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Abstract

We consider the problem of two-stage signal cancelation based on noisy observations. This problem turns out

to be an extension of the Witsenhausen counterexample — a famous open problem in distributed control. Cost

is imposed on the power expended by the first controller, and the residual signal after the actions of the two

controllers. Along the lines of a recent approximate solution to the Witsenhausen counterexample, we provide an

approximate solution to this distributed signal cancelation problem to within a constant factor. This approximation

holds uniformly over all problem parameters and for all vector lengths.

I. INTRODUCTION

Consider the distributed signal canceling system shown in Fig. 1. The first controller (encoder E) observes a

noisy version of the signal Sm and modifies it by adding a power-constrained input Um. The resulting signal

Xm is observed noisily by a second controller (decoder D). Based on this observation, the decoder subtracts an

input X̂m from Xm. The goal is to reduce the mean square value of the resulting signal Xm − X̂m. Intuitively,

it might appear that the optimal strategy for each controller is to scale down the signal as much as possible.

After all, the system is a Linear-Quadratic-Gaussian (LQG) system and it is well known that for centralized LQG

systems, control laws linear in the observation are optimal [1]. Even within information theory, when the encoder

has noiseless observations, if the objective is to communicate Sm to the decoder, then the optimal strategy is

well known to be linear [2]. The related problem of state masking, where the transmitter wants to hide Sm from

the decoder (in a mean-square error sense), also has a linear solution [3].

It may come as a surprise, therefore, that the optimal strategy for the problem of signal cancelation is nonlinear.

This is because the problem is a generalization1 of the infamous Witsenhausen counterexample [6], a distributed

control problem for which it is known that the optimal strategy is nonlinear [6]. Witsenhausen’s counterexample

is still unsolved in that it is unknown what the optimal strategy or the optimal costs are. The problem formulation

is quite similar to some problems in information theory. For example, in the problem of remote source coding [7],

the encoders have noisy observations of the source that needs to be communicated to the decoder. The encoder

can also be thought of as an agent that is relaying the source, as considered in [8], [9]. The main difference in

Witsenhausen’s formulation (as well as our extension here) as compared to communication problems is that it

1In the limit of zero observation noise at the encoder, the signal cancelation problem reduces to a vector extension of the

counterexample [4]. To the best of our knowledge, the connection of Witsenhausen’s counterexample with signal cancelation was first

noticed by Martins [5].



2

is the modified state Xm (and not a message, or the source Sm) that is to be reconstructed at the decoder. This

feels a bit unnatural from a traditional information-theoretic standpoint, because it amounts to modification of

the information that is meant to be communicated. However, the problem formulation is perfectly natural in a

control setting because cancelation and tracking are problems of wide applicability in control systems.
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Fig. 1. The model for a noise canceling system. This model is an extension of Witsenhausen’s counterexample, where the noise Zm
1 is

not present, and Sm is observed perfectly by the encoder.

Recently, we formulated a vector version of the Witsenhausen counterexample, which allows the application

of laws of large numbers, thus simplifying the problem. For this simplified problem, we obtained information-

theoretic upper and lower bounds on the cost2, characterizing the asymptotic (infinite-length) optimal costs to

within a factor of 1.3 (calculated numerically) for all problem parameters [4], [10]. Based on this work, we then

obtained similar approximate-optimality results for the finite-length extensions using lattice-based techniques and

sphere-packing outer bounds [11], [12]. For example, for the original counterexample, which corresponds to the

scalar case, we characterize the optimal cost to within a factor of 8 (calculated numerically) for all problem

parameters.

Building on our work on the counterexample, this paper provides approximately optimal solutions to the

problem of distributed signal cancelation. In Section II, we consider the problem of Fig. 1 where the difference

from the counterexample is that the observation of the encoder is noisy. In Section III, we provide an equivalent

problem, where there is no noise in the observation at the encoder, but there is noise in evolution of the state

Xm. Using this equivalent problem, in Section IV, we characterize the asymptotic optimal costs for the signal

cancelation problem to within a factor of 80 for all problem parameters (numerical evaluation of the bounds

shows that the actual factor is smaller than 10). Using more sophisticated techniques, we then derive results

for finite vector-lengths, characterizing the optimal costs to within a constant factor (uniformly over all problem

parameters) for any vector length. In Section V, we observe that our techniques also provide approximately

optimal solutions to the problem with noises in all inputs, state evolutions, and observations. This compliments

our earlier work [13] where we provided approximately optimal solutions to the extension of the counterexample

with quadratic costs on all states and inputs, and suggests that the set of tools developed in this line of work are

rich enough to begin addressing more sophisticated distributed control problems.

This line of work parallels (and is intimately connected to) the recent work in information theory where advances

have been made on long-standing problems using similar approximation approaches. Because of space limitations,

2As is usual in control, the cost is defined as a weighted sum of the power and distortion costs.
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we refer the reader to [4], [12] for survey of related results in information theory (including connections with

deterministic models [14] and constant gap results for capacity e.g. [15]).

