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Abstract— Witsenhausen’s counterexample is a deceptively
simple distributed control problem that has remained unsolved
for the last 40 years. Our recent work uses information-theoretic
techniques that exploit implicit communication between the
controllers to obtain characterizations of optimal costs for
the Witsenhausen counterexample to within a constant factor
uniformly over the problem parameters. To gain deeper insight
into the nebulous concept of implicit communication, four
modifications to the counterexample are considered — a zero-
sum variant inspired by secrecy, two alternative orderings of the
controllers, and a generalized Witsenhausen counterexample
that includes quadratic costs on all states and inputs. For
the first three modifications, implicit communication is either
detrimental, impossible, or useless, and the optimal strategies
are linear. However, nonlinear strategies outperform linear
strategies by a substantial factor for the last, where implicit
communication is central to strategy design. This is true even
though linear strategies are no longer arbitrarily far from
optimal with the inclusion of these additional cost terms.

I. INTRODUCTION
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Fig. 1. Vector Witsenhausen’s counterexample: the objective is to min-
imize the total average cost 1

m
E

ˆ
k2

w‖um
w ‖2 + ‖xm − bxm‖2

˜
. The first

controller is called “weak” (w) since it has an input cost and the second is
called “blurry” (b) because of its noisy observations.

Discovered in 1968 in [1], Witsenhausen’s counterexample
(Fig. 1) has become the canonical showpiece demonstrating
that distributed control can be hard. Despite its simplicity,
the optimal control law for the counterexample is still
unknown and linear strategies can be arbitrarily bad [2]. The
hardness is traditionally attributed partly to its nonconvexity,
and partly to the NP-completeness of its natural1 discrete
counterpart [3].

Perhaps the larger conceptual difficulty lies in understand-
ing the inherent possibility of implicit communication [2]
between the two controllers — a feature that is ubiquitous
in distributed control. Recent work [4] has shown that for an
asymptotic vector version of the problem, quantization-based
implicit communication strategies (generalized from [2])
attain within a factor of 4.45 of the optimal cost for all prob-
lem parameters. More sophisticated implicit communication

1Just as a DMC is the natural discrete counterpart of the Gaussian channel
in information theory.

strategies based on dirty-paper coding yield an improved
factor2 of 2. The results can be carried over to the scalar
case and indeed to any finite vector length [6], [7] to obtain
approximate optimality. For example, [7] shows that for the
scalar case (the original counterexample), quantization-based
strategies attain within a factor of 8 of the optimal cost.

This paper considers various extensions/modifications of
Witsenhausen’s counterexample directed towards gaining
deeper insight into implicit communication and the difficulty
of finding the optimal strategy. In Section II, we first consider
a secrecy problem where the controllers are adversaries and
so implicit communication is intuitively detrimental. We then
consider two alternative orderings of the controllers: where
there is no possibility (simultaneous ordering) of implicit
communication or no incentive (reverse ordering). For each
of these three problems, we show that linear strategies are
optimal, and thereby strengthening the case for implicit
communication as being the core difficulty.

In Section III we consider an extension of the counterex-
ample that includes costs on all states and inputs. We show
that even though linear strategies are no longer arbitrarily bad
with inclusion of these additional costs, nonlinear strategies
continue to outperform linear strategies by a substantial
factor in many cases. This shows that Witsenhausen’s coun-
terexample is not an obscure corner case that exaggerates
the importance of nonlinear strategies — rather it is one of
many such problems in this large space.

II. STRUCTURAL MODIFICATIONS

Bansal and Basar [8] considered modifications of Witsen-
hausen’s counterexample with parameterized cost functions
that contain Witsenhausen’s counterexample as a special
case. They show that whenever the cost function does not
contain a product of two decision variables, affine control
laws are optimal. Here we give additional interesting varia-
tions of the Witsenhausen’s counterexample for which linear
strategies are optimal.

A. A zero-sum variant

Inspired by [9], we convert Witsenhausen’s counterexam-
ple into a zero-sum game-theoretic problem. The new prob-
lem turns out to be quite similar to the problem3 considered

2The factor is further improved to 1.3 in [5] by improving the lower
bound.

3The difference from the problem in [10] is that the net coefficient of
E

ˆ
U2

w

˜
can be negative in our case. Ho et al. state that the optimal strategies

are linear for their problem as well.
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in [10, Section IV].
The state transition function is the same as the origi-

nal counterexample. However, the objective of the weak
jammer is to minimize k2

wE[U2
w] − E[X2

2 ]. Equipped with
the knowledge of the weak jammer’s policy, the blurry
eavesdropper wants to minimize E[X2

2 ]. The problem is
to find infUw supUb

k2
wE[U2

w] − E[X2
2 ]. Since there is no

cost constraint on Ub, the optimal policy for the blurry
eavesdropper is E[X|Yb]. But what should the weak jammer
do?
We call this problem the Secrecy Witsenhausen Problem
since the jammer wants to hide X from the eavesdropper.

