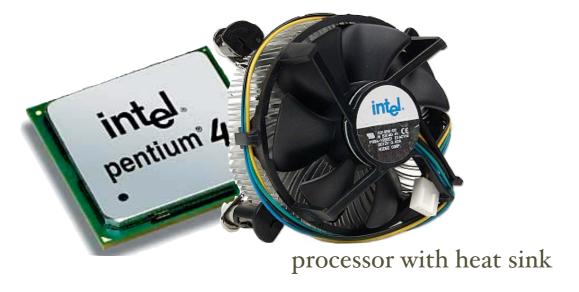
Green Codes: Energy-efficient short-range communication

Pulkit Grover

Department of Electrical Engineering and Computer Sciences University of California at Berkeley

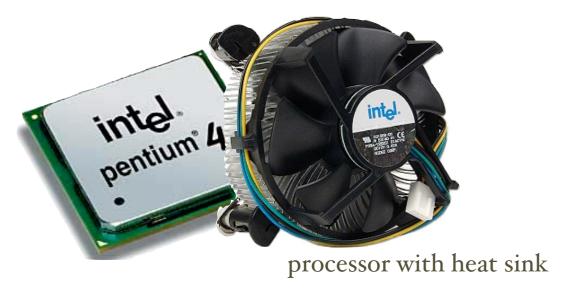
Joint work with Prof. Anant Sahai

Fixed Rate



Fixed message size

Fixed Rate

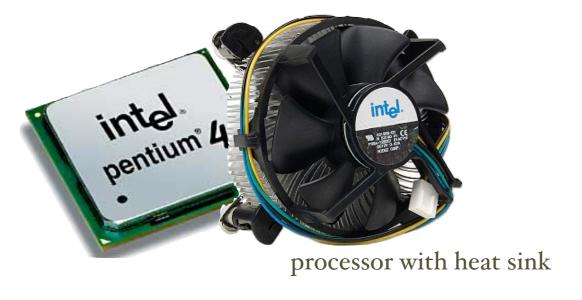


Fixed message size



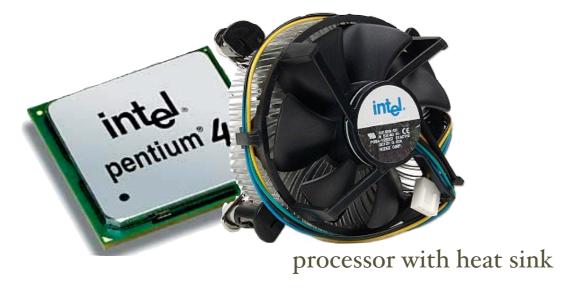
• Moore's law: decreasing implementation complexity

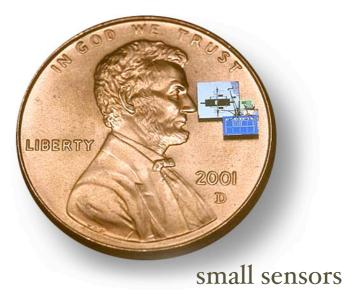
Fixed Rate



- Moore's law: decreasing implementation complexity
 - significant power consumed in computations

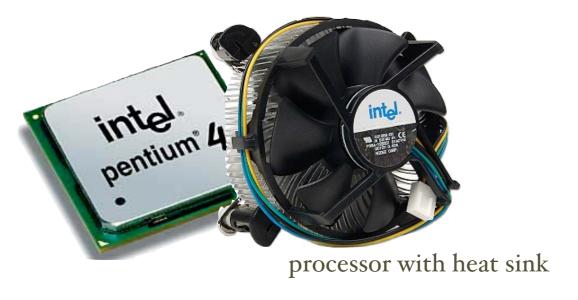
Fixed Rate





- Moore's law: decreasing implementation complexity
 - significant power consumed in computations
- **total** power for communicating

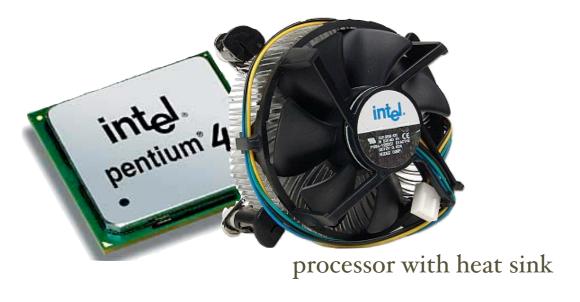
Fixed Rate



- Moore's law: decreasing implementation complexity
 - significant power consumed in computations
- total power for communicating

Small battery operated wireless sensors

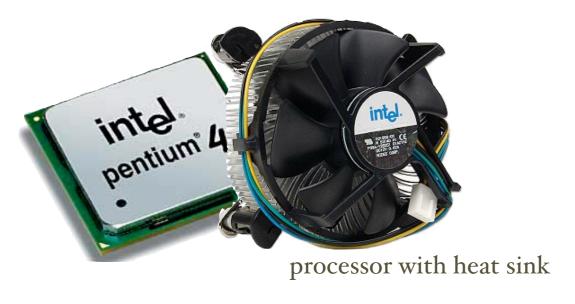
Fixed Rate



- Moore's law: decreasing implementation complexity
 - significant power consumed in computations
- total power for communicating

- Small battery operated wireless sensors
 - energy at a premium.

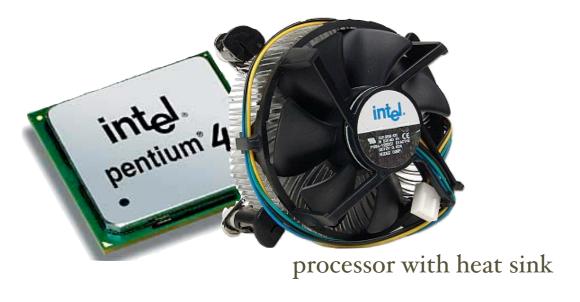
Fixed Rate



- Moore's law: decreasing implementation complexity
 - significant power consumed in computations
- total power for communicating

- Small battery operated wireless sensors
 - energy at a premium.
 - flexibility in rate.