II. PROBLEM STATEMENT, DEFINITIONS, AND NOTATION

A. The signal cancelation problem

The “initial state” Sm is distributed N (0, σ2I). The encoder E observes Sm + Zm1 , where Zm1 ∼ N (0, N1)

is independent of Sm. Based on this observation, the encoder modifies state Sm using an input Um of average

power at most P , resulting in a state Xm, i.e. E
[
‖Sm −Xm‖2

]
≤ mP . The decoder D observes the state Xm

through a noisy channel with additive white Gaussian noise Zm2 ∼ N (0, N2I), which is independent of Xm.

Without loss of generality, we assume that N2 = 1. The decoder maps its observation Ym = Xm + Zm2 to an

estimate X̂m of the modified state Xm. The objective is to minimize the MMSE error E
[
‖Xm − X̂m‖2

]
.

Alternatively, the control-theoretic weighted cost formulation [6] defines the total cost to be

J =
1
m
k2‖Um‖2 +

1
m
‖Xm − X̂m‖2, (1)

where k ∈ R+. The objective is to minimize the average cost, E [J ], in an unconstrained manner. The average

is taken over the realizations of the initial state and the observation noises. It is this weighted cost formulation

that we address in this paper.

B. Notation and definitions

Let J̄ (γ) denote the average cost for a given strategy γ = (γ1, γ2) of the encoder and the decoder (γ1 is the

function that maps Sm + Zm1 to Um for the encoder, and similarly, γ2 is the mapping function for the decoder).

Where there is no confusion, we drop the superscript (γ). Let J̄opt = infγ J̄ (γ) be the optimal cost.

Vectors are denoted in bold font, random variables in upper case, and their realizations in lower case. We

use A ⊥⊥ B to imply that the random variables A and B are independent. B is used to denote the unit ball in

L2-norm in Rm.

Definition 1 (Lattice): An m-dimensional lattice Λ is a set of points in Rm such that if xm,ym ∈ Λ, then

xm + ym ∈ Λ, and if xm ∈ Λ, then −xm ∈ Λ.

Definition 2 (Packing and packing radius): Given an m-dimensional lattice Λ and a radius r, the set Λ +

rB = {xm + rym : x ∈ Λ,ym ∈ B} is a packing of Euclidean m-space if for all points xm,ym ∈ Λ,

(xm + rB)
⋂

(ym + rB) = ∅. The packing radius rp is defined as rp := sup{r : Λ + rB is a packing}.
Definition 3 (Covering and covering radius): Given an m-dimensional lattice Λ and a radius r, the set Λ +

rB is a covering of Euclidean m-space if Rm ⊂ Λ + rB. The covering radius rc is defined as rc := inf{r :

Λ + rB is a covering}.
Definition 4 (Packing-covering ratio): The packing-covering ratio (denoted by ξ) of a lattice Λ is the ratio

of its covering radius to its packing radius, ξ = rc
rp

.

III. EQUIVALENCE OF TWO PROBLEMS

In this section we show that the problem of Section II is equivalent to a problem with noise in evolution of

state Xm, but noiseless observation at the encoder, shown in Fig. 2(c).
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Fig. 2. The figures show how the signal cancelation problem shown in Fig. 1 is equivalent to a problem with noise in the evolution of

state Xm, instead of noise in the observation at the encoder. From (c), it is clear that the encoder can not help much in the reconstruction

of eZm
1 since its observations are independent of eZm

1 .

In the problem of Section II, the encoder takes an action based on its observation of Sm + Zm1 . Define

S̃m := α(Sm + Zm1 ), the MMSE estimate of Sm given Sm + Zm1 , where α = σ2

σ2+N1
. Since S̃m can be obtained

from Sm+Zm1 with an invertible mapping, we can equivalently assume that the encoder observes S̃m. The initial

state can be written as Sm = S̃m + Z̃m1 , where S̃m ⊥⊥ Z̃m1 (orthogonality principle), and Z̃m1 ∼ N
(

0, σ2N1
σ2+N1

)
.

The resulting block diagram (which represents an equivalent problem) is shown in Fig. 2(b). By commutativity of

addition, we get the equivalent problem with noise Z̃m1 in state evolution, as shown in Fig. 2(c). An intermediate

state X̃m = S̃m + Um is also introduced.

In summary, the equivalent noisy-state evolution problem is the following: the initial state S̃m ∼ N (0, σ̃2I) is

observed noiselessly by the encoder E , where σ̃2 = σ4

σ2+N1
. The encoder modifies the state using an input Um,

resulting in the system state Xm. State evolution noise Z̃m1 ∼ N (0, Ñ1I) is added to the state X̃m resulting in

state Xm. Here, Ñ1 = σ2N1
σ2+N1

. The objective, as before, is to minimize

J̄ =
1
m
k2E

[
‖Um‖2

]
+

1
m

E
[
‖Xm − X̂m‖2

]
, (2)

where X̂m is the estimate of Xm at the decoder based on noisy observations of Xm.
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IV. APPROXIMATELY OPTIMAL SOLUTIONS FOR DISTRIBUTED SIGNAL CANCELATION

A coarse lower bound on the average cost is given in the following.