Theorem 1: Let P ? be the unique nonnegative solution t
satisfying

k2
w

√
t(σ2 +

√
σ2t + t + 1)2 −

√
t− σ = 0.

Then the optimal payoff of the secrecy Witsenhausen prob-
lem is

inf
Uw

sup
Ub

k2
wE[U2

w]− E[X2
2 ]

= k2
wP ? − σ2 + 2

√
σ2P ? + P ?

σ2 + 2
√

σ2P ? + P ? + 1
,

and is achieved by the linear strategies of state amplification
and LLSE:

Uw =
√

P ?

σ
Yw, Ub =

σ2 + 2
√

σ2P ? + P ?

σ2 + 2
√

σ2P ? + P ? + 1
Yb.

Proof: We can lower bound the payoff by forcing Ub =
E[X2]

E[X2]+1Yb.

inf
Uw

sup
Ub

k2
wE[U2

w]− E[(X − Ub)2]

≥ inf
Uw

k2
wE[U2

w]− E

[(
X − E[X2]

E[X2] + 1
Yb

)2
]

≥ min
E[U2

w]
k2

wE[U2
w]− 1

+
1

E[S2] + 2
√

E[S2]E[U2
w] + E[U2

w] + 1
(1)

= min
E[U2

w]
k2

wE[U2
w]− 1

+
1

σ2 + 2
√

σ2E[U2
w] + E[U2

w] + 1
(2)

= k2
wP ? − σ2 + 2

√
σ2P ? + P ?

σ2 + 2
√

σ2P ? + P ? + 1
(3)

(1) follows from the Cauchy-Schwartz inequality. The
optimization problem (2) is convex. To see this, consider
the function k2

wt + 1

σ2+2
√

σ2t+t+1
for t ≥ 0. The first term

is linear in t and the second term is convex-∪ since it is a
composition of a nonincreasing convex-∪ function 1

t (t > 0)
and a concave-∩ function σ2 + 2

√
σ2t + t + 1 [11, Pg. 84].

The minimum is achieved by the unique P ?(≥ 0) satisfying

0 =
d

dt

(
k2

wt +
1

σ2 + 2
√

σ2t + t + 1

)
= k2

w −
σ√
t
+ 1(

σ2 + 2
√

σ2t + t + 1
)2

⇔k2
w

√
t(σ2 +

√
σ2t + t + 1)2 −

√
t− σ = 0. (4)

We can upper bound the payoff by forcing Uw =
√

P ?

σ S.

inf
Uw

sup
Ub

k2
wE[U2

w]− E[X2
2 ]

≤ sup
Ub

k2
wE

(√P ?

σ
S

)2
− E[X2

2 ]

= k2
wP ? − inf

Ub

E

((1 +
√

P ?

σ

)
S − Ub

)2


= k2
wP ? − σ2 + 2

√
σ2P ? + P ?

σ2 + 2
√

σ2P ? + P ? + 1
(5)

(5) comes from MMSE
[(

1 +
√

P ?

σ

)
S |
(
1 +

√
P ?

σ

)
S + Z

]
=

σ2+2
√

σ2P ?+P ?

σ2+2
√

σ2P ?+P ?+1
.

By (3) and (5) the theorem is proved.

B. Reordering the controllers in Witsenhausen’s counterex-
ample

1) Simultaneous Control: Consider the case of both con-
trollers operating simultaneously. Formally, let the underly-
ing random variables be S ∼ N (0, σ2) and Z ∼ N (0, 1).
The state transition equation is X2 = S + Uw − Ub. The
controllers’ observations are Yw = S and Yb = S + Z, so
Uw = γw(Yw) and Ub = γb(Yb). The object is to minimize
the same objective function: k2

wE[U2
w] + E[X2

2 ]. We call this
the Simultaneous Control Problem.
R. Radner solved this in a generalized form [12, Theorem
5]: If every primitive random variable is jointly Gaussian and
the objective function is a convex quadratic function in the
product space of measurable functions of each controller’s
observation, the optimal strategy is linear.

