoding error Pr(E1) decreases to zero
exponentially in m Cover and Thomas (1991, pp.353–356). That equation (55) has
a solution is shown in Appendix D.5.

The decoding fails in two cases. If the encoding fails, so might the decoding, but
since the error probability of encoding error decreases to zero exponentially, so does
the probability of this kind of decoding error.

If the encoding succeeds, the transmitted ṽ can be decoded correctly as long
as the rate is smaller than the mutual information across the (ṽ, y2) ‘channel’.
Since the number of ṽ codewords is 2m(I(v;y2)−ε), the rate for the v-codebook
is Rv = I(v; y2) − ε which is clearly smaller than I(v; y2). Thus the probability
of decoding error conditioned on the success of the encoding converges to zero
exponentially in m. Since Pr(Ec

1) → 1, the probability Pr(E2) → 0 as well.

D.3 Encoding cost analysis

The average total cost is given by

E [C] = E [C1 + C2]

= E [C1 | E1] Pr(E1) + E [C1 | E2 ∪ E3] Pr(E2 ∪ E3)

+ E [C2 | E1] Pr(E1) + E [C2 | E2] Pr(E2) + E [C2 | E3] Pr(E3).

We will first calculate the encoding costs, followed by the decoding costs.
For the event E1,

E [C1 | E1] Pr(E1) =
k2

m
E

[‖x0‖211{E1}
] → 0

by Lemma 4, since Pr(E1) → 0. Thus, for any given ε1 > 0, there exists m0(ε, ε1)
such that for all m > m0(ε, ε1), E [C1 | E1] Pr(E1) < ε1.

For E2 ∪ E3, the event of successful encoding, since u = ṽ − αx0 for (v,x)
satisfying equation (49),

1
m

E
[‖u1‖2 | E2 ∪ E3

]
=

1
m

E
[‖v‖2 + α2‖x0‖2 − 2αvT x0 | E2 ∪ E3

]
≤ P + α2σ2

0 + ε + α2(σ2
0 + ε)

− 2α(ασ2
0) + 2|α|ε = P + (1 + |α|)2ε.

Thus E [C1 | E2 ∪ E3] Pr(E2 ∪ E3) ≤ k2(P + (1 + |α|)2ε). Thus the total encoding
costs are also bounded by k2(P + (1 + |α|)2ε) + ε1.

D.4 Decoding cost analysis for α = 1

We first concentrate on the easier case α = 1.
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For the event E1, since u = −x0, and x1 = 0. There are two cases, the decoder
decodes to some erroneous v̂, or the decoder fails to decode and uses u2 = y2.
Therefore,

E
[C211{E1}

] ≤ m−1E
[
max{‖v̂ − 0‖2, ‖y2 − 0‖2}11{E1}

]
≤ m−1E

[
(‖v̂‖2 + ‖y2‖2)11{E1}

]
(a)
≤ E

[
(P + α2σ2

0 + ε)11{E1}
]
+ m−1E

[‖w‖211{E1}
]

= (P + α2σ2
0 + ε) Pr(E1) + m−1E

[‖w‖211{E1}
]

where (a) follows from equation (50) because the decoded v̂ is inside a sphere of
radius

√
m(P + σ2

0 + ε), and under E1, y2 = w. Since Pr(E1) → 0 as m → ∞, the
first term goes to zero. Similarly, the second term goes to zero by Lemma 4. Thus
there exists m1(ε, ε1) such that for all m > m1(ε, ε1), E [C2|E1] Pr(E1) < ε1.

For the event E2, again, there are the two cases of erroneous decoding and
decoding failure. Thus

E
[C211{E2}

] ≤ m−1E
[
max{‖v̂ − ṽ‖2, ‖y2 − ṽ‖2}11{E2}

]
≤ m−1E

[‖v̂ − ṽ‖211{E2}
]
+ m−1E

[‖w‖211{E2}
]

≤ 4(P + α2σ2
0 + ε) Pr(E2) + m−1E

[‖w‖211{E2}
]
.

The first term goes to zero because Pr(E2) → 0. The second term goes to zero
by Lemma 4. Thus for given ε1 > 0, there exists m2(ε, ε1) such that for all m >
m2(ε, ε1), E [C2|E2] Pr(E2) < ε1.