Theorem 1:

J̄opt ≥ max
{

σ2N1

σ2N1 + σ2 +N1
,

inf
P≥0

k2P +
((√

κ̃(P )−
√
P
)+
)2}

,

where κ̃(P ) = eσ2

(eσ+
√
P )2+1

, and σ̃2 = σ4

σ2+N1
.

Proof: Consider the equivalent problem of noise in state evolution of Section III. A lower bound can be

derived as follows.

If the decoder is given side information S̃m, it can simulate the encoder, reconstructing Um perfectly. Thus

the decoder only has to estimate Z̃m1 , which is independent of S̃m. The resulting MMSE is therefore given byeN1eN1+1
= σ2N1

σ2N1+σ2+N1
, yielding the first term in the lower bound.

Alternatively, if side-information Z̃m1 is given to the decoder, the problem reduces to the vector Witsenhausen

counterexample, where the encoder observes the source S̃m noiselessly and there is no noise Z̃m1 in state evolution.

A lower bound can now be obtained from [4, Theorem 1] (using σ̃ in place of σ), yielding the second term in

the lower bound.

A. An upper bound on the total cost

Define Nsum := σ2N1
σ2+N1

+ 1.

Theorem 2: For the noisy extension of Witsenhausen’s counterexample of Section II, an upper bound on the

optimal costs is

J̄opt ≤ min
{
J̄fZI , J̄gZF , J̄gV Q

}
,

where J̄fZI = σ2

σ2+1 , J̄gZF = k2 σ4

σ2+N1
+ σ2N1

σ2+N1+σ2N1
, and

J̄gV Q ≤ inf
P≥0

k2P +
σ2N1

σ2 +N1
+√Nsum

√√√√ψ

(
m+ 2,

√
mP

ξ2Nsum

)

+

√
P

ξ2

√√√√ψ

(
m,

√
mP

ξ2Nsum

)2

, (3)

where ψ(m, r) := Pr(Zm ≥ r) =
∫
zm≥r

e−
zm

2

(
√

2π)mdz
m for Zm ∼ N (0, I), and ζ is the packing-covering ratio of a

lattice in Rm.

Proof: We provide three strategies. Depending on k, σ, and N1, we use the best of the three. The obtained

upper bound is therefore the minimum of the costs attained by the three startegies. The strategies are defined on

the equivalent problem of noise in the state evolution (of Section III).

The first strategy is the Zero-Input (Z̃I) strategy, where the input Um
1 = 0. The decoder merely estimates

S̃m + Z̃m1 = Sm from the noisy observation Sm + Zm2 . Since Zm2 ∼ N (0, I), the LLSE error is given by

MMSE =
σ2

σ2 + 1
, (4)
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which is also the attained cost since P = 0.

Our second strategy is a Zero-Forcing (Z̃F ) strategy, applied to the equivalent noisy state-evolution problem.

The first input forces the state S̃m to zero, requiring an average power of P = σ̃2 = σ4

σ2+N1
. The decoder merely

performs an LLSE estimation for Z̃m1 ∼ N (0, Ñ). The MMSE error is therefore given by

MMSEgZF =
Ñ

Ñ + 1
=

σ2N1

σ2 +N1 + σ2N1
. (5)

The cost for Z̃F is, therefore, J̄gZF = k2 σ4

σ2+N1
+ σ2N1

σ2+N1+σ2N1
.

The first two strategies are linear, and therefore somewhat uninteresting. Our third strategy is a nonlinear

strategy that is based on the idea of implicit communication (see, for example, [13]).

This strategy, which we call the Vector Quantization (Ṽ Q) strategy, uses a lattice Λ ⊂ Rm of covering radius

rc, packing radius rp, and packing-covering ratio of ζ = rc
rp

as follows. The encoder uses the input Um to force

S̃m to a lattice point. The decoder declares X̂m to be the quantization point that is within a distance rp of its

observation Ym, if any such quantization point exists. If there is no such quantization point, the decoder declares

X̂m = Ym. It is shown in Appendix I that choosing rc =
√
mP so that rp =

√
mP
ξ2 , the costs attained by Ṽ Q

are bounded by the expression in (3). Note that this upper bound depends on ξ, the packing-covering ratio for

the chosen lattice Λ ⊂ Rm.

The upper bound can now be obtained by using the best of Z̃I , Z̃F , and Ṽ Q strategies depending on the

values of k and σ.