Corollary 1: [12, Theorem 5] The optimal cost of the
simultaneous control problem is

inf
Uw,Ub

k2
wE[U2

w] + E[X2
2 ] =

k2
wσ2

k2
w + 1 + k2

wσ2

and is achieved by the linear control strategies, Uw =
−1

k2
w+1+k2

wσ2 Yw and Ub = k2
wσ2

k2
w+1+k2

wσ2 Yb.
Proof: S, Z, Yw, and Yb are jointly Gaussian. Moreover,

min
Uw,Ub

k2
wE[U2

w] + E[(S + Uw − Ub)2]

= min
Uw,Ub

E

[ [
Uw Ub

] [1 + k2
w −1

−1 1

] [
Uw

Ub

]

− 2
[
Uw Ub

] [−S
S

]
+ S2

]
.
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Since
[
1 + k2

w −1
−1 1

]
is positive definite (both the determi-

nant and the trace are strictly positive except in the trivial
case k = 0) the optimal strategy is linear [12, Theorem 5].
Let Uw = bwYw and Ub = bbYb.

min
bw,bb

k2
wE
[
U2

w

]
+ E

[
X2

2

]
= min

bw,bb

[
bw bb

] [k2
wσ2 + σ2 −σ2

−σ2 1 + σ2

] [
bw

bb

]
− 2

[
bw bb

] [−σ2

σ2

]
+ σ2

=
k2

wσ2

k2
w + 1 + k2

wσ2

where the minimum is achieved by

bw =
−1

k2
w + 1 + k2

wσ2
, bb =

k2
wσ2

k2
w + 1 + k2

wσ2
.

Notice that there is no possibility for implicit communication
since neither controller sees anything that depends directly
on the other’s actions.

2) Reverse Witsenhausen: Another natural variation of
Witsenhausen’s counterexample is reversing the order of the
two controllers. We call this problem the Reverse Witsen-
hausen Problem. As before, the underlying random variables
are S ∼ N (0, σ2) and Z ∼ N (0, 1). The state transition
equations are X = S − Ub and X2 = X + Uw. The
controllers’ observations are Yb = S + Z and Yw = X , so
Ub = γb(Yb) and Uw = γw(Yw). The objective is minimizing
the same objective function: k2

wE[U2
w] + E[X2

2 ].
Theorem 2: The optimal cost for the reverse Witsen-

hausen problem is

inf
Uw,Ub

k2
wE[U2

w] + E[X2
2 ] =

(
k2

w

k2
w + 1

)
σ2

σ2 + 1

and is achieved by the linear control strategies: Uw =
− 1

k2
w+1Yw and MMSE, Ub = σ2

σ2+1Yb.
Proof:

inf
Uw,Ub

k2
wE[U2

w] + E[X2
2 ]

= inf
Uw,Ub

k2
wE[U2

w] + E
[
(S − Ub)

2
]

+ 2E [Uw (S − Ub)] + E[U2
w]

≥ inf
Uw,Ub

k2
wE[U2

w] + E
[
(S − Ub)

2
]

− 2
√

E [U2
w]
√

E
[
(S − Ub)

2
]

+ E[U2
w] (6)

= inf
P>0,Ub

k2
wP +

(√
E
[
(S − Ub)

2
]
−
√

P

)2

(7)

≥ min
P>0

k2
wP +

(√
σ2

σ2 + 1
−
√

P

)2

(8)

=
(

k2
w

k2
w + 1

)
σ2

σ2 + 1

(6) follows from the Cauchy-Schwartz inequality. We
can get (7) by denoting E[U2

w] as P . (8) follows from

MMSE[S|Yb] = σ2

σ2+1 and its minimum is achieved by

P =
(

1
(k2

w+1)2

)
σ2

σ2+1 .
Moreover, the inequalities (6) and (8) are tight when Uw

and Ub are chosen as − 1
k2

w+1Yw and σ2

σ2+1Yb respectively.
Therefore, the lower bound is achievable.
Notice that although the blurry controller could conceivably
communicate to the weak one, there is nothing that the weak
one wants to learn. It already has a clear view of everything
that impacts the cost function.

3) Comparing the various controller orderings: The free-
dom in placing the distributed controllers can be thought
of as another design parameter. To understand this effect,
we compare the performance of the three problems: Witsen-
hausen’s counterexample, the simultaneous control problem
and the reverse Witsenhausen problem. To distinguish the
three problems, we use superscripts (W ), (S) and (R)
respectively.
We can easily notice that the reverse Witsenhausen problem
has lower costs than the simultaneous control problem.