For the event E3, the encoding is successful and the decoding is correct, therefore
ṽ = v̂, and thus E [C2|E3] = 0.

D.5 Total costs for α = 1

For α = 1, for m > max{m0(ε, ε1), m1(ε, ε1), m2(ε, ε1)}, E [C2] ≤ 3ε1, and E [C1] ≤
k2(P + 4ε) + ε1, and the total (encoding and decoding) cost for α = 1 is therefore
smaller than

k2(P + 4ε) + 4ε1. (56)

Making m large enough, ε1 can be made as small as desired. Using the fact that
this holds for all ε, in the following, we show that letting ε → 0, the achievable
asymptotic cost is

k2σ2
0

√
1 + 4σ2

w

σ2
0

− 1

2
.

From equation (55), for α = 1, P needs to satisfy C(1, P ) = 5ε, where

C(1, P ) =
1
2

log2

(
P (P + σ2

0 + σ2
w)

(P + σ2
0)σ2

w

)
. (57)
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Let ξ be such that ε = 1
10 log2 (1 + ξ). Then,

1
2

log2

(
P (P + σ2

0 + σ2
w)

(P + σ2
0)σ2

w

)
=

1
2

log2 (1 + ξ)

i.e. P 2 + (σ2
0 − ξσ2

w)P − (1 + ξ)σ2
0σ2

w = 0.

Taking the positive root of the quadratic equation,

P = (σ2
0 − ξσ2

w)

√
1 + 4(1+ξ)2σ2

wσ2
0

(σ2
0−ξσ2

w)2 − 1

2
. (58)

Now letting ε go to zero (and thus ξ → 0) by increasing m to infinity, the required P

approaches σ2
0

√
1+4σ2

w/σ2
0−1

2 . The asymptotic expected cost for the scheme is,

therefore, k2σ2
0

√
1+4σ2

w/σ2
0−1

2 . This expression turns out to be an increasing function
in σ2

0 which is bounded above by k2σ2
w, the cost for the JSCC scheme. Thus even

in the special case of α = 1, the DPC scheme asymptotically outperforms the JSCC
scheme.

D.6 Decoding cost analysis for α 
= 1

For the event E1, similar to the analysis of α = 1, there are the two cases of decoding
failure and decoding error,

E
[C211{E1}

] ≤ 1
m

E
[
max{‖q1v̂ + q2w‖2, ‖y − 0‖2}11{E1}

]
≤ 1

m
E

[‖q1v̂ + q2w‖211{E1}
]
+

1
m

E
[‖w‖211{E1}

]
(59)

=
q2
1

m
E

[‖v̂‖211{E1}
]
+

q2
2

m
E

[‖w‖211{E1}
]

+
2q1q2

m
E

[
v̂T w11{E1}

]
+

1
m

E
[‖w‖211{E1}

]
(60)

=
q2
1(P + σ2

0 + ε)
m

E
[
11{E1}

]
+

q2
2

m
E

[‖w‖211{E1}
]

(61)

+
2q1q2

m
E

[
v̂T w11{E1}

]
+

1
m

E
[‖w‖211{E1}

]
. (62)

As m → ∞, the first term converges to zero since Pr(E1) → 0. The second term
and the fourth terms converge to zero by an application of Lemma 4 with x = w.
Looking at the third term in equation (59),

m−1E
[
v̂T w11{E1}

]
= m−1E

[( m∑
i=1

v̂iwi

)
11{E1}

]

(a)
≤ m−1E

[‖v̂‖‖w‖11{E1}
]
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≤ m−1
(√

P + σ2
0 + ε

)
E

[√
‖w‖211{E1}

]
(b)
≤ m−1

√
P + σ2

0 + ε
√

E
[‖w‖211{E1}

]
where (a) follows from the Cauchy-Schwartz inequality, and (b) follows from
Jensen’s inequality. By Lemma 4, the third term now converges to zero as well.
Therefore, for all ε1 > 0, there exists m3(α, ε, ε1) such that for all m > m3(α, ε, ε1),
E [C2|E1] Pr(E1) < ε1.