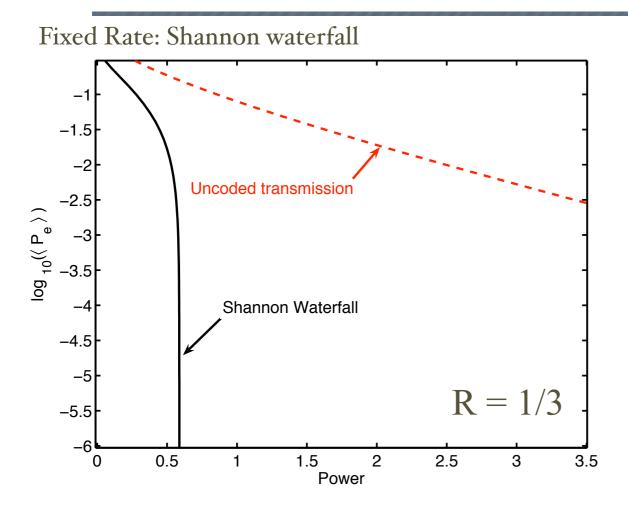
Fixed Rate



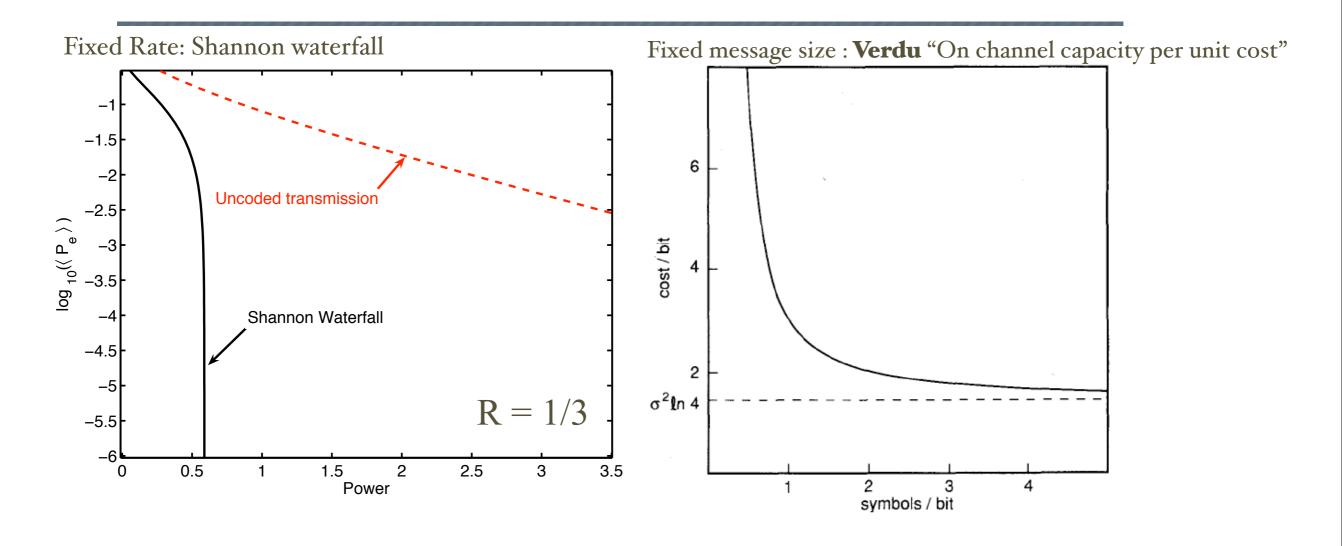
- Moore's law: decreasing implementation complexity
 - significant power consumed in computations
- total power for communicating

- Small battery operated wireless sensors
 - energy at a premium.
 - flexibility in rate.
- total energy per bit