Corollary 2: J (R)(k, σ) ≤ J (S)(k, σ), ∀k, σ > 0
Proof: Direct calculation from Corollary 1 and Theo-

rem 2.
This result can be intuitively understood. In the simultaneous
control problem, the weak controller Cw does not know
anything about the blurry controller Cb’s observation noise
Z, and so the uncertainty of Z shows up in X2. In the reverse
Witsenhausen problem, however, Cw can compensate for the
noise Z that was added into X since it acts later with a
perfect observation.
This result may seem obvious since the reverse Witsenhausen
problem uses two time slots while the simultaneous control
problem uses only one time slot. However, this intuition
fails in the comparison between Witsenhausen’s counterex-
ample and the simultaneous control problem. The preference
between the two architectures varies with the parameters
(σ, kw).
When k = 0.1 and σ = 10,

J (S)(0.1, 10) = 0.4975 > 0.1468 ≥ J (W )(0.1, 10)

where the upper bound of the Witsenhausen’s problem is
the evaluation of [6, Theorem 2] (with quantization bin-size
B = 7.074).
When k = 1, σ = 0.5,

J (S)(1, 0.5) = 0.1111 < 0.1153 ≤ J (W )(1, 0.5)

where the lower bound of the Witsenhausen’s problem is the
evaluation of [5, Corollary 1].
To gain some insight, consider the case of small kw and
large σ. In Witsenhausen’s counterexample, Cw can reject the
noise Z using a quantization strategy [2]. The required power
for this “non-causal” disturbance rejection is not significantly
greater than the variance of the noise, 1. However, in the
simultaneous control problem Cw does not know about the
observation noise Z and there is no second stage either. Thus,
to make X2 very small, Cw has to directly reduce the initial
state S and that costs on the order of σ2.
The situation is changed when σ is small. In Witsenhausen’s
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Fig. 2. The difference between a lower bound on the cost for Wit-
senhausen’s problem and the optimal cost for the reversed Witsenhausen
problem.

counterexample, Cw would choose to decrease S rather than
to reject the noise Z that has a larger variance. This will
result in decreasing the Signal-to-Noise (SNR) ratio at Cb.
However, in the simultaneous problem any uw does not effect
the observations of Cb. Thus, the SNR at Cb remains the
same and the cost of the simultaneous control problem is
smaller than that of Witsenhausen’s counterexample.
In Fig. 2, numerical calculations show that the lower bound
of Witsenhausen’s problem [5, Corollary 1] is always larger
than the cost of the reverse Witsenhausen problem. Unfortu-
nately, we do not yet have an analytical proof that gives any
more insight into why this should be is true.

III. COSTS ON VARIOUS STATES AND INPUTS

In this section, we explore extensions of Witsenhausen’s
counterexample by adding costs on the remaining terms sm,
xm and x̂m. The objective for the controllers is to minimize

J(ks, kw, kx, kb, σ) = 1
mE
[
k2

s‖Sm‖2 + k2
w‖Um

w ‖2

+k2
x‖Xm‖2 + k2

b‖X̂m‖2 + ‖Xm − X̂m‖2
]
, (9)

over the choice of control laws. The problem is denoted
by W (ks, kw, kx, kb, σ). The asymptotically (as m → ∞)
optimal cost for given problem parameters will be denoted by
J?(ks, kw, kx, kb, σ). Note that the original counterexample
corresponds to ks = kx = kb = 0 and m = 1. By deriving
lower and upper bounds on the total cost, we will show that
vector-quantization-based nonlinear strategies achieve within
a constant factor of the optimal cost even with nonzero ks,
kx or kb. The lower bounds will be expressed in variational
form as an optimization over some variables, e.g. P . P ? will
be used to denote the optimizing value of the lower bound
(and a similar notation will be followed for other variables).

We first need the following simple lemma.
Lemma 1: For any positive real numbers a, b, c, d,

a + c

b + d
≤ max

{a

b
,
c

d

}
. (10)

Proof: Without loss of generality, assume that c
d ≤

a
b .

Then, a+c
b+d =

a
b + c

b

1+ d
b

=
a
b + c

d×
d
b

1+ d
b

c
d≤

a
b

≤
a
b + a

b×
d
b

1+ d
b

= a
b .

A. Cost on the initial state sm

Theorem 3: For W (ks, kw, 0, 0, σ),

min
P

k2
sσ2 + k2

wP + νw(P ) ≤ J?(ks, kw, 0, 0, σ)

≤ 11
(
min

P
k2

sσ2 + k2
wP + νw(P )

)
,

where νw(P ) =
((√

κ(P )−
√

P
)+
)2

, and κ(P ) =

σ2

(σ+
√

P )2+1
.

Proof: Since E
[
‖Sm‖2

]
= mσ2, and Sm is unchanged

by the control strategy, this constant term k2
sσ2 is added to

both the upper bound (obtained using either simple linear
or vector-quantization-based strategies) and the lower bound
(of [4, Theorem 3]).

It was shown in [4, Theorem 1] that the ratio of the upper
and lower bounds is smaller than 11 for ks = 0. In Lemma 1,
denoting by a and b the upper and lower bounds without the
cost on the initial state, and using c = d = k2

sσ2, the new
ratio a+c

b+d is bounded by max
{

a
b , c

d

}
≤ max{11, 1} = 11.