It is also shown in Appendix I that by loosening the upper bound in (3), one can obtain the following bound

J̄gV Q ≤ inf
P>ζ2Nsum

k2P +
σ2N1

σ2 +N1

+

(√
Nsum +

√
P

ζ2

)2

e
− mP

2ζ2Nsum
+m+2

2

“
1+ln

“
P

ζ2Nsum

””
.

It follows that, for any P > ξ2Nsum, for the asymptotic problem

lim sup
m→∞

J̄gV Q ≤ k2P +
σ2N1

σ2 +N1
.

B. Approximate asymptotic optimality

Theorem 3 (Approximate asymptotic optimality): In the limit of m→∞,

max
{

σ2N1
σ2N1+σ2+N1

,

infP≥0 k
2P +

((√
κ(P )−

√
P
)+
)2}

≤ J̄opt

≤ γmax
{

σ2N1
σ2N1+σ2+N1

,

infP≥0 k
2P +

((√
κ(P )−

√
P
)+
)2}

,

where γ ≤ 80.

Proof: See Appendix II.

Numerical evaluations (shown in Fig. 3) show that the ratio is actually bounded by 10.
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Fig. 3. Ratio of the upper and lower bound for varying values of N1 in the asymptotic case. The maximum was observed to be smaller

than 10 for all values of N1 that were tested.

C. Approximate optimality for finite lengths

In this section, we derive a lower bound on the cost for finite lengths. While Theorem 1 gives one such bound

that is valid for each vector length m, it is not sufficient to show approximate optimality of the quantization-based

schemes. The lower bound in this section is derived using the bound in [12] which was derived for the original

counterexample.

Theorem 4:

J̄opt ≥ max
{

σ2N1

σ2N1 + σ2 +N1
,

inf
P≥0

sup
σ2
G≥1,L>0

k2P + η(P, σ̃2, σ2
G, L)

}
,
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where

η(P, σ̃2, σ2
G, L) =

σmG
cm(L)

exp
(
−
mL2(σ2

G − 1)
2

)
((√

κ2(P, σ̃2, σ2
G, L)−

√
P

)+
)2

,

where κ2(P, σ̃2, σ2
G, L) :=

σ̃2σ2
G

c
2
m
m (L)e1−dm(L)

(
(σ̃ +

√
P )2 + dm(L)σ2

G

) ,
cm(L) := 1

Pr(‖Zm2 ‖2≤mL2) = (1− ψ(m,L
√
m))−1, dm(L) := Pr(‖Zm+2

2 ‖2≤mL2)
Pr(‖Zm2 ‖2≤mL2) = 1−ψ(m+2,L

√
m)

1−ψ(m,L
√
m)

, 0 < dm(L) <

1, and ψ(m, r) = Pr(‖Zm2 ‖ ≥ r).

Proof: Follows along the same lines as that of Theorem 1. When side information about Z̃m1 is supplied to

the decoder, the lower bound from [12, Theorem 3] is used instead of that from [4].

Theorem 5 (Approximate optimality at finite lengths): For the signal cancelation problem of vector length

m described in Section II,

max
{

σ2N1
σ2N1+σ2+N1

,

inf
P≥0

sup
σ2
G≥1,L>0

k2P + η(P, σ̃2, σ2
G, L)

}
≤ J̄opt

≤ 400ζ2 max
{

σ2N1
σ2N1+σ2+N1

,

inf
P≥0

k2 sup
σ2
G≥1,L>0

P + η(P, σ̃2, σ2
G, L)

}
,

Proof: See Appendix III.

For any m ∈ Z+, there exists a lattice with ζ ≤ 4, and in the limit m → ∞, ζ ≤ 2 [17]. Thus the problem is

solved to within a constant factor for all vector lengths.

V. DISCUSSIONS

Even though these constants seem large, the actual ratios obtained by numerical evaluations are much smaller

(e.g. see [12]). A straightforward improvement in the upper bound can be obtained using dirty-paper coding [4],

and in the lower bound using techniques from [10].

It is easy to check that the equivalent problem in Section III can represent any problem of noise in state

evolution by varying the parameters σ and N1 in the original problem of noisy observation at the encoder.

Thus the results of this paper also provide characterizations of optimal cost for noise in state evolution within

a constant factor. Noise in the first input Um and in evolution of state Sm can also be lumped with the noise

in state evolution. Thus the solution here extends easily to a general problem with noises in all state evolutions,

inputs, and observations.

An interesting feature that shows up is that the zero-input strategy is approximately optimal (to within a factor

of 2) for N1 > N2. This suggests that the controllers operate opportunistically — if the encoder is noisier, it

does not do any work. We expect that this feature will be retained in extensions of the problem where there are

multiple controllers operating sequentially.
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Fig. 4. Ratio of the upper and lower bound for varying values of N1 for the scalar case. The maximum was observed to be smaller than

20 for all values of N1 that were tested.
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APPENDIX I

COSTS ATTAINED BY THE VECTOR QUANTIZATION Ṽ Q STRATEGY

Define the error event Em := {‖z̃m1 + zm2 ‖ > rp}.