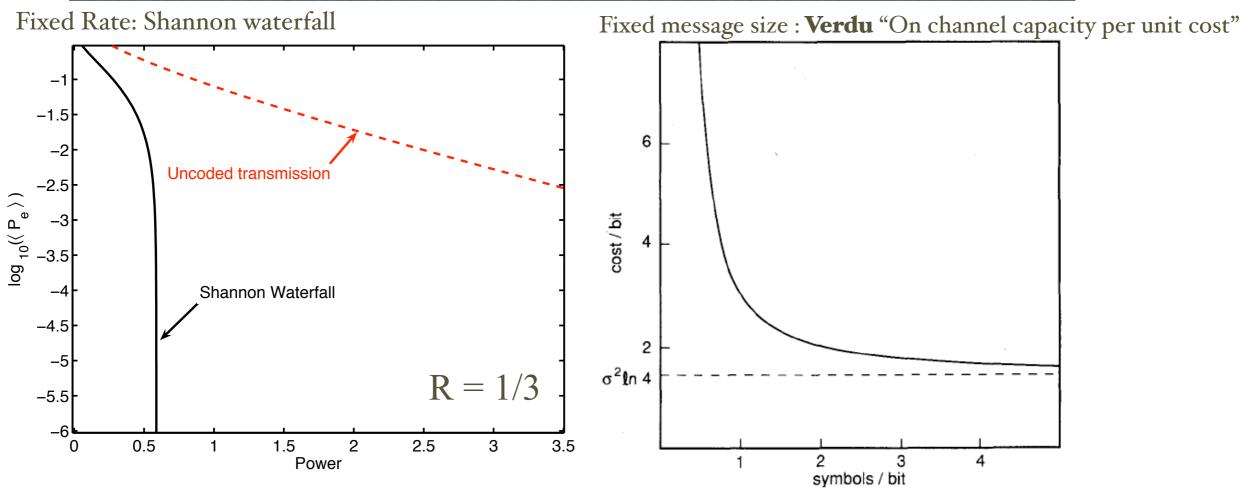
Promise of Shannon Theory



Promise of Shannon Theory

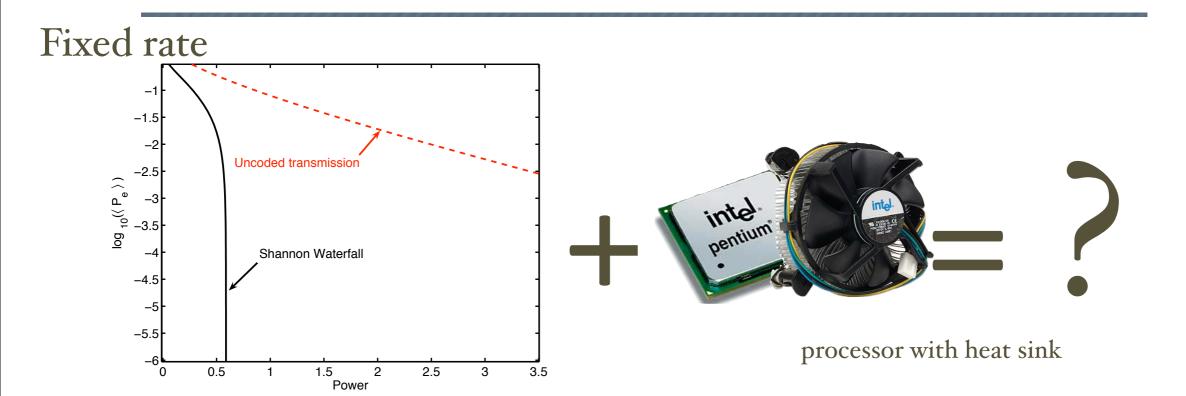


Promise of Shannon Theory

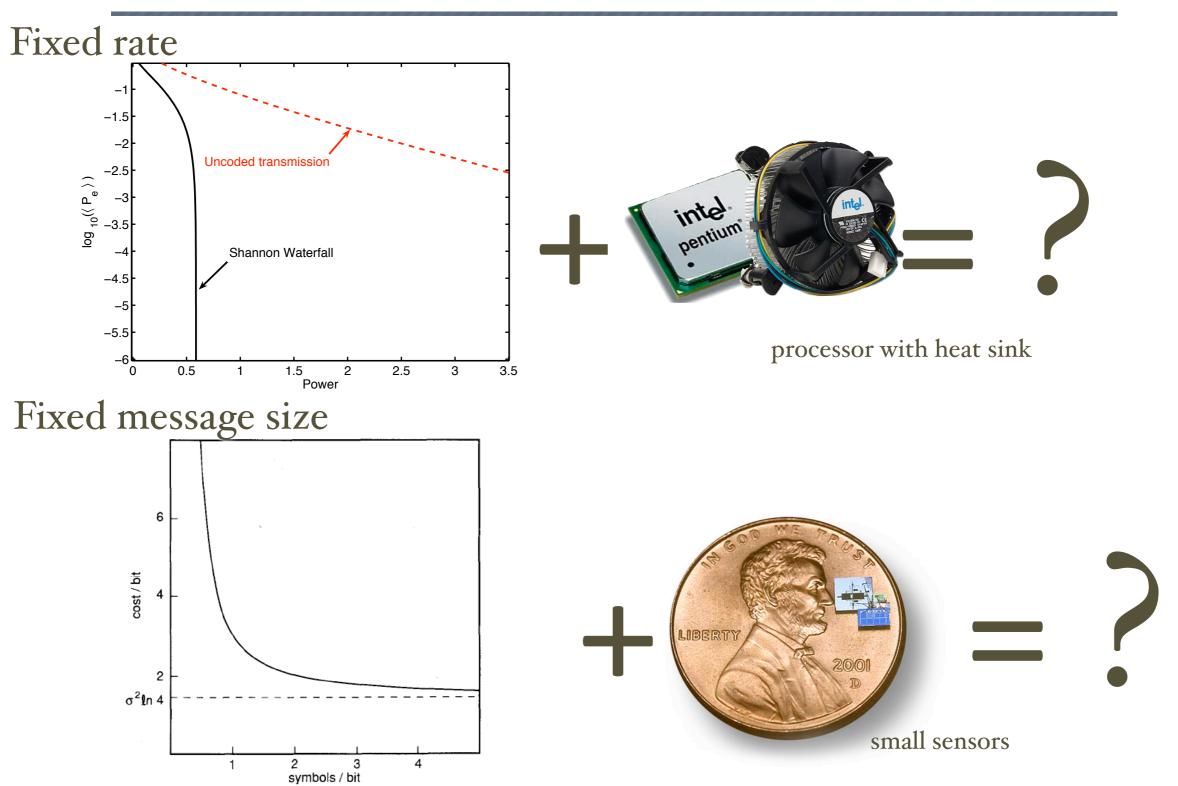


- Long distance communication
 - processing power ≪ transmit power Shannon theory works!
- Short distance communication
 - Processing power can be substantial [Agarwal 98, Kravertz et al '98, Goldsmith et al '02, Cui et al '05]

Information theory + processing power = ?



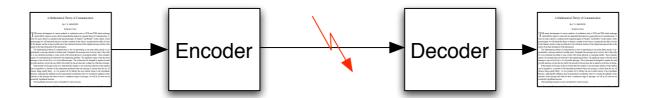
Information theory + processing power = ?



Talk Outline

- Motivation: Power consumption
 - Fixed rate and fixed message size problems.
- Decoding power using decoding complexity.
- Complexity-performance tradeoffs.
 - our bounds for iterative decoding.
- Fixed rate lower bounds on total power.
- Fixed message size (Green codes) -- lower bounds on min energy.
- How tight are our bounds: Related coding-theoretic literature

Modeling processing power through decoding complexity

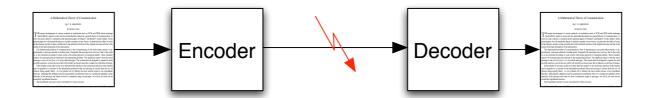


Modeling processing power through decoding complexity



- power consumed in **decoding**: model using the decoding complexity
 - decoding complexity: **number of operations** performed at the decoder
 - constant amount of energy per operation.