B. Cost on the state xm

Theorem 4: For W (0, kw, kx, 0, σ),

J?(0, kw, kx, 0, σ) ≥ min k2
wP + k2

xPx + νb(P, Px),

νb(P, Px) =
((√

σ2

Px+1 −
√

P
)+
)2

, where the minimum

is over P ≥ 0 and Px satisfying
(
(σ −

√
P )+

)2

≤ Px ≤
(σ +

√
P )2.

Proof: Let 1
mE

[
‖Um

w ‖2
]

≤ P and Px :=
1
mE

[
‖Xm‖2

]
. For given P and Px, we will obtain a lower

bound on 1
mE

[
‖Xm − X̂m‖2

]
. We will use the follow-

ing [4, Lemma 3],

1
mE

[
‖Xm − X̂m‖2

]
≥

((√
E
[

1
m‖Sm − X̂m‖2

]
−
√

P

)+
)2

. (11)

Viewing X̂m as an estimate for Sm, and following the
proof of [4, Theorem 1], E

[
‖Sm − X̂m‖2

]
≥ σ2

Px+1 . The
term νb(P, Px) in Theorem 4 is now obtained using (11).
It remains to show that Px lies within the specified limits.
This follows from the observation that the maximum value
of Px is obtained when the input um

w is aligned with the
initial state, and minimum when it is aligned opposite to the
initial state (and if P ≥ σ2, Px can be forced to zero, its
minimum value).

Theorem 5: For W (0, kw, kx, 0, σ),(
min
P,Px

k2
wP + k2

xPx + νb(P, Px)
)
≤ J?(0, kw, kx, 0, σ)

≤ 11
(

min
P,Px

k2
wP + k2

xPx + νb(P, Px)
)

,
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for P ≥ 0 and Px satisfying
(
(σ −

√
P )+

)2

≤ Px ≤ (σ +
√

P )2, and where νb(P, Px) =
((√

σ2

Px+1 −
√

P
)+
)2

.

Proof: Consider the cost 1
mk2

xE [‖xm‖]2, that corre-
sponds to the middle term in (12).

For P ? > σ2

9 , the lower bound is larger than k2
wσ2

9 . Thus
the ratio of the costs attained using the zero-forcing upper
bound, k2

wσ2 and the lower bound is smaller than 9.
For P ? ≤ σ2

9 , we first further lower bound the expression
in Theorem 4 by

J?(0, kw, kx, 0, σ) ≥ minP≥0 k2
wP + k2

x((σ −
√

P )+)2

+
((√

σ2

(σ+
√

P )2+1
−
√

P
)+
)2

, (12)

since ((σ −
√

P )+)2 ≤ Px ≤ (σ +
√

P )2.
Since P ? ≤ σ2

9 , (σ −
√

P ?)2 ≥ 4
9σ2 = d. Further, for

any power P (< σ2) in the upper bound, the corresponding
cost term in the upper bound (σ +

√
P )2 ≤ 4σ2 = c. Using

Lemma 1, this term can increase the ratio to a maximum of
c
d = 9. However, without the middle term in (12), the ratio
is bounded by a

b = 11 [4, Thm. 1]. Thus the overall ratio is
still bounded by 11.

C. Cost on the input um
b = x̂m

Theorem 6: For W (0, kw, 0, kb, σ),

J?(0, kw, 0, kb, σ) ≥ inf
P≥0,ζ≥0

k2
wP + k2

bζ

+
((√

η(P, ζ)−
√

P
)+
)2

,

where,

η(P, ζ) =


(
1−

√
P̄

P̄+1

√
ζ

σ

)2

σ2 + ζ
P̄+1

for ζ < P̄ σ2

P̄+1

σ2

P̄+1
otherwise.

(13)

where P̄ =
(
σ +

√
P
)2

.
Proof: As in Theorem 5, we again use [4, Lemma 3] to

lower bound 1
mE

[
‖Sm − X̂m‖2

]
. Let ζ := 1

mE
[
‖X̂m‖2

]
.

By an application of the data-processing inequality [13, Pg.
32], I(Sm, X̂m) ≤ I(Xm,Ym

b ). Let C̄ = 1
2 logb

(
1 + P̄

)
denote the capacity of an AWGN channel with input power
constraint P̄ and noise variance 1. Then, I(Xm,Ym

b ) ≤
mC̄, and thus, I(Sm, X̂m) ≤ mC̄. Imposing this constraint
along with the power constraint on X̂m, for any control
strategy,

1
m

E
[
‖Sm − X̂m‖2

]
≥ inf

p( bXm|Sm): 1
m I(Sm; bXm)≤C̄

1
m E[‖bXm‖2]≤ζ

E
[
d(Sm, X̂m)

]

