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1 Witsenhausen’s counterexample

!

!!

!!
" #

!

"

x0 ∼ N (0, σ
2

0)

x0

x1 x2

w ∼ N (0, 1)

u1 u2

In the first stage, C
1
,the first controller, acts on the initial

state x0 using its input u1 and forces it to x1. In the second
stage, C

2
,the second controller observes x1 + w and acts on

x1 to obtain state x2. The first stage cost is k2u1
2 and the

second stage cost is x2
2. Thus, the total cost is .

min E [C] = min
{

k2E
[

u1
2
]

+ E
[

x2
2
]}

.
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Encoder ++ Decoder

E
[

u1
2
]

≤ P

x0 ∼ N (0, σ
2

0) w ∼ N (0, 1)

x1u1
u2x̂1=

min E
[

(x1 − x̂1)
2
]

x1 − x̂1

“Implicit channel”
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A simplification
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Encoder ++ Decoder x̂1

x1u1

x0 ∼ N (0, σ
2

0I) w ∼ N (0, I)

1

m
E

[

‖u1‖
2
]

≤ P min
1

m

E
[
‖x1 − x̂1‖

2
]

x1 − x̂1

min
1

m

E
[
‖x1 − x̂1‖

2
]

x1 − x̂1E[C] = k
2
P+
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C̄ = k
2

+ 0

x1

u1

ms
2

0

x0

Noise sphere
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C̄min ≥ inf
P≥0

k
2
P +

(

(

√

κ(P ) −
√

P

)+
)2

κ(P ) =
σ2

0

(σ0 +
√

P )2 + 1
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x0
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[Baglietto, Parisini, Zoppoli]
[Lee, Lau and Ho]

x0

u1

x1

αx0

√

m(P + α2σ2
0
)



3.3 Dirty-Paper Coding based strategies
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√

mα
2
σ

2
0

√

m(P + α2σ2
0
)

α = 1

/,()*(&&0$,1$-,..*234$$$$$5'3&4.$

1,6$)74$.'04$%&'()*+')*,($-,*()

x1

√

m(σ2
0

+ P )

√

mσ
2
0

5'3&4.$87,.4$.7'9,8.$

'64$'))6'/)49$),$)74$.'04

%&'()*+')*,($-,*()

x0

α < 1

αx0

Our second strategy is based on Dirty-Paper
Coding (DPC) in information theory where the
shadow state αx0 is driven to the nearest quan-
tization point .

For α = 1, the strategy is a hard-quantization
strategy which outperforms JSCC. For α < 1,
the strategy is conceptually a vector extension
of the soft-quantization strategies in [Baglietto,
Parisini and Zoppoli][Lee, Lau and Ho]. The
first stage cost can be lowered at the expense of
nonzero second stage costs.

3.4 Approximately optimal solution
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√

5 − 1

2

A combination strategy is also proposed. This
strategy divides its power between a linear strat-
egy and the DPC strategy . It performs at least
as well, and in some cases strictly better than
the DPC strategy alone.

The figure shows the ratio of the asymptotic cost
attained by the combination strategy and our
lower bound. This ratio is uniformly bounded
by 2 for all values of k and σ2

0 .

4 Summary

This talk intends to bring out the following ideas:

• Witsenhausen’s counterexample can be simplified by considering a vector extension. This extension retains
the essence of the original counterexample.

• For this extension, in the limit of long vector lengths, the optimal costs are characterized to within a factor
of 2 for all values of k and σ2

0 . Further, the factor is close to 1 for most values in the (k,σ2
0) parameter space.

Optimal cost to within a factor of 2 
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Vector lower bound is too loose at finite lengths!
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hexagonal lattice
packing-covering ratio = 2

√
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Lattices are uniformly approximately 
optimal over dimension size
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inf
P≥0

k2P + η(P, σ2

0) ≤ J̄ ≤ µ

(

inf
P≥0

k2P + η(P, σ2

0)

)

µ ≤ 300ζ2, ζ ≤ 4
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Papers/slides/handouts available at : http://www.eecs.berkeley.edu/~pulkit/

• Provably approximately optimal results can be easier to obtain

• Lattices are good for Witsenhausen’s counterexample.

• A possible recipe for some distributed control problems

- Formulate infinite length problems

- Solve (perhaps only approximately) using information-theory

- Use sphere-packing techniques to obtain results at finite vector lengths

http://www.eecs.berkeley.edu/~pulkit/
http://www.eecs.berkeley.edu/~pulkit/
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Back-up slides begin
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