Modeling processing power through decoding complexity



- power consumed in **decoding**: model using the decoding complexity
 - decoding complexity: **number of operations** performed at the decoder
 - constant amount of energy per operation.
- the common currency: power

Talk Outline

- Motivation: Power consumption
 - Fixed rate and fixed message size problems.
- Decoding power using decoding complexity.
- Complexity-performance tradeoffs.
 - our bounds for iterative decoding.
- Fixed rate lower bounds on total power.
- Fixed message size (Green codes) -- lower bounds on min energy.
- How tight are our bounds: Related coding-theoretic literature

Understanding decoding complexity: complexity - performance tradeoffs

- complexity-performance tradeoffs :
 - Required complexity to attain error probability P_e and rate R.
 - Lower bounds: Abstract away from details of code structure.
 - Upper bounds : code constructions.
- e.g. block codes:

$$P_e \approx \exp(-mE_r(R))$$

- e.g. convolution codes:
 - error exponents with constraint length [Viterbi 67]
 - cut-off rate for sequential decoding [Jacobs and Berlekamp 67]

Understanding decoding complexity: complexity - performance tradeoffs

- complexity-performance tradeoffs:
 - Required complexity to attain error probability P_e and rate R.
 - Lower bounds: Abstract away from details of code structure.
 - Upper bounds : code constructions.
- e.g. block codes:

$$P_e \approx \exp(-mE_r(R))$$

- e.g. convolution codes:
 - error exponents with constraint length [Viterbi 67]
 - cut-off rate for sequential decoding [Jacobs and Berlekamp 67]
- Want a similar analysis for iterative decoding.