Define Q as a discrete random variable (playing the role
of time-sharing random variable) distributed uniformly on

the dimensions {1, 2, . . . ,m}. Define S = SQ, X = XQ,
Yb = Y2,Q, and X̂ = X̂Q. Then,

1
m

E
[
‖Sm − X̂m‖2

]
(a)

≥ inf
p( bXm|Sm):I(S; bX)≤C̄

1
m E[‖bXm‖2]≤ζ

E
[
d(Sm, X̂m)

]

(b)
= inf

p( bXm|Sm):

I(S; bX)≤C̄

1
m

Pm
i=1 E[ bX2

i ]≤ζ

1
m

m∑
i=1

E
[
d(Si, X̂i)

]

(c)
= inf

p( bXm|Sm):I(S; bX)≤C̄

E[ bX2]≤ζ

E
[
d(S, X̂)

]

(d)
= inf

p( bX|S):I(S; bX)≤C̄

E[ bX2]≤ζ

E
[
d(S, X̂)

]
(14)

Here (a) follows from the fact that I(S; X̂) ≤ 1
mI(Sm; X̂m)

(proven below), (b) follows from the definition of the vec-
tor distortion and second norm, (c) follows from the the
definition of the time-sharing random variable Q, and (d)
uses the fact that the expressions in the objective and the
constraints depend on p(X̂m|Sm) only through p(X̂|S). To
see the inequality used in (a),

I(Sm; X̂m) = h(Sm)− h(Sm|X̂m)

=
m∑

i=1

(
h(Si)− h(Si|Si−1, X̂m)

)
(e)

≥
m∑

i=1

(
h(Si)− h(Si|X̂i)

)
=

m∑
i=1

I(Si; X̂i) = mI(S; X̂|Q)

= m
(
h(S|Q)− h(S|X̂,Q)

)
= m

(
h(S)− h(S|X̂,Q)

)
(f)

≥ m
(
h(S)− h(S|X̂)

)
= mI(S; X̂),

where (e) and (f) use the fact that conditioning reduces
differential entropy. From (14),

1
m

E
[
‖Sm − X̂m‖2

]
≥ inf

p( bX|S):I(S; bX)≤C̄

E[ bX2]≤ζ

E
[
d(S, X̂)

]

= inf
p( bX|S):

I(S; bX)≤C̄

sup
λ≥0

E
[
(S − X̂)2

]
+ λ

(
E
[
X̂2
]
− ζ
)

(g)
= sup

λ≥0
inf

p( bX|S):

I(S; bX)≤C̄

E
[
(S − X̂)2

]
+ λ

(
E
[
X̂2
]
− ζ
)
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= sup
λ≥0

(
inf

p( bX|S):I(S; bX)≤C̄
(λ + 1)E

[
X̂2
]
− 2E

[
SX̂
])

−λζ + σ2

= sup
λ≥0

(λ + 1) inf
p( bX|S):I(S; bX)≤C̄

E

[(
X̂ − S

λ + 1

)2
]

−λζ + σ2

(
1− 1

λ + 1

)
(h)

≥ sup
λ≥0

(λ + 1)

 σ2

(λ+1)2

P̄ + 1

− λζ +
λσ2

λ + 1

= sup
λ≥0

σ2

(λ + 1)(P̄ + 1)
− λζ +

λσ2

λ + 1
, (15)

where (g) follows from strong duality in convex optimiza-
tion [11, Pg. 226] (the optimization problem in (15) is
convex [11, Pg. 1–2] because for fixed p(S), I(S; X̂) is a
convex-∪ function of p(X̂|S), and the other constraint and
the objective function are linear functions of p(X̂|S)), (h)
follows from the fact that “uncoded” transmission is optimal
for the optimization problem inside the brackets (it is the
problem of minimizing the distortion of the Gaussian source
Sm

1+λ across an AWGN channel subject to a power constraint
of P̄ on the channel input).

To optimize over λ, we differentiate w.r.t. λ and find where
the derivative is zero.

∂
∂λ

(
σ2

(λ+1)(P̄+1)
− λζ +

(
1− 1

λ+1

)
σ2
)

= 0

i.e. − σ2

(λ+1)2(P̄+1)
− ζ + σ2

(λ+1)2 = 0

i.e. σ2

(λ+1)2

(
1− 1

P̄+1

)
= ζ

i.e. P̄ σ2

(P̄+1)(λ+1)2
= ζ ⇒ (λ + 1)2 = σ2P̄

(P̄+1)ζ
.

Double differentiate in order to verify its concavity:

∂2

∂λ2

(
σ2

(λ + 1)(P̄ + 1)
− λζ +

(
1− 1

λ + 1

)
σ2

)
= 2

σ2

(λ + 1)3(P̄ + 1)
− 2

σ2

(λ + 1)3

= − 2σ2P̄

(λ + 1)3(P̄ + 1)
< 0 because λ ≥ 0.