E
[
‖Xm − X̂m‖2

]
= E

[
‖Xm − X̂m‖211{Em}

]
+ E

[
‖Xm − X̂m‖211{Ecm}

]
.

The event Em can happen in two ways. In the first case, the decoder estimate x̂m ∈ Λ, which is the case when

ym falls in a packing sphere. In this case,

‖xm − x̂m‖ = ‖xm − ym + ym − x̂m‖

≤ ‖xm − ym‖+ ‖ym − x̂m‖ ≤ ‖zm2 ‖+ rp.

If x̂m /∈ Λ, x̂m = ym, and therefore,

‖xm − x̂m‖ = ‖zm2 ‖ ≤ ‖zm2 ‖+ rp. (6)

Therefore, in either case, under the error event Em, ‖xm−x̂m‖ = ‖zm2 ‖ ≤ ‖zm2 ‖+rp. We now need the following

lemma

Lemma 1: For P > ζ2Nsum,
1
m

E
[
(‖Zm2 ‖+ rp)

2 11{Em}
]

≤ Nsum

(
1 +

√
P

ζ2Nsum

)2

e
− mP

2ζ2Nsum
+m+2

2

“
1+ln

“
P

ζ2Nsum

””
.
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Proof: Using the Cauchy-Schwartz inequality,

E
[
(‖Zm2 ‖+ rp)

2 11{Em}
]

≤
(√

E
[
‖Zm2 ‖211{Em}

]
+
√

E
[
r2p11{Em}

])2

. (7)

Defining Zm3 = −Zm2 ,

E
[(

Z̃m1
)T

Zm2 11{Em}

]
= −E

[(
Z̃m1
)T

Zm3 11{‖eZm1 −Zm3 ‖>rp}

]
(a)
= −E

[(
Z̃m1
)T

Zm2 11{Em}

]
= 0,

where (a) follows from the fact that Pr
(

(Z̃m1 ,Z
m
2 ) ∈ A

)
= Pr

(
(Z̃m1 ,Z

m
2 ) ∈ A

)
= Pr

(
(Z̃m1 ,Z

m
3 ) ∈ A

)
for

any set A ⊂ R2m. Thus,

E
[
‖Z̃m1 + Zm2 ‖211{Em}

]
= E

[
‖Z̃m1 ‖211{Em}

]
+ E

[
‖Zm2 ‖211{Em}

]
+2E

[(
Z̃m1
)T

Zm2 11{Em}

]
= E

[
‖Z̃m1 ‖211{Em}

]
+ E

[
‖Zm2 ‖211{Em}

]
≥ E

[
‖Zm2 ‖211{Em}

]
.

Thus, using (7)

E
[
(‖Zm2 ‖+ rp)

2 11{Em}
]

≤
(√

E
[
‖Zm1 + Zm2 ‖211{Em}

]
+
√

E
[
r2p11{Em}

])2

.

The proof now follows from Lemma 1 of [12] (by using a noise of variance Nsum instead of 1).

Now, under the event Ecm, x̂m = x̃m. Thus,

‖xm − x̂m‖ = ‖ (x̃m + z̃m1 )− x̃m‖ = ‖z̃m1 ‖.

Therefore,

E
[
‖Xm − X̂m‖211{Ecm}

]
= E

[
‖Z̃m1 ‖211{Ecm}

]
≤ E

[
‖Z̃m1 ‖2

]
=

σ2N1

σ2 +N1
. (8)

The result now follows from Lemma 1 and (8).

APPENDIX II

CONSTANT FACTOR OPTIMALITY FOR ASYMPTOTICALLY INFINITE VECTOR LENGTH

The proof involves showing that the ratio of the upper bound of Theorem 2 and the lower bound of Theorem 1

is no larger than 80. This is done by dividing the (k, σ,N1) space into different regions, which are dealt with

separately.

An optimal value of P that attains the minimum in the second expression in the lower bound of Theorem 1

is denoted by P ∗.



12

Case 1: N1 ≥ 1.

A lower bound is

J̄opt ≥ σ2N1

σ2N1 + σ2 +N1

(N1≥1)

≥ σ2

σ2 + σ2 + 1
=

σ2

2σ2 + 1
.

The zero-input upper bound J̄fZI = σ2

σ2+1 . The ratio of the upper and lower bounds is therefore smaller than

2σ2 + 1
σ2 + 1

< 2. (9)

Case 2: σ2 < N1 < 1.

If N1 > σ2, using the first term in the lower bound of Theorem 1,

J̄opt ≥ σ2N1

σ2N1 + σ2 +N1

(N1>σ2)
>

σ2σ2

σ2σ2 + σ2 + σ2
=

σ4

σ4 + 2σ2

(σ2<1)
>

σ4

σ2 + 2σ2
=
σ2

3
.