Output nodes

 $Y_1 \bigcirc$

 Y_2

 Y_3

 Y_4

 Y_5

 Y_6

 Y_7

 Y_8

 Y_9

Output nodes

$$Y_1 \bigcirc$$

$$Y_2$$

$$Y_3 \bigcirc$$

$$Y_4$$

$$Y_5$$

$$Y_6$$

$$Y_7$$

$$Y_9 \bigcirc$$

Information nodes

$$\bigcirc$$
 B₂

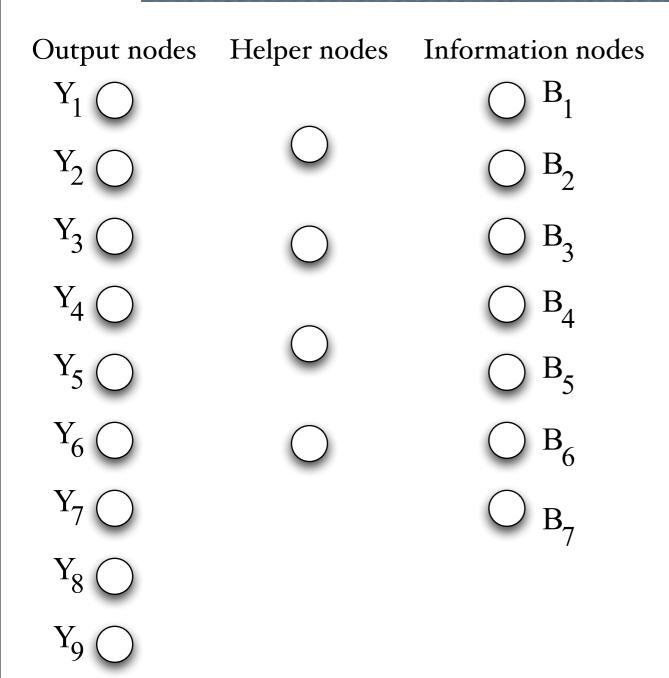
$$\bigcirc$$
 B₃

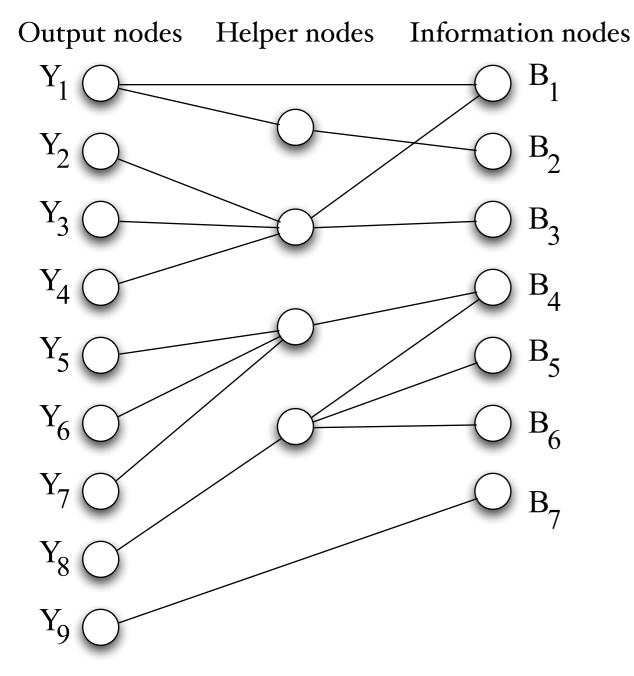
$$\bigcirc B_4$$

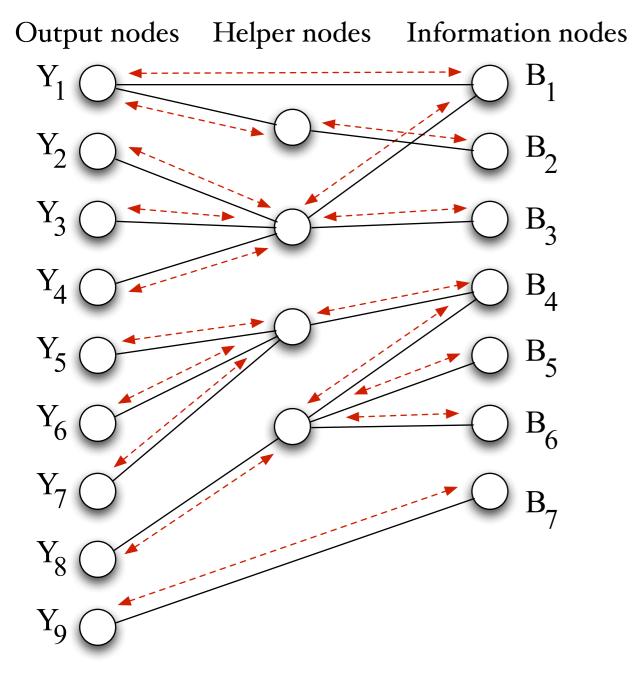
$$\bigcirc$$
 B₅

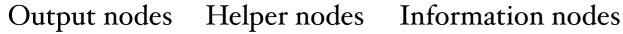
$$\bigcirc$$
 B₆

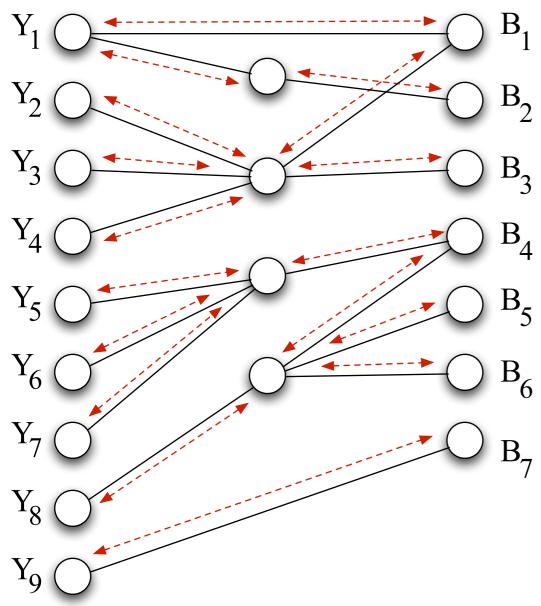
$$\cup$$
 B₇







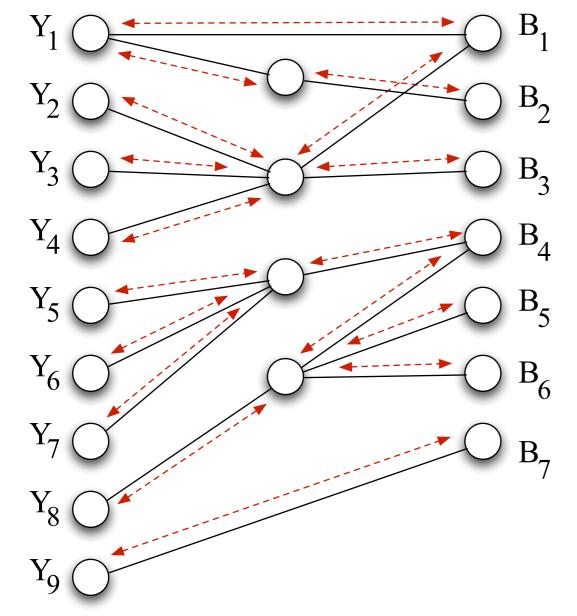




- Each node consumes γ Joules of energy per iteration.
- After *l* iterations, the energy consumed is $\gamma \times l \times \# \ of \ nodes$
- Each node is connected to at most α other nodes an implementation constraint.

Decoder implementation graph

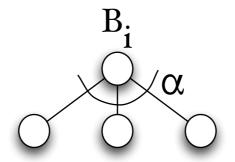
Output nodes Helper nodes Information nodes

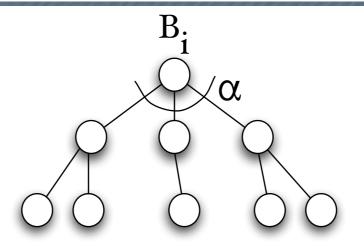


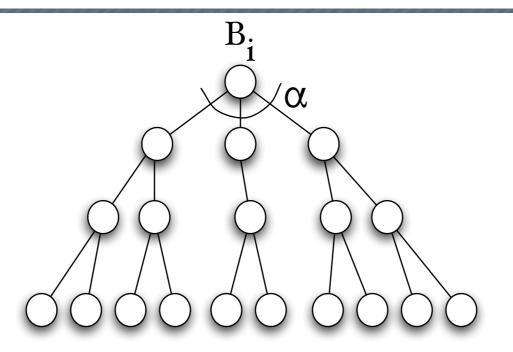
Decoder implementation graph

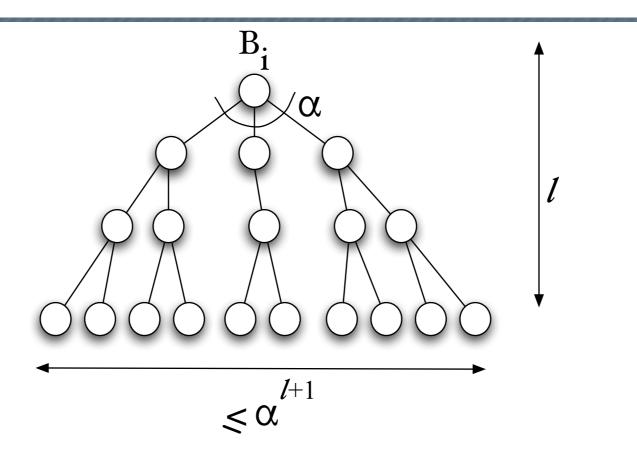
- Each node consumes γ Joules of energy per iteration.
- After *l* iterations, the energy consumed is $\gamma \times l \times \# \ of \ nodes$
- Each node is connected to at most α other nodes an implementation constraint.

