(Green Codes :

Energy-efhicient short-range communication

‘

Pulkit Grover

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

Joint work with Prof. Anant Sahai




Motivation : Understand processing power
consumed in communicating

Fixed Rate Fixed message size

processor with heat sink small sensors




Motivation : Understand processing power
consumed in communicating

Fixed Rate Fixed message size

processor with heat sink small sensors

e Moore’s law : decreasing
implementation complexity




Motivation : Understand processing power
consumed in communicating

Fixed Rate Fixed message size

processor with heat sink small sensors

e Moore’s law : decreasing
implementation complexity

- significant power consumed in
computations




Motivation : Understand processing power
consumed in communicating

Fixed Rate Fixed message size

r r with heat sink
processorw cats small sensors

Moore’s law : decreasing
implementation complexity

- significant power consumed in
computations

total power for communicating




Motivation : Understand processing power
consumed in communicating

Fixed Rate Fixed message size

processor with heat sink small sensors

e Small battery operated wireless

Moore’s law : decreasing
Sensors

implementation complexity

- significant power consumed in
computations

total power for communicating




Motivation : Understand processing power
consumed in communicating

Fixed Rate Fixed message size

r r with h ink —
processor with heat s el sensors

e Small battery operated wireless

Moore’s law : decreasing
Sensors

implementation complexity

.. . - energy at a premium.
- significant power consumed in

computations

total power for communicating




Motivation : Understand processing power
consumed in communicating

Fixed Rate Fixed message size

processor with heat sink small sensors

e Small battery operated wireless

Moore’s law : decreasing
Sensors

implementation complexity

.. . - energy at a premium.
- significant power consumed in

computations - flexibility in rate.

total power for communicating




Motivation : Understand processing power
consumed in communicating

Fixed Rate Fixed message size

r r with h ink —
processor with heat s Il sensors

e Small battery operated wireless

Moore’s law : decreasing
Sensors

implementation complexity

.. . - energy at a premium.
- significant power consumed in

computations - flexibility in rate.

total power for communicating e total energy per bit




Promise of Shannon Theory

Fixed Rate: Shannon waterfall

Shannon Waterfall

/




Promise of Shannon Theory

Fixed Rate: Shannon waterfall Fixed message size : Verdu “On channel capacity per unit cost”

Uncoded transmission

Shannon Waterfall

/

symbols / bit




Promise of Shannon Theory

Fixed Rate: Shannon waterfall

/

Shannon Waterfall

R=1/3 .

0.5

1 1.5
Power

2

2.5 3 3.5

e Long distance communication

Fixed message size : Verdu “On channel capacity per unit cost”

symbols / bit

- processing power < transmit power — Shannon theory works!

e Short distance communication

- Processing power can be substantial {Agarwal 98, Kravertz et al '98,
Goldsmith et al ’02, Cui et al ’o5]
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Talk Outline

Motivation: Power consumption
- Fixed rate and fixed message size problems.
Decoding power using decoding complexity.
Complexity-performance tradeofts.
- our bounds for iterative decoding.
Fixed rate -- lower bounds on total power.
Fixed message size (Green codes) -- lower bounds on min energy.

How tight are our bounds : Related coding-theoretic literature
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complexity-performance tradeofts :

- Required complexity to attain error probability Pe and rate 2.

- Lower

- Upper |

bounds : Abstract away from details of code structure.

DOUNC

s : code constructions.

e.g. block codes :
P, ~ exp(~mE, (R))

e.g. convolution codes :

- error exponents with constraint length {Viterbi 67}

- cut-off rate for sequential decoding {Jacobs and Berlekamp 671

Want a similar analysis for iterative decoding.
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Iterative decoding :
Decoding by passing messages

Output nodes Helper nodes Information nodes

Each node consumes~y Joules of energy
per iteration.

After /iterations, the energy consumed is
v X [ X # of nodes

Each node is connected to at most &
other nodes -- an implementation
constraint.

Suffices now to find /

Decoder implementation graph
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Channel needs to behave atypically only in the decoding neighborhood to cause an error
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Lower bound on decoding complexity

Result {Sahai, Grover, Submitted to I'T Trans. 071

In the limit of small £, !
1 log D

[ > ]
~log(a) °\ (C=R)

C = Channel capacity
R = Rate
Pe = error probability

(¢ = maximum node degree




Lower bound on decoding complexity

1 log -

[ > ]
~log(a) °\ (C=R)

e A general lower bound

- applies to all (possible) codes with decoding based on passing

messages.

- applies regardless of the presence of cycles.

- applies to all decoding algorithms based on passing messages.




Talk Outline

Motivation: Power consumption
- Fixed rate and fixed message size problems.
Decoding power using decoding complexity:.
Complexity-performance tradeofts.
- our bounds for iterative decoding.
¢ Fixed rate -- lower bounds on total power.
e Fixed message size (Green codes) -- lower bounds on min energy.

How tight are our bounds : Related coding-theoretic literature




Fixed Rate:

Total power consumption
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log =
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Minimize F; 1 by optimizing over Pr
/= Number of iterations
Y = Energy consumed per node per iteration

Pr = Transmit power

m = block-length
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Fixed Rate:
Total Power Curves

lo 1
Y gp
P > P | €
total = 77 ™ Jog(a) ((C(PT) : R)?)

\

Optimal
transmit power
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Fixed Rate:

Summary

e Total power increases unboundedly as 7, — 0

e Optimal transmit power strictly larger than the Shannon
limit (transmit power - decoding power tradeoff)
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Motivation: Power consumption

- TFixed rate and fixed message size problems.
Decoding power using decoding complexity:.
Complexity-performance tradeofts.

- our bounds for iterative decoding.
Fixed rate -- lower bounds on total power.

Fixed message size (Green codes) -- lower bounds on min
energy.

How tight are our bounds : Related coding-theoretic literature
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Fixed message size:
Optimal rate curves




Fixed message size:
Summary

e Minimum energy per bit increases to infinity as 17, — (
- compare with a constant, In(4), in classical information theory:.

e (Optimizing rate converges to 1.

- zero 1n classical information theory.
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Lower bounds on complexity:
how tight are they?

1 log &

> |
"% logla) B\ @R

e Optimal behavior with respect to P,

- regular LDPC’s achieve this! [Lentmaier et al}

e what about behavior with gap = C — R ?




Complexity behavior with gap =C — R

[Gallager, Burshtein et al, Sason-Urbanke} Lower bounds on
density for LDPCs.

[Pfister-Sason, Hsu-Anastastopoulos} Upper bounds.

Khandekar-McEliece conjecture: [ > () ( . i R)

[Sason, Weichman]} For LDPCs, IRAs, ARAs, if there are a non-

zero fraction of degree 2 nodes, and the graph is a tree, the
conjecture holds.

1
- but with degree-2 nodes, | =~ log (F)

- and it seems that degree-2 nodes are needed to approach capacity.

- from energy perspective, is it worth approaching capacity?




Thank you

e Tull paper on arxiv

- ‘The price of certainty: “Waterslide curves” and the gap to
capacity’. Anant Sahai and Pulkit Grover.