The Z̃I upper bound J̄fZI = σ2

σ2+1 < σ2. Thus the ratio of upper and lower bounds is smaller than 3.

Case 3: N1 < σ2 < 1.

Case 3a: P ∗ ≥ σ2

16 .

Since the lower bound is the larger of the two terms in Theorem 1, it is larger than any convex combination of

the two terms as well. That is,

J̄opt ≥ 1
2

k2P ∗ +

((√
κ̃−
√
P ∗
)+
)2


+
1
2

σ2N1

σ2N1 + σ2 +N1“
P ∗≥σ2

16

”
≥ k2σ2

32
+

σ2N1

2(σ2N1 + σ2 +N1)
.

Now for the upper bound, we use the zero-forcing strategy

J̄gZF =
k2σ4

σ2 +N1
+

σ2N1

σ2N1 + σ2 +N1

≤ k2σ4

σ2
+

σ2N1

σ2N1 + σ2 +N1

= k2σ2 +
σ2N1

σ2N1 + σ2 +N1
.

The ratio of upper and lower bound is therefore smaller than max{32, 2} = 32.

Case 3b: P ∗ < σ2

16 .

Since N1 < σ2,

σ̃2 =
σ4

σ2 +N1

(N1<σ2)

≥ σ4

σ2 + σ2
=
σ2

2
.
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Thus,

κ̃ =
σ̃2

(σ̃ +
√
P ∗)2 + 1

≥ σ2/2(
σ√
2

+ σ
4

)2
+ 1

(σ2≤1)

≥ σ2

2
(

1√
2

+ 1
4

)2
+ 1
≥ σ2

3
.

Thus,

(
√
κ̃−
√
P ∗)2 ≥ σ2

(
1√
3
− 1

4

)2

> 0.1σ2.

Using J̄fZI = σ2

σ2+1 < σ2, the ratio of the upper and lower bounds is smaller than 10.

Case 4: N1 ≤ 1 < σ2.

Case 4a: P ∗ ≤ 1
9 .

In this case,

σ̃2 =
σ4

σ2 +N1

(N1≤1≤σ2)

≥ σ4

σ2 + σ2
=
σ2

2

Therefore,

κ̃ =
σ̃2

(σ̃ +
√
P ∗)2 + 1

≥ σ2/2(
σ√
2

+ 1
3

)2
+ 1
≥ 0.24.

Thus,
((√

κ̃−
√
P ∗
)+
)2

≥ 0.024. The zero-input upper bound is smaller than 1. Thus the ratio is smaller than
1

0.024 < 41.

Case 4b: P ∗ > 1
9

A lower bound is

J̄opt ≥ max
{
k2

9
,

σ2N1

σ2N1 + σ2 +N1

}
≥ k2

9
× 9

10
+

σ2N1

σ2N1 + σ2 +N1
× 1

10

=
k2

10
+

σ2N1

10(σ2N1 + σ2 +N1)
(10)

Now, we use the asymptotic vector quantization upper bound of

lim
m→∞

J̄gV Q ≤ k2ξ2
(

σ2N1

σ2 +N1
+ 1
)

+
σ2N1

σ2 +N1
. (11)

As m → ∞, there exist lattices whose packing covering ratio is asymptotically at most 2. Since N1 < 1, this

upper bound is smaller than 2ξ2k2 + σ2N1
σ2N1+σ2+N1

≤ 8k2 + σ2N1
σ2N1+σ2+N1

. The ratio of the first terms in the upper

bound and the lower bound of (10) is at most 80. The ratio of the second terms is

σ2N1

σ2 +N1
× 10(σ2N1 + σ2 +N1)

σ2N1
= 10

σ2N1

σ2 +N1
+ 10

≤ 10 + 10 = 20.

Thus the ratio of the upper and lower bounds is no larger than max{8, 80} = 80.

Thus the ratio of upper and lower bounds is at most 80.



14

APPENDIX III

CONSTANT FACTOR OPTIMALITY FOR FINITE VECTOR LENGTHS

Proof: Again, we divide the (k, σ,N1)-space into different regions and prove constant factor optimality for

each of them.

Case 1: N1 ≥ 1.

Case 1 in the proof for theorem 3 shows that the ratio of zero-input upper bound and the infinite-length lower

bound is smaller than 2. This works even in the finite-length case because zero-input strategy has the same cost

for any vector length.

Case 2: N1 < 1, σ2 < 1.

Again, Case 2 and Case 3 of proof for theorem 3 show that zero-input and zero-forcing strategies attain within

a factor of 32 of the optimal for this case.

Case 3: N1 < 1, σ2 ≥ 1, P ∗ ≥ eσ2

100 .

In this case, the first term in the lower bound can be lower bounded as follows

k2P ∗ ≥ k2 σ̃
2

100

= k2 σ4

100(σ2 +N1)
N1<1≤σ2

≥ k2 σ4

100(σ2 + σ2)
= k2 σ

2

200
.