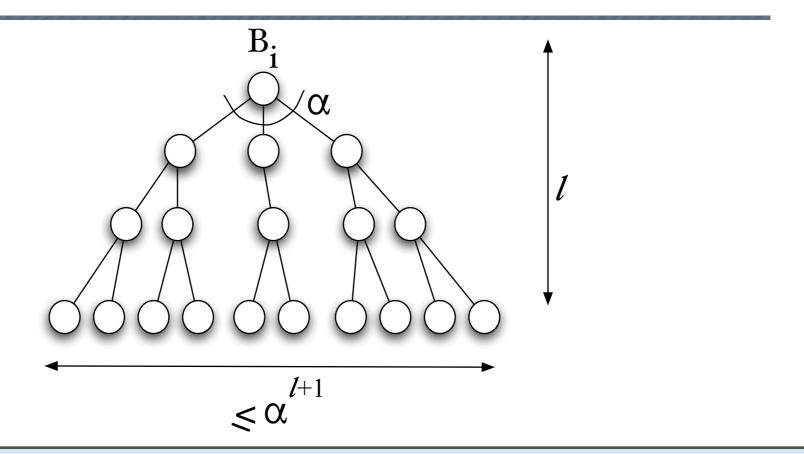
Suffices now to find *l*











Channel needs to behave atypically only in the decoding neighborhood to cause an error

Lower bound on decoding complexity

Result [Sahai, Grover, Submitted to IT Trans. 07]

In the limit of small
$$P_e$$

$$l \gtrsim \frac{1}{\log(\alpha)} \log\left(\frac{\log\frac{1}{P_e}}{(C-R)^2}\right)$$

- *C* = Channel capacity
- R = Rate
- P_e = error probability
- α = maximum node degree

Lower bound on decoding complexity

$$l \gtrsim \frac{1}{\log(\alpha)} \log\left(\frac{\log\frac{1}{P_e}}{(C-R)^2}\right)$$

- A general lower bound
 - applies to **all** (possible) codes with decoding based on passing messages.
 - applies regardless of the **presence of cycles**.
 - applies to all decoding algorithms based on passing messages.

Talk Outline

- Motivation: Power consumption
 - Fixed rate and fixed message size problems.
- Decoding power using decoding complexity.
- Complexity-performance tradeoffs.
 - our bounds for iterative decoding.
- Fixed rate -- lower bounds on total power.
- Fixed message size (Green codes) lower bounds on min energy.
- How tight are our bounds: Related coding-theoretic literature

Fixed Rate: Total power consumption

$$P_{\text{total}} = P_T + \gamma \times l \times \frac{\# \ of \ nodes}{m}$$

$$\geq P_T + \gamma \times l$$

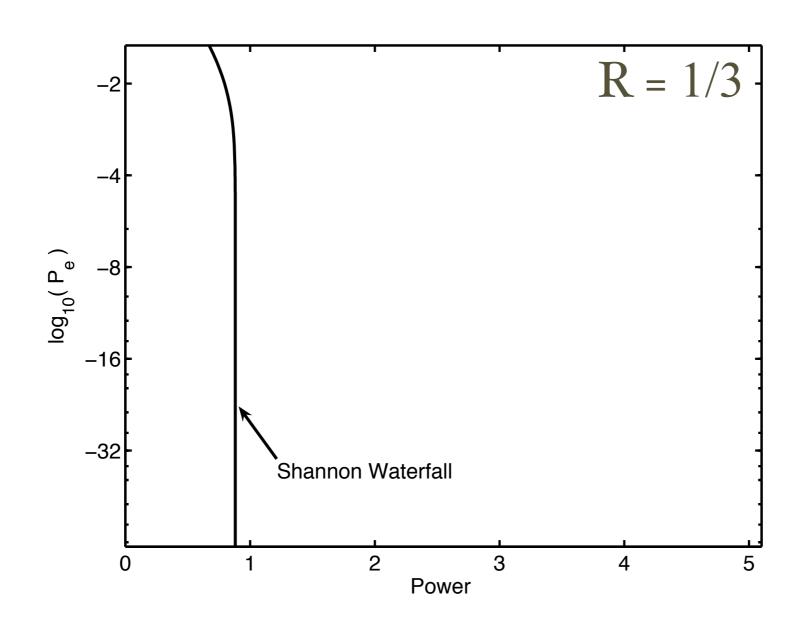
$$\geq P_T + \frac{\gamma}{\log(\alpha)} \log\left(\frac{\log \frac{1}{P_e}}{(C(P_T) - R)^2}\right)$$

Minimize P_{total} by optimizing over P_T

- *l* = Number of iterations
- γ = Energy consumed per node per iteration
- P_T = Transmit power
- m = block-length

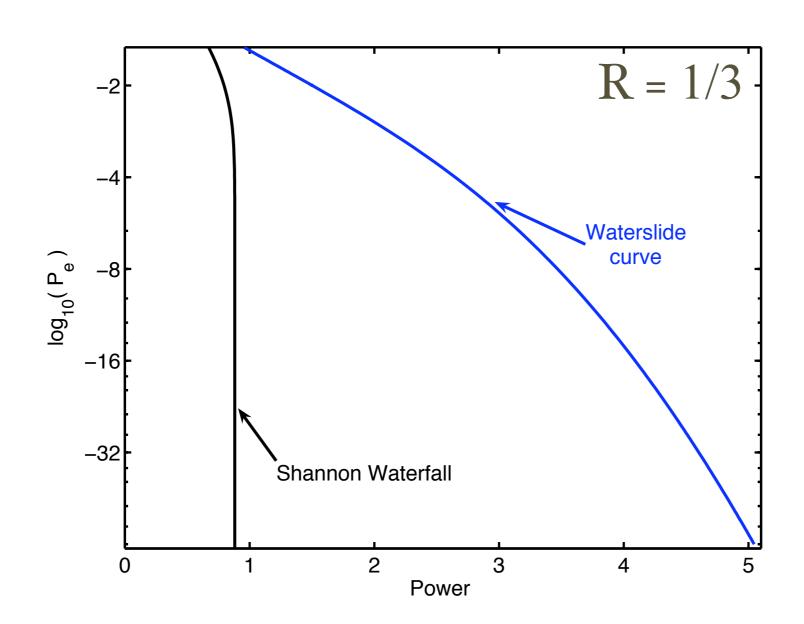
Fixed Rate: Total Power Curves

$$P_{\text{total}} \ge P_T + \frac{\gamma}{\log(\alpha)} \log \left(\frac{\log \frac{1}{P_e}}{(C(P_T) - R)^2} \right)$$



