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Short-distance green communication
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The black-box model for decoding energy

BE

[Massaad, Medard, Zheng ’04]

_ BN
T

[Massaad, Zheng, Medard ’08] [e.g. Prabhakaran, Kumar *09]
3/14




A proxy for decoding energy : Complexity




A proxy for decoding energy : Complexity

Block codes log PL

Block length m = [Gallager] . . . [Wiechman, Sason][Polyanskiy et al]
E.(R)




A proxy for decoding energy : Complexity

Block codes

Block length m = [Gallager] . . . [Wiechman, Sason][Polyanskiy et al]
E.(R)
Convolutional codes log -

Constraint length L. ~ Eoono(R)

[ Viterbi]




A proxy for decoding energy : Complexity

Block codes

Block length m o [Gallager] . . . [Wiechman, Sason][Polyanskiy et al]
E,(R)

log Pi
Econv (R)

Convolutional codes
Constraint length L. ~

[ Viterbi]

energy per operation E =1 pJ,
f=3GHz

distance = 17 m,

path-loss exponent = 3,
maximum node connectivity= 4
T=300K

Rate = 1/3

\

R 5 10 20 40
Normalized energy per-bit (on log scale)

Shannon waterfall
(BPSK =BSC)




A proxy for decoding energy : Complexity

Block codes log PL

Block length m o [Gallager] . . . [Wiechman, Sason][Polyanskiy et al]
E,(R)

log Pi
Econv (R)

Convolutional codes
Constraint length L. ~

[ Viterbi]

Rate 1/3 : _
convolutional code energy per operation E =1 pJ,

i f=3GHz
| distance = 17 m,
path-loss exponent = 3,

maximum node connectivity= 4
T=300K
Rate = 1/3

\

I 5 10 20 40 80
Normalized energy per-bit (on log scale)

Shannon waterfall
(BPSK =BSC)




A proxy for decoding energy : Complexity

Block codes log PL

Block length m =~ [Gallager] . . . [Wiechman, Sason][Polyanskiy et al]
E,(R)

log Pi
Econv (R)

Convolutional codes
Constraint length L. ~

[ Viterbi]

Rate 1/3

convolutional code energy per operation E =1 pJ,

f=3 GHz

distance = 17 m,

path-loss exponent = 3,
maximum node connectivity= 4

(4,6) regular LD . T=300K
Gallager B decddi ] Rate = 1/3

\

I 5 10 20 40 80
Normalized energy per-bit (on log scale)

Shannon waterfall
(BPSK =BSC)




Lower bounds for message-passing decoding

N

Message-passing decoding

N




Lower bounds for message-passing decoding

Graphical complexity

Message-passipg decoding

Number of iterations




Lower bounds for message-passing decoding

Graphical complexity

[Gallagef ‘63] [Burshtein et al ‘02]
[Sason,{Urbanke ‘03][Sason ‘09]

Message-passipg decoding

Number of iterations




Lower bounds for message-passing decoding

Graphical complexity

[Gallagef ‘63] [Burshtein et al ‘02]
[Sason,{Urbanke ‘03][Sason ‘09]

Message-passipg decoding

Number of iterations

[Khandekar, McEliece ‘01
[Sason ‘08]




Number of iterations for any code




Number of iterations for any code

O Bit nodes
® Channel output nodes

@ Helper nodes

(
6




Number of iterations for any code

O Bit nodes
® Channel output nodes

@ Helper nodes

(
6




Number of iterations for any code

O Bit nodes
® Channel output nodes

@ Helper nodes

(
6

log P%
Pr) — R)?

1
. . - |
# iterations > og(a 1) og ( @




Number of iterations for any code

O Bit nodes
® Channel output nodes

@ Helper nodes

(
6

i ORI B log &
iterations 2 TG S TE

Regular LDPCs : # iterations — @ <log <log %))




Regular LDPC’s are order optimal!

energy per operation E =1 pJ,
distance =17 m,

f=3GHz

path-loss exponent = 3,
maximum node connectivity= 4
T=300K

Rate = 1/3




Regular LDPC’s are order optimal!

total Rnergy per-bit for
(4.6) '

energy per operation E =1 pJ,
distance =17 m,

f=3GHz

path-loss exponent = 3,
maximum node connectivity= 4
T=300K

Rate = 1/3

A

Shannon Waterfall
L (BPSK H BSC)

0.5 1 2 4 8 16
Normalized energy per—bit (on log scale)




Regular LDPC’s are order optimal!

total Rnergy per-bit for
(4.6) '

Lower bound
h total energy per-Dbit

energy per operation E =1 pJ,
distance =17 m,

f=3GHz

path-loss exponent = 3,
maximum node connectivity= 4
T=300K

Rate = 1/3

A

Shannon Waterfall
L (BPSK H BSC)

0.5 1 2 4 8 16
Normalized energy per—bit (on log scale)




Regular LDPC’s are order optimal!

' total Rnergy per-bit for
d (4,6) |

Lowe‘q bound
h total energy per-bit
1

energy per operation E =1 pJ,
distance =17 m,
f=3GHz

path-loss exponent = 3,
Optimal

1
1
1
1
1
A
|
_ ! - maximum node connectivity= 4
- transmitjpower ! '
|
|
|
|
1
|
1
|

4

T=300K
| for lowerl bound Rate = 1/3

A

Shannon Waterfall
L (BPSK H BSC)

0.5 1 2 4 8 16
Normalized energy per—bit (on log scale)




Regular LDPC’s are order optimal!

Lowe‘q bound

h total energy per-bit
1
1
! /

Thresrliol d dower : energy per operation E =1 pJ,
for (4,6) regular LDPC distance = 17m,
4 ' f=3GHz
. path-loss exponent = 3,
LDPC optimal : maximum node connectivity= 4
transmit power T =300 K

Rate = 1/3

Optimal
" transmit
+ for lower

A

Shannon Waterfall
L (BPSK H BSC)

0.5 1 2 4 8 16
Normalized energy per—bit (on log scale)




(Green broadcasting




Decoding energy in broadcast channel
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Decoding energy in broadcast channel

Time-division multiplexing
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Summary

e Broadcast channels : TDM can outperform superposition/DPC
at short distances

- does not mean that TDM is optimal

- we are comparing lower bounds. The hope is that sparse-graph
codes approach these bounds.

e Error exponents with neighborhood size and bit-error
probability aid in understanding the relevant tradeofts

- Tighter bounds can be derived for specific code classes.

e Shannon theory needs augmentation at short distances because
of decoding power
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Backup slides begin




Uncoded vs coded transmission
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