Similarly, for the event E2,

E
[C211{E2}

] ≤ m−1E
[
max{‖q1v̂ + q2ṽ‖2, ‖y − ṽ‖2}11{E2}

]
≤ m−1E

[‖q1v̂ + q2ṽ‖211{E2}
]
+ m−1E

[‖w‖211{E2}
]

≤ m−1E
[
(q2

1‖v̂‖2 + q2
2‖ṽ‖2 + 2q1q2‖ṽ‖ ‖v̂‖)11{E2}

]
+ m−1E

[‖w‖211{E2}
]

≤ (P + α2σ2
0 + ε)(q1 + q2)2 Pr(E2) + m−1E

[‖w‖211{E2}
]
.

The first term converges to zero as Pr(E2) converges to zero. The second converges
to zero by an application of Lemma 4. Thus there exists m4(α, ε, ε1) such that for
all m > m4(α, ε, ε1), E [C2|E2] Pr(E2) < ε1.

For the event E3, we need the following lemma.

Lemma 5: For vectors v and x, if (v,x) are ε-jointly typical as defined by
equation (49), then for u = v − αx,

∣∣∣∣
m∑

i=1

u1,ix0,i

m

∣∣∣∣ < (|α| + 1)ε, (63)

and

∣∣∣∣
m∑

i=1

u2
1,i

m

∣∣∣∣ < P + (1 + |α|)2ε. (64)

Proof: Since (v,x) are ε-jointly typical, using equation (49), �
∣∣∣∣

m∑
i=1

vix0,i

m
− ασ2

0

∣∣∣∣ < ε

i.e.

∣∣∣∣
m∑

i=1

(u1,i + αx0,i)x0,i

m
− ασ2

0

∣∣∣∣ < ε

i.e.

∣∣∣∣
m∑

i=1

u1,ix0,i

m
+ α

m∑
i=1

x2
0,i

m
− ασ2

0

∣∣∣∣ < ε

i.e.

∣∣∣∣
m∑

i=1

u1,ix0,i

m
+ α

( m∑
i=1

x2
0,i

m
− σ2

0

)∣∣∣∣ < ε.
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By the ε-typicality of x in equation (49), the term in brackets is bounded by ε in
absolute value. Thus, equation (63) follows and asymptotically, u1 and x0 appear
statistically uncorrelated.

Similarly, for u = ṽ − αx0,

1
m

‖u‖2 =
1
m

(
‖ṽ‖2 + α2‖x0‖2 − 2α

m∑
i=1

ṽix0,i

)

≤ (P + α2σ2
0 + ε) + α2(σ2

0 + ε) − 2α(ασ2) + 2|α|ε
= P + (1 + |α|)2ε.

Now, for E3, the normalised mean-square error is given by

m−1E
[‖x̂1 − x1‖2|E3

]
= m−1E

[‖Qζ − x1‖2 | E3
]

= m−1E
[‖q1v + q2y2 − x1‖2 | E3

]
= m−1E

[‖q1(u1 + αx0) + q2(u1 + x0 + w) − x1‖2 | E3
]

= m−1E
[‖(q1 + q2 − 1)u1 + (αq1 + q2 − 1)x0 + q2w‖2 | E3

]
= m−1((q1 +q2 −1)2E

[‖u1‖2 | E3
]
+(αq1 +q2 −1)2E

[‖x0‖2|E3
]
+q2

2E
[‖w‖2 | E3

]
+ 2(q1 + q2 − 1)(αq1 + q2 − 1)E

[
uT

1 x0 | E3
]
+ 2(q1 + q2 − 1)q2E

[
uT

1 w | E3
]

+ 2(αq1 + q2 − 1)q2E
[
xT

0 w | E3
]
), (65)

where (·)T denotes the transpose of the vector. Now,

m−1E
[
uT

1 w
]
= 0 = m−1E

[
uT

1 w | E3
]
Pr(E3)+m−1E

[
uT

1 w | Ec
3
]
Pr(Ec

3)

i.e., m−1
∣∣E [

uT
1 w | E3

] ∣∣ Pr(E3) = m−1
∣∣E [

uT
1 w | Ec

3
] ∣∣ Pr(Ec

3)

= m−1E

[
uT

1 w11{Ec
3}

]
(a)
≤

√
1

m2 E
[
(uT

1 w)2
]
E

[
11{Ec

3}
]
.

where (a) follows from the Cauchy-Schwartz inequality. Now,

1
m2 E

[(
uT

1 w
)2

]
=

1
m2 E

[( m∑
i=1

u1,iwi

)2
]