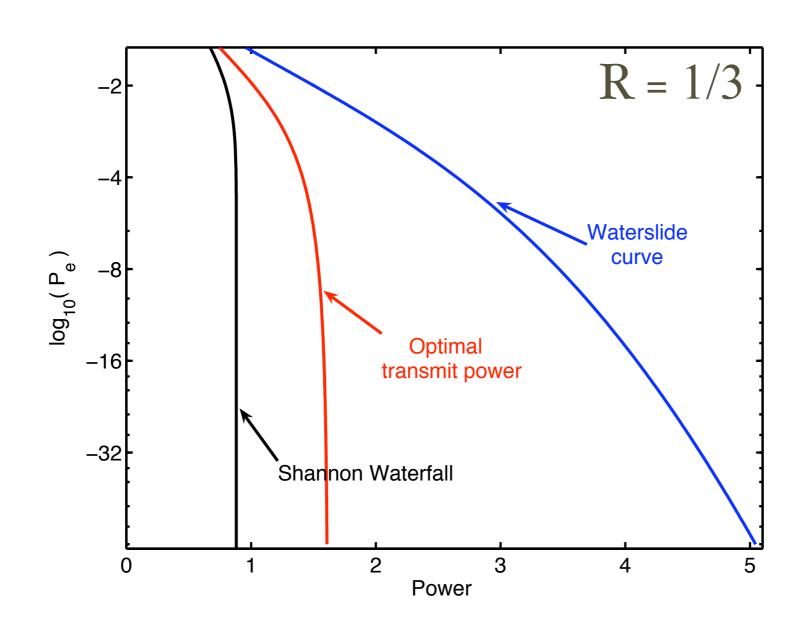
Fixed Rate: Total Power Curves

$$P_{\text{total}} \ge P_T + \frac{\gamma}{\log(\alpha)} \log \left(\frac{\log \frac{1}{P_e}}{(C(P_T) - R)^2} \right)$$



Fixed Rate: Total Power Curves

$$P_{\text{total}} \ge P_T + \frac{\gamma}{\log(\alpha)} \log \left(\frac{\log \frac{1}{P_e}}{(C(P_T) - R)^2} \right)$$



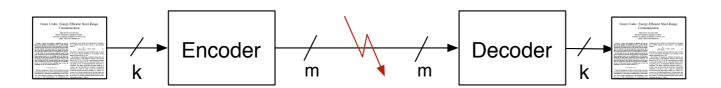
Fixed Rate: Summary

- Total power increases unboundedly as $P_e o 0$
- Optimal transmit power strictly larger than the Shannon limit (transmit power decoding power tradeoff)

Talk Outline

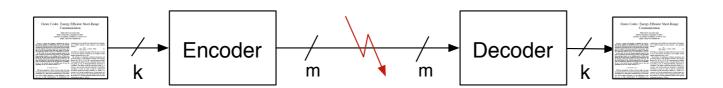
- Motivation: Power consumption
 - Fixed rate and fixed message size problems.
- Decoding power using decoding complexity.
- Complexity-performance tradeoffs.
 - our bounds for iterative decoding.
- Fixed rate lower bounds on total power.
- Fixed message size (Green codes) -- lower bounds on min energy.
- How tight are our bounds: Related coding-theoretic literature

Fixed message size : Green Codes Minimum energy per-bit



$$E_{\text{total}} = mP_{\text{total}}$$
$$= m P_T + \gamma \times l \times \# \text{ of nodes}$$

Fixed message size : Green Codes Minimum energy per-bit



$$E_{\text{total}} = mP_{\text{total}}$$
$$= m P_T + \gamma \times l \times \# \text{ of nodes}$$

$$E_{\text{per bit}} = \frac{E_{\text{total}}}{k}$$

$$= \frac{P_T}{R} + \gamma \times l \times \frac{\# \ of \ nodes}{k}$$

Fixed message size : Green Codes Minimum energy per-bit

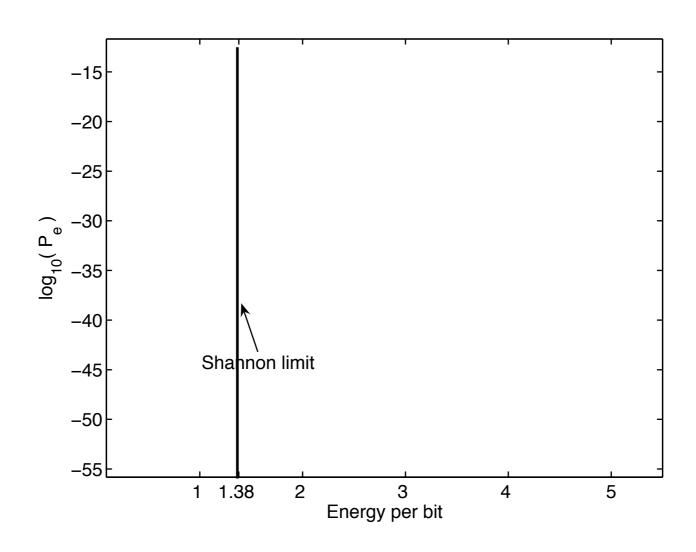
$$E_{\text{total}} = mP_{\text{total}}$$
$$= m P_T + \gamma \times l \times \# \text{ of nodes}$$

$$E_{\text{per bit}} = \frac{E_{\text{total}}}{k}$$

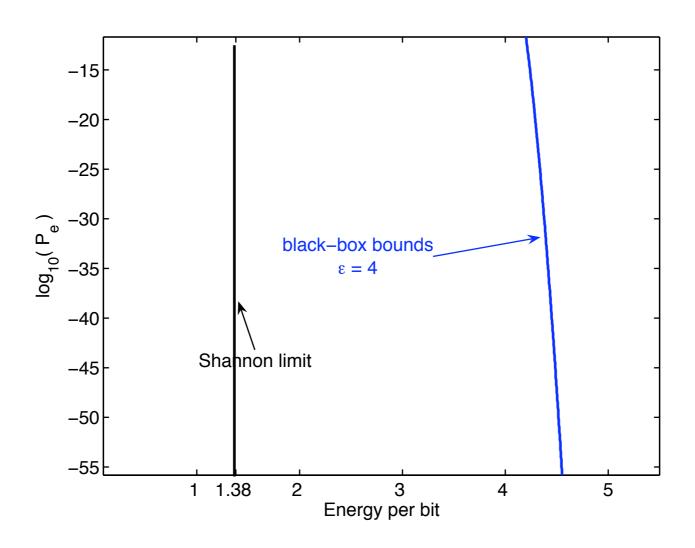
$$= \frac{P_T}{R} + \gamma \times l \times \frac{\# \text{ of nodes}}{k}$$