The maximizing value of λ is thus λ? =
(√

P̄ σ2

(P̄+1)ζ
− 1
)+

.

Thus, for λ? > 0 (which corresponds to ζ < P̄ σ2

P̄+1
), the

optimizing X̂ is given by

X̂? =
σ
√

P̄

(λ? + 1)(P̄ + 1)
Yb =

√
ζ√

P̄ + 1
Yb. (16)

The power of the estimate X̂ is ζ
P̄+1

(
P̄ + 1

)
= ζ. Thus,

when ζ < P̄ σ2

P̄+1
, the optimizing X̂ merely scales Yb so that

the average power in the estimate is ζ. For ζ < P̄ σ2

P̄+1
, the

following lower bound can therefore be obtained from (15)
1
m

E
[
‖Sm − X̂m‖2

]
≥ σ2√

P̄ σ2

(P̄+1)ζ
(P̄ + 1)

−

(√
P̄ σ2

(P̄ + 1)ζ
− 1

)
ζ

+

(
1−

√
(P̄ + 1)ζ

P̄σ2

)
σ2

= σ2 + ζ − 2σ2
√

ζP̄√
P̄ σ2

√
P̄ + 1

=

1−

√
P̄

P̄ + 1

√
ζ

σ

2

σ2 +
ζ

P̄ + 1
,

where the last equality is obtained by completing the square.
Now consider the case when ζ < P̄ σ2

P̄+1
. Not surprisingly,

the power of the constraint-free MMSE estimate of S,
Ŝmmse =

√
P̄ σ2

P̄+1
Yb is also P̄ σ2

P̄+1
. Thus X = Ŝmmse if

ζ ≥ P̄ σ2

P̄+1
, obtaining a lower bound of σ2

P̄+1
. Observe that

this lower bound is also valid for all ζ from [4, Theorem 3].
This proves the theorem.
Theorem 7: For W (0, kw, 0, kb, σ),

inf
P≥0,ζ≥0

k2
wP + k2

bζ +
((√

η(P, ζ)−
√

P
)+
)2

≤ J?(0, kw, 0, kb, σ)

≤ 16

(
inf

P≥0,ζ≥0
k2

wP + k2
bζ +

((√
η(P, ζ)−

√
P
)+
)2
)

.

Proof: The upper bound is the minimum of that
achieved by four schemes : Zero-forcing (ZF), Zero-
Input-MMSE-Estimation (ZIME), Zero-Input-Zero-Estimate
(ZIZE), and the Vector-Quantization (VQ) scheme of [4]. We
now provide upper bounds on the asymptotic average costs
by bounding those achieved by these four schemes.

In Zero-Forcing, the input um
w = −sm forces the state

from sm to xm = 0. The cost for Zero-Forcing is k2
w×σ2 +

k2
b × 0 + 0, since the estimate x̂m = 0 = xm = k2

wσ2.
In Zero-Input-MMSE-Estimation, the first controller has

input um
w = 0, and thus xm = sm. The second controller

uses x̂m = σ2

σ2+1 ×Ym
b . The MMSE is σ2

σ2+1 < 1. Thus
the total cost is bounded above by k2

w × 0 + k2
b

σ2

σ2+1 + 1 <
k2

bσ2 + 1.
For Zero-Input-Zero-Estimation, the first and the second

controller both have inputs zero, and the average MMSE
is σ2. Thus the total cost is σ2.

For the Vector-Quantization scheme [4] (applicable only
for σ2 > 1), P = 1, ζ = σ2 − 1, and the MMSE cost is
asymptotically zero. Thus the total cost is bounded above by
k2

w + k2
b (σ2 − 1) < k2

w + k2
bσ2.

For any value of (P ?, ζ?) in the lower bound, we now
show that the ratio of the upper and lower bounds is
uniformly bounded by 16.

Case 1: P ? ≥ σ2

16 . The lower bound then is no smaller
than k2

w
σ2

16 . Using the zero-forcing strategy, the upper bound
is no larger than k2

wσ2. Thus the ratio of the upper and the
lower bounds is at most 16.
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In the other two cases, P ? < σ2

16 , and hence
√

P ? < σ
4 ,

P̄ ? = (σ +
√

P ?)2 < 25
16σ2.

Case 2: P ? < σ2

16 , σ2 ≤ 1.

MMSE ≥

(√ σ2

P̄ ? + 1
−
√

P ?

)+
2

(a)

≥

(√
σ2

25
16 + 1

−
√

σ2

16

)2

=

(√
16
41

σ − σ

4

)2

≥ 0.14σ2 >
σ2

7
,

where (a) uses the fact that P̄ < 25
16σ2 ≤ 25

16 . Using the
ZIZE upper bound of σ2, the ratio of the upper and lower
bound is smaller than 7.