(b)
=

1
m2 E

[
m∑

i=1

u2
1,iw

2
i

]

(c)
=

1
m2

m∑
i=1

E
[
u2

1,i

]
σ2

w

=
1

m2 E

[
m∑

i=1

u2
1,i

]
σ2

w =
1

m2 E
[‖u‖2] σ2

w



234 P. Grover and A. Sahai

where (b) and (c) follow from the fact that u1,i and wj are uncorrelated, and wi is
zero mean. Now,

E
[‖u‖2] = E

[‖u‖211{Ec
1}

]
+ E

[‖u‖211{E1}
]

≤ m(P + (1 + |α|)2ε) Pr(Ec
1) + E

[‖x0‖211{E1}
]

≤ m(P + (1 + |α|)2ε) + E
[‖x0‖2]

≤ m(P + (1 + |α|)2ε + σ2
0).

Thus,

1
m2 E

[
(uT

1 w)2
]
E

[
11{Ec

3}
] ≤ 1

m
(P + (1 + |α|)2ε + σ2

0) Pr(Ec
3). (66)

Since Pr(Ec
3) → 0 as m → ∞, m−1E

[
uT

1 w|E3
] → 0 as m → ∞. Similarly,

m−1E
[
xT

0 w|E3
]
also converges to zero. Using these results and Lemma 5 for

m−1E
[
uT

1 x0|E3
]
, there exists m5(α, ε, ε1) such that for all m > m5(α, ε, ε1), the last

three terms in equation (65) are smaller than ε1.
Thus using the ε-joint typicality of v and x0 equation (49),

1
m

E
[‖x̂1 − x1‖2|E3

]
≤ (q1 + q2 − 1)2(P + (1 + |α|)2ε) + (αq1 + q2 − 1)2(σ2

0 + ε) + q2
2σ2

w + ε1

≤ (q1 + q2 − 1)2P + (αq1 + q2 − 1)2σ2
0 + q2

2σ2
w + εM(q1, q2) + ε1 (67)

where the constant εM(q1, q2) = ε((q1 + q2 − 1)2(1 + |α|)2 + (αq1 + q2 − 1)2) → 0
as ε → 0.

Now suppose the random variables x′
0 ∼ N (0, σ2

0I) and u′
1 ∼ N (0, P I) are

independent of w′ ∼ N (0, σ2
wI) and jointly Gaussian with covariance between u′

1
and x′

0 zero. Also define v′ = u′ + αx′
0 and y′ = x′

0 + u′
1 + w′. A simple calculation

shows that E
[‖q1v′ + q2y′

2 − x′
1‖2

]
yields the same expression as in equation (67)

without the εM and the ε1 terms. Observe that the estimation procedure in
equation (52) is the MMSE estimation for x′

1 = x′
0 + u′

1 on observing y′
2, where the

average error is given by MMSEG(α, P ) is given by Kay (1998, p.382)

MMSEG(α, P ) = Kx1 − Kx1ζK
−1
ζ Kx1ζ , (68)

where,

Kx1 = E
[
x2

1
]

= P + σ2
0 . (69)

D.7 Total costs for α 
= 1

For fixed α and ε, if m > {m3(α, ε, ε1), m4(α, ε, ε1), m5(α, ε, ε1)}, the total cost is
smaller than

k2(P + (1 + |α|)2) + MMSE(α, P ) + M(q1, q2)ε + ε1, (70)
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where P satisfies

C(α, P ) = I(v; y2) − I(v; x0) =
1
2

log2

(
P (P + σ2

0 + σ2
w)

Pσ2
0(1 − α)2 + σ2

w(P + α2σ2
0)

)
= 5ε.

By arguments analogous to those in Appendix D.5, the existence of a solution can
be proved. Here we concentrate on the case of interest of ε → 0 by letting m → ∞.
The condition (55) is then equivalent to

P (P + σ2
0 + σ2

w) = Pσ2
0(1 − α)2 + σ2

w(P + α2σ2
0).

Taking the positive root,

P =

√
σ2

0α(2 − α)
2

(√
1 +

4σ2
w

σ2
0(2 − α)2

− 1
)

. (71)

By letting m → ∞, we can have ε1 → 0 and also ε → 0. Optimising the total cost
over α, the asymptotic total cost achieved is

min
α,P

k2P + MMSE(α, P ), (72)

for P satisfying equation (71).