$$\geq \frac{P_T}{R} + \gamma \times l \times \frac{\max\{k, m\}}{k}$$

Fixed message size: Minimum energy per bit curves

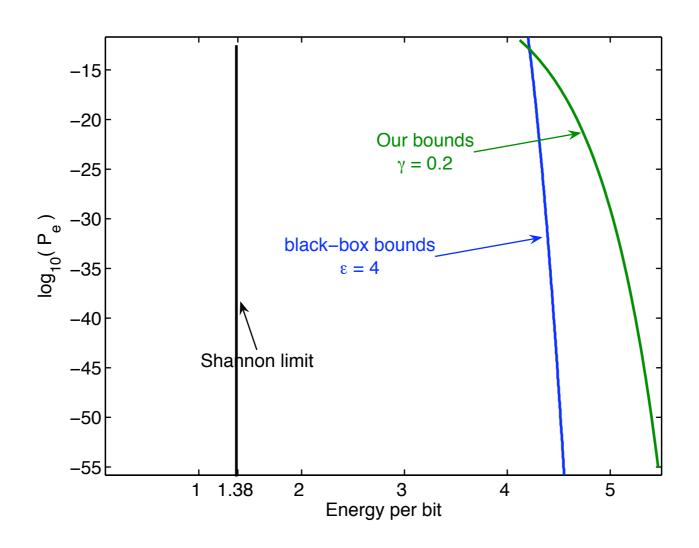


Fixed message size: Minimum energy per bit curves



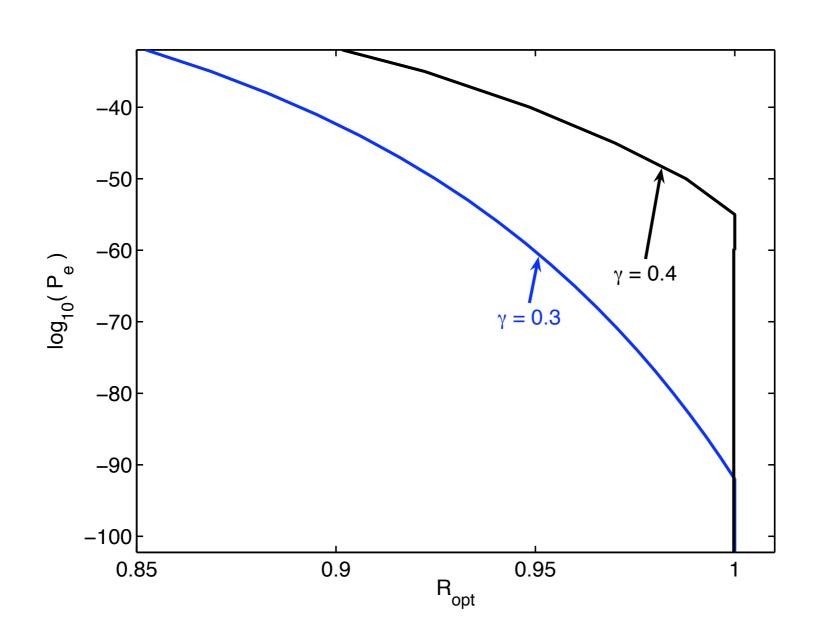
Black-box bounds: Based on [Massaad, Medard and Zheng]

Fixed message size: Minimum energy per bit curves



Black-box bounds: Based on [Massaad, Medard and Zheng]

Fixed message size: Optimal rate curves



Fixed message size: Summary

- Minimum energy per bit increases to infinity as $P_e o 0$
 - compare with a constant, ln(4), in classical information theory.
- Optimizing rate **converges to** 1.
 - **zero** in classical information theory.

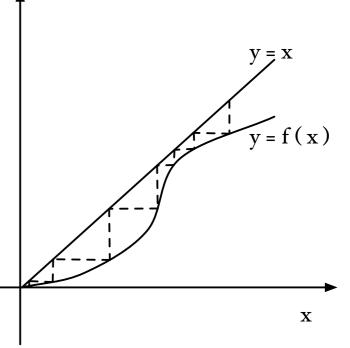
Talk Outline

- Motivation: Power consumption
 - Fixed rate and fixed message size problems.
- Decoding power using decoding complexity.
- Complexity-performance tradeoffs.
 - our bounds for iterative decoding.
- Fixed rate lower bounds on total power.
- Fixed message size (Green codes) lower bounds on min energy.
- How tight are our bounds: Related coding-theoretic literature

Lower bounds on complexity: how tight are they?

$$l \gtrsim \frac{1}{\log(\alpha)} \log \left(\frac{\log \frac{1}{P_e}}{(C - R)^2} \right) \quad \text{y} \quad \uparrow$$

- Optimal behavior with respect to P_e
 - regular LDPC's achieve this! [Lentmaier et al]
- what about behavior with gap = C R?



Complexity behavior with gap = C - R

- [Gallager, Burshtein et al, Sason-Urbanke] Lower bounds on density for LDPCs.
- [Pfister-Sason, Hsu-Anastastopoulos] Upper bounds.
- Khandekar-McEliece conjecture: $l \ge \Omega\left(\frac{1}{C-R}\right)$
- [Sason, Weichman] For LDPCs, IRAs, ARAs, if there are a non-zero fraction of degree 2 nodes, and the graph is a tree, **the conjecture holds.**
 - but with degree-2 nodes, $l \approx \log \left(\frac{1}{P_e}\right)$
 - and it seems that degree-2 nodes are needed to approach capacity.
 - from energy perspective, is it worth approaching capacity?

Thank you

- Full paper on arxiv
 - 'The price of certainty: "Waterslide curves" and the gap to capacity'. Anant Sahai and Pulkit Grover.