Case 3: ζ? ≤ σ2

16 , P ? < σ2

16 , σ2 > 1. For ζ? ≤ σ2

16 , clearly
ζ? < σ2

2 ≤ P̄ ?

P̄ ?+1
σ2 (since P̄ ? > σ2 ≥ 1, P̄ ?

P̄ ?+1
≥ 1

2 ), and
thus

MMSE ≥

((√√√√√1−

√
P̄ ?

P̄ ? + 1

√
ζ

σ

2

σ2 +
ζ

P̄ ? + 1

−
√

P ?

)+
)2

(a)

≥

((
1− 1

4

)
σ −

√
σ2

16

)2

=
σ2

4
,

where (a) uses P̄ ?

P̄ ?+1
< 1, ζ ≤ σ2

16 , and P ? < σ2

16 , and lower
bounds the term ζ?

P̄ ?+1
by 0. Using the ZIZE upper bound

of σ2 again, the ratio is smaller than 4.
Case 4: ζ? > σ2

16 , P ? < σ2

16 , σ2 > 1
If P ? > 1

16 , the lower bound is larger than k2
w

16 + k2
b

σ2

16 .
The VQ upper bound is smaller than k2

w + k2
bσ2. The ratio

of the upper and lower bounds is therefore smaller than 16.
If P ? ≤ 1

16 ,

MMSE ≥

(√ σ2

P̄ ? + 1
−
√

P ?

)+
2

≥

(√
1(

1 + 1
4

)2 + 1
−
√

1
16

)2

=

(√
16
41
− 1

4

)2

≥ 0.14 ≥ 1
7
.

The lower bound is thus k2
b

σ2

16 + 1
7 . The ZIME upper bound

is k2
bσ2+1. Using Lemma 1, the ratio of the upper and lower

bounds is smaller than max{16, 7} = 16.
We now argue that for the generic problem of (9), the ratio
of upper and lower bounds is also smaller than 16. For P ? >
σ2

9 , the lower bound on the generic cost is larger than k2
sσ2+

k2
w

σ2

9 , whereas the zero-forcing strategy attains a cost of
k2

sσ2 + k2
wσ2 (because xm = x̂m = 0). Thus we only need

to consider P ? ≤ σ2

9 . As shown in Theorem 5, for P ? ≤ σ2

9 ,

the ratio of the additional costs due to xm is at most 9. Using
Lemma 1 and noting that cost due to sm is the same in upper
and lower bounds, the twin costs on sm and xm can raise
the ratio to at most 9.

The lower bound on MMSE for given ζ, the power of
estimate X̂m, continues to be valid. Thus following the steps
of Theorem 7, the ratio of the upper and lower bounds for
the generic problem (9) is also smaller than 16.

IV. NUMERICAL RESULTS

For the Witsenhausen counterexample, Fig. 3 shows that
while the optimal linear strategy yields costs that are arbi-
trarily worse than the true optimum, nonlinear quantization-
based strategies (used in conjunction with linear strategies)
succeed in obtaining a bounded ratio.

How well do purely linear strategies perform for
W (ks, kw, kx, kb, σ)? Fig. 4 shows a slice each in
the three-parameter spaces of W (0, kw, kx, 0, σ) and
W (0, kb, kx, 0, σ) — we plot the ratio of the costs achieved
by the optimal linear strategy and the respective lower bound
of Theorem 4 and Theorem 6 for fixed kx = 0.01, ks = kb =
0 and for kb = 0.01, ks = kx = 0. It might seem surprising
that for these slices, linear strategies are not unboundedly bad
(although the constant factor is large). The reason is that their
associated additional costs grow linearly in σ2 and dominate
the other two original costs in the small-kw large-σ2 regime.

This raises a natural question — are nonlinear strategies
at all useful for nonzero ks, kx or kb? The answer is an
emphatic yes — Fig. 5, 6, and 7 show that for nonzero
ks, kx or kb, nonlinear strategies achieve a maximum ratio of
4.13 which is significantly smaller than the ≈ 45 (or more)
achieved by linear strategies for the same parameter value
0.01 (for kx = 0.01, or kb = 0.01, this is shown in Fig. 4.
For ks = 0.01, the linear penalty ratio is even larger – about
60 – but the figure is omitted due to space constraints).

An application of Lemma 1 shows that the ratio of the
upper and lower bounds for ks 6= 0 and kx = kb = 0 is a
decreasing function of ks. Numerical results (see Fig. 5, 6
and 7) suggest that this is true for the maximum ratio for the
other two parameters as well, indicating that Witsenhausen’s
counterexample is the correct corner point in this space in the
sense that the approximation results seem to be the hardest
to obtain here.
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