Thus, a lower bound to the costs is given by

J̄opt ≥ max
{
k2 σ

2

200
,

σ2N1

σ2 +N1 + σ2N1

}
≥ k2 σ

2

200
× 100

101
+

σ2N1

σ2 +N1 + σ2N1
× 1

101

= k2 σ
2

202
+

σ2N1

101(σ2 +N1 + σ2N1)
.

An upper bound on the costs is given by J̄gZF = k2σ2 + σ2N1
σ2+N1+σ2N1

.

The ratio of upper and lower bounds for this case is therefore smaller than 202.

Case 4: N1 < 1, σ2 ≥ 1, P ∗ < eσ2

100 , σ̃
2 ≤ 16.

In this case, we use the lower bound of Theorem 1, which is a special case of the lower bound of Theorem 4

κ̃ =
σ̃2

(σ̃ +
√
P ∗)2 + 1

“
P ∗< eσ2

100

”
≥ σ̃2

σ̃2
(

1 + 1√
100

)2
+ 1

(eσ2<16)

≥ σ̃2

16
(

1 + 1√
100

)2
+ 1

=
σ̃2

20.36
≥ σ̃2

21
.

Thus, for σ̃2 < 16 and P ∗ ≤ eσ2

100 ,

J̄opt ≥
(

(
√
κ̃−
√
P ∗)+

)2
≥ σ̃2

(
1√
21
− 1√

100

)2

≈ 0.014σ̃2 ≥ σ̃2

72
.
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Using the upper bound J̄fZI = σ2

σ2+1 , the ratio of upper and lower bounds is smaller than

σ2

σ2 + 1
× 72

σ̃
=

σ2

σ2 + 1
× 72(σ2 + 1)

σ4

=
72
σ2

< 72,

since σ2 > 1.

Case 5: N1 < 1, σ2 ≥ 1, P ∗ < eσ2

100 , σ̃
2 > 16, P ∗ < 1

2 .

Again using the lower bound of Theorem 1,

κ̃ =
σ̃2

(σ̃ +
√
P ∗)2 + 1

(P ∗≤ 1
2
)

≥ σ̃2

(σ̃ +
√

0.5)2 + 1
(a)

≥ 16
(
√

16 +
√

0.5)2 + 1
≈ 0.6909 ≥ 0.69,

where (a) uses σ̃2 ≥ 16 and the observation that x2

(x+b)2+1 = 1

(1+ b

x)2
+ 1
x2

is an increasing function of x for

x, b > 0. Thus, (
(
√
κ̃−
√
P ∗)+

)2
≥ ((
√

0.69−
√

0.5)+)2 ≈ 0.0153 ≥ 0.015.

Using the upper bound of σ2

σ2+1 < 1, the ratio of the upper and the lower bounds is smaller than 1
0.015 < 67.

Case 6: N1 < 1, σ2 ≥ 1, P ∗ < eσ2

100 , σ̃
2 > 16, P ∗ ≥ 1

2 .

This is the most interesting case because nonlinear strategies are needed here to obtain constant factor results.

But first we concentrate on the lower bound.

Using L = 2 in the first term of the lower bound,

cm(L) =
1

Pr(‖Zm‖2 ≤ mL2)
=

1
1− Pr(‖Zm‖2 > mL2)

(Markov’s ineq.)
≤ 1

1− m
mL2

(L=2)
=

4
3
,

Similarly,

dm(2) =
Pr(‖Zm+2‖2 ≤ mL2)
Pr(‖Zm‖2 ≤ mL2)

≥ Pr(‖Zm+2‖2 ≤ mL2) = 1− Pr(‖Zm+2‖2 > mL2)
(Markov’s ineq.)
≥ 1− m+ 2

mL2
= 1−

1 + 2
m

4

(m≥1)

≥ 1− 3
4

=
1
4
.

In the bound, we are free to use any σ2
G ≥ 1. Using σ2

G = 6P ∗ > 1,

κ2 =
σ2
Gσ̃

2(
(σ̃ +

√
P ∗)2 + dm(2)σ2

G

)
c

2
m
m (2)e1−dm(2)

(a)

≥ 6P ∗σ̃2(
(σ̃ + eσ

10)2 + 6eσ2

100

) (
4
3

) 2
m e

3
4

(m≥1)

≥ 1.255P ∗.

where (a) uses σ2
G = 6P ∗, P ∗ < eσ

100 , cm(2) ≤ 4
3 and 1 > dm(2) ≥ 1

4 . Thus,(
(
√
κ2 −

√
P ∗)+

)2
≥ P ∗(

√
1.255− 1)2 ≥ P ∗

70
. (12)
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Now, using the first term in lower bound on the total cost from Theorem 4, and substituting L = 2,

