Time Division Multiplexing for Green Broadcasting

Pulkit Grover UC Berkeley

with Anant Sahai

There are handouts for this talk. Please take one!

Short-distance green communication

Short-distance green communication

The black-box model for decoding energy

[Massaad, Medard, Zheng '04]

The black-box model for decoding energy

[Massaad, Medard, Zheng '04]

[Massaad, Zheng, Medard '08]

The black-box model for decoding energy

[Massaad, Medard, Zheng '04]

[Massaad, Zheng, Medard '08]

[e.g. Prabhakaran, Kumar '09]

Block codes

Block length $m \approx \frac{\log \frac{1}{P_e}}{E_r(R)}$ [Gallager] . . . [Wiechman, Sason][Polyanskiy et al]

- \bigcirc Bit nodes
- Channel output nodes
- Helper nodes

- \bigcirc Bit nodes
- Channel output nodes
- Helper nodes

- \bigcirc Bit nodes
- Channel output nodes
- Helper nodes

iterations
$$\gtrsim \frac{1}{\log(\alpha - 1)} \log\left(\frac{\log \frac{1}{P_e}}{(C(P_T) - R)^2}\right)$$

 \bigcirc Bit nodes

iterations
$$\gtrsim \frac{1}{\log(\alpha - 1)} \log\left(\frac{\log \frac{1}{P_e}}{(C(P_T) - R)^2}\right)$$

Regular LDPCs: # iterations = $\Theta\left(\log\left(\log\frac{1}{P_e}\right)\right)$

energy per operation E = 1 pJ, distance = 17 m, f = 3 GHz path-loss exponent = 3, maximum node connectivity= 4 T = 300 K Rate = 1/3

Green broadcasting

Decoding energy in broadcast channel

Decoding energy in broadcast channel

Outer bounds on error exponents for Gaussian broadcast

Outer bounds on error exponents for Gaussian broadcast

Outer bounds on error exponents for Gaussian broadcast

TDM better than superposition/DPC at short distances!

TDM better than superposition/DPC at short distances!

TDM better than superposition/DPC at short distances!

The crucial distance ratio

The crucial distance ratio

The crucial distance ratio

• Broadcast channels : TDM can outperform superposition/DPC at short distances

- Broadcast channels : TDM can outperform superposition/DPC at short distances
 - does *not* mean that TDM is optimal

- Broadcast channels : TDM can outperform superposition/DPC at short distances
 - does *not* mean that TDM is optimal
 - we are comparing lower bounds. The hope is that sparse-graph codes approach these bounds.

- Broadcast channels : TDM can outperform superposition/DPC at short distances
 - does *not* mean that TDM is optimal
 - we are comparing lower bounds. The hope is that sparse-graph codes approach these bounds.
- Error exponents with neighborhood size and bit-error probability aid in understanding the relevant tradeoffs

- Broadcast channels : TDM can outperform superposition/DPC at short distances
 - does *not* mean that TDM is optimal
 - we are comparing lower bounds. The hope is that sparse-graph codes approach these bounds.
- Error exponents with neighborhood size and bit-error probability aid in understanding the relevant tradeoffs
 - Tighter bounds can be derived for specific code classes.

- Broadcast channels : TDM can outperform superposition/DPC at short distances
 - does *not* mean that TDM is optimal
 - we are comparing lower bounds. The hope is that sparse-graph codes approach these bounds.
- Error exponents with neighborhood size and bit-error probability aid in understanding the relevant tradeoffs
 - Tighter bounds can be derived for specific code classes.
- Shannon theory needs augmentation at short distances because of decoding power

15/14

Backup slides begin

Uncoded vs coded transmission

17/14

Green communication at long distances

Green communication at long distances

Green communication at long distances