D.8 A combination of the linear scheme and the DPC scheme

While the DPC scheme outperforms the linear scheme for high values of σ2
0 ,

Figure 12 shows that this is not true for low values of σ2
0 . It is natural to think that

a combination of the linear scheme and the DPC scheme might perform better than
either one alone.

Our approach is to divide the power available and dedicate a part of it to
each scheme. A linear term u1,1 = −βx0 constitutes a part of u1. This term can be
thought of as changing the variance of the initial state x0. To this, we add a vector
u1,2 that is dirty-paper coded against (1 − β)x0. By Lemma 5, u1,2 is statistically
uncorrelated with (1 − β)x0, and hence uncorrelated with u1,1 as well. Thus, the
total power is β2σ2

0 + 1
mE

[‖u1,2‖2
]
+ ε, and this is constrained to be smaller than P .

The state x1 is, therefore,

x1 = (1 − β)x0 + u1,2, (73)

where u1,2 is the input that dirty-paper codes against (1 − β)x0. Again, ε → 0 as
m → ∞. It turns out that the optimising β ≥ 0, consistent with the intuition that
the power in the initial state x0 should be decreased before using DPC against the
state.
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E The vector schemes perform within a constant factor of the optimal

The performance of the scheme that zero-forces x0 and the JSCC scheme is identical
for σ2

0 = 1, as is evident from Figure 6. Therefore, we consider two different cases:
σ2

0 ≤ 1 and σ2
0 ≥ 1. In either case, we show that the ratio is bounded by 11.

The result can be tightened by a more detailed analysis by dividing the (k, σ2
0) space

into finer partitions. However, we do not present the detailed analysis here for ease
of exposition.

Region 1: σ2
0 ≤ 1.

We consider the upper bound as the minimum of k2σ2
0 and σ2

0
σ2
0+1 . Consider the lower

bound

C ≥ min
P≥0

k2P +
((√

κ(P ) −
√

P
)+)2

. (74)

Now if the optimising power P is greater than σ2
0/11, then the first term of the lower

bound is greater than k2σ2
0/11. Thus the ratio of the upper bound k2σ2

0 and the
lower bound is smaller than 11.

If the optimising P ≤ σ2
0

11 ,

κ(P ) =
σ2

0

(σ0 +
√

P )2 + 1

≥ σ2
0

(σ0 + σ0√
11

)2 + 1

(σ2
0≤1)
≥ σ2

0

(1 + 1√
11

)2 + 1
≥ 0.37σ2

0

which is greater than σ2
0/11 > P . Thus,

(
(
√

κ(P ) −
√

P )+
)2 ≥

(√
0.37σ2

0 −
√

σ2
0

11

)2

> 0.094σ2
0 >

σ2
0

11
.

The lower bound is no smaller than ((
√

κ(P ) − √
P )+)2. Thus, even for P ≤ σ2

0
11 the

ratio of the upper bound σ2
0

σ2
0+1 and the lower bound is smaller than 11.

Region 2: σ2
0 ≥ 1.

The upper bound relevant here is the minimum of k2 and σ2
0

σ2
0+1 . Again, looking at

equation (74), if P > 1
11 , the ratio of the upper bound k2 to the lower bound is no

more than 11.
Now, if P ≤ 1

11 ,

κ(P ) ≥ σ2
0

(σ0 + 1/
√

11)2 + 1
.
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Therefore,

(
(
√

κ(P ) −
√

P )+
)2 =

((√
σ2

0

(σ0 + 1√
11

)2 + 1
− 1√

11

)+
)2

.

For σ2
0 ≥ 1, the first term on the RHS attains its minima at σ2

0 = 1. Evaluated
at this point, the term is larger than 1√

11
. Therefore, a bound on the ratio for

P < 1
11 is

σ2
0/(σ2

0 + 1)(√
σ2
0

(σ0+ 1√
11

)2+1 − 1√
11

)2 ≤ 1(√
σ2
0

(σ0+ 1√
11

)2+1 − 1√
11

)2

≤ 1(√
1

(1+ 1√
11

)2+1 − 1√
11

)2

≈ 10.56 < 11.

Thus, for σ2
0 ≥ 1, the ratio is bounded by 11 as well. Therefore, γ1 and γ2 are both

smaller than 11.