J̄opt ≥ k2P ∗ +
σmG
cm(2)

exp
(
−
mL2(σ2

G − 1)
2

)((√
κ2 −

√
P ∗
)+
)2

(σ2
G=6P ∗)

≥ k2P ∗ +
(6P ∗)m

cm(2)
exp

(
−4m(6P ∗ − 1)

2

)
P ∗

70
(a)

≥ k2P ∗ +
3m
4
3

e2me−12P ∗m 1
70× 2

(m≥1)

≥ k2P ∗ +
3× 3× e2

4× 70× 2
e−12mP ∗

> k2P ∗ +
1
9
e−12mP ∗ , (13)

where (a) uses cm(2) ≤ 4
3 and P ∗ ≥ 1

2 . Using the second term in the lower bound, we obtain the following

bound

J̄opt > max
{
k2P ∗ +

1
9
e−12mP ∗ ,

σ2N1

σ2 +N1 + σ2N1

}
≥ k2P ∗

2
+

1
18
e−12mP ∗ +

σ2N1

2 (σ2 +N1 + σ2N1)
. (14)

For the upper bound, we loosen the lattice-based upper bound of Theorem 2 and massage it to obtain a form

similar to (13). Here, P is a part of the optimization:

J̄opt(m, k2, σ2
0)

≤ inf
P>ξ2Nsum

k2P +Nsum

(
1 +

√
P

ξ2Nsum

)2

e
− mP

2ξ2Nsum
+m+2

2

“
1+ln

“
P

ξ2Nsum

””
+

σ2N1

σ2 +N1

≤ inf
P>ξ2Nsum

k2P +
1
9
e
− 0.5mP
ξ2Nsum

+m+2
2

“
1+ln

“
P

ξ2Nsum

””
+2 ln

“
1+
q

P

ξ2Nsum

”
+ln(9) +

σ2N1

σ2 +N1

≤ inf
P>ξ2Nsum

k2P +
1
9
e
−m

“
0.5P

ξ2Nsum
−m+2

2m

“
1+ln

“
P

ξ2Nsum

””
− 2
m

ln
“
1+
q

P

ξ2Nsum

”
− ln(9)

m

”
+

σ2N1

σ2 +N1

= inf
P>ξ2Nsum

k2P +
1
9
e−

0.12mP
ξ2Nsum × e

−m
„

0.38P
ξ2Nsum

− 1+ 2
m

2

“
1+ln

“
P

ξ2Nsum

””
− 2
m

ln
“
1+
q

P

ξ2Nsum

”
− ln(9)

m

«
+

σ2N1

σ2 +N1

(m≥1)

≤ inf
P>ξ2Nsum

k2P +
1
9
e−

0.12mP
ξ2Nsum e

−m
“

0.38P
ξ2Nsum

− 3
2

“
1+ln

“
P

ξ2Nsum

””
−2 ln

“
1+
q

P

ξ2Nsum

”
−ln(9)

”
+

σ2N1

σ2 +N1

≤ inf
P≥34ξ2Nsum

k2P +
1
9
e−

0.12mP
ξ2Nsum +

σ2N1

σ2 +N1
, (15)

where the last inequality follows from the fact that 0.38P
ξ2Nsum

> 3
2

(
1 + ln

(
P

ξ2Nsum

))
+2 ln

(
1 +

√
P

ξ2Nsum

)
+ln (9)

for P
ξ2Nsum

> 34. This can be checked easily by plotting it.3

Now notice that for N1 < 1, Nsum = Ñ1 + 1 < 2, because Ñ1 = σ2N1
σ2+N1

≤ 1 for N1 < 1. Thus,

J̄opt ≤ inf
P≥68ξ2

k2P +
1
9
e−

0.12mP
2ξ2 +

σ2N1

σ2 +N1
.

Using P = 200ξ2P ∗ ≥ 100ξ2 (since P ∗ ≥ 1
2 ), which is larger than 68ξ2. Thus, we obtain from (15)

J̄opt ≤ k2200ξ2P ∗ +
1
9
e−

12mP
ξ2 +

σ2N1

σ2 +N1
. (16)

3It can also be verified symbolically by examining the expression g(b) = 0.38b2− 3
2
(1+ln b2)−2 ln(1+b)−ln (9), taking its derivative

g′(b) = 0.76b− 3
b
− 2

1+b
, and second derivative g′′(b) = 0.76 + 3

b2
+ 2

(1+b)2
> 0. Thus g(·) is convex-∪. Further, g′(

√
34) ≈ 3.62 > 0,

and g(
√

34) ≈ 0.09 and so g(b) > 0 whenever b ≥
√

34.
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Now notice that σ2N1
σ2+N1

× σ2N1+σ2+N1
σ2N1

= σ2N1
σ2+N1

+ 1 < 2 for N1 < 1. Thus, comparing (14) and (16), the ratio

of the upper and lower bounds is smaller than 400ξ2.


