
Outline:

1 Witsenhausen’s counterexample.

2 Signaling strategies.

3 The infinite-length Witsenhausen counterexample.

4 The finite-dimensional problem.

Pulkit Grover, Anant Sahai and Se Yong Park.

“The finite-dimensional Witsenhausen Counterexample”
Control over Communication Channels (ConCom), 2009.

Slides available: www.eecs.berkeley.edu/∼pulkit/ConCom09Slides.pdf
This Handout: . . . /∼pulkit/ConCom09Handout.pdf
Further discussion and references can be found in the paper.

1 The Witsenhausen counterexample
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The Witsenhausen counterexample [Witsenhausen’68] is a
distributed Linear-Quadratic-Gaussian problem for which
nonlinear control laws outperform the optimal linear con-
trol law. The optimal control law is still elusive — and the
non-Gaussian relaxation of the problem is known to be NP-
complete [Papadimitriou and Tsitsiklis ’86].

The counterexample has an implicit channel that makes it
hard. The first controller modifies the initial state and at-
tempts to communicate the modified state to the second con-
troller through a noisy channel. Solving the problem of min-
imizing MMSE error in estimating x̂1 with an average power
constrained u1 is an equivalent formulation.

2 Signaling strategies over the implicit channel
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[Mitter and Sahai, 99] used quantization-based signaling strategies
that beat the optimal linear strategy by a factor that can be arbi-
trarily large, depending on the problem parameters. However, it
was unclear if there exists a strategy that beats quantization-based
strategies also by an arbitrarily large factor.

3 Vector version of Witsenhausen’s counterexample
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The counterexample can be extended to a vector problem of
vector length m [Ho, Kastner and Wong ’78]. The asymptot-
ically infinite length extension offers simplification because
it allows us to avoid the complications associated with the
geometry of finite-dimensional spaces.



3.1 Vector quantization (VQ)
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Provided the number of quantization points is sufficiently small,
they can be decoded correctly at the second controller. Asymp-
totic cost is k2σ2

w and 0 for the first and the second stage respec-
tively.

3.2 Our lower bound

Witsenhausen’s lower bounding technique does not extend
to the vector case (and further, is loose for the scalar case).
We provide the following new lower bound to the optimal
costs which is valid for all vector lengths m ≥ 1,
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, where σ2
w = 1 is the obser-

vation noise variance. This bound is tighter than Witsen-
hausen’s bound for the scalar problem in some cases.

The ratio of optimal linear costs to the lower bound increases
to infinity in the small-k large-σ regime.
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Ratio of upper and lower bounds using
the JSCC strategy and two linear strategies

The ratio of our upper bound (obtained by using the vector
quantization strategy and two linear schemes of zero-input
and zero-forcing) and our lower bound is bounded by 4.45
for the VQ strategy. Analytically, we can show that the
ratio is bounded by 11. Observe that the ratio is quite close
to 1 for “most” values of k and σ2

0 .



3.3 Improved ratio using Dirty-Paper Coding (DPC) based strategies
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An interpretation of the "slopey" 

quantization strategies of [Baglietto et al]

The exact same sequence of steps yields 

the DPC-based strategy!
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Ratio of costs attained by combination (DPC+linear) strategy 

and our lower bound

Our second strategy is based on Dirty-Paper Coding (DPC)
in information theory where the shadow state αx0 is driven
to the nearest quantization point . The strategy turns out to
be a vector extension of the “slopey”-quantization strategies
in [Baglietto, Parisini and Zoppoli][Lee, Lau and Ho].

A combination strategy that divides its power between a lin-
ear strategy and the DPC strategy attains within a factor
of 2 for all parameter choices of the infinite length vector
Witsenhausen problem.

4 The finite-dimensional problem

4.1 The scalar case
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For the scalar case, the ratio of the cost attained by the
quantization-based strategies and the lower bound runs off to in-
finity in the low k regime. Thus, either the quantization-based
strategies are bad, or the vector lower bound is not sufficiently
tight.
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A “Platonic” approach that treats the finite-dimensional world
as shadows of the infinite-dimensional world allows us to tighten
bounds for finite dimensions. The observation noise can behave as
if its variance is much larger, thereby increasing the lower bound.
For finite dimensions, there is a non-zero probability (that decays
exponentially with the number of dimensions) that this atypical
behavior happens.

This style of obtaining “sphere-packing” bounds follows the work
of [Blahut ’72] and the ensuing extensions to delay [Sahai ’06] and
neighborhood sizes with bit-error probability [Sahai, Grover ’07].
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It turns out that the ratio of costs achieved by the optimal com-
bination of linear+ quantization strategies and that of the new
bound is bounded by 8 uniformly over all k and σ0 for the scalar
case.

4.2 More than one dimensional counterexample

x0

rc

rp

ζ =

rc

rp

rc

Since the initial state can fall outside the shell
of typical realizations with non-zero probabil-
ity, we need to tile the space with quantization
points. Lattices provide a natural set of such
quantization points. Lattices that are good for
quantization as well as error resilience have a
small ζ = rc

rp
, where rc is the covering radius

and rp is the packing radius of the lattice.
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The 2−D problem

For the two-dimensional Witsenhausen counterexample, the
hexagonal lattice (of ζ = 2√

3
≈ 1.155) is better than the

square lattice (extension of scalar-quantization, ζ =
√

2 ≈
1.414). The hexagonal lattice attains within a ratio of 15 of
the optimal cost. The lower bound is obtained by applying
the “Platonic” approach to 2-dimensions.

More generally, we show that lattices can attain within a
factor of 300ζ2 of the optimal costs for any finite dimen-
sion. Since ζ ≤ 4 for all dimensions, lattices attain within a
constant factor uniformly over all k, σ0, and the number of
dimensions. The constant can be improved upon by a more
careful analysis.

5 Summary

This talk intends to bring out the following ideas:

• Witsenhausen’s counterexample can be simplified by considering a vector extension. In the limit of long
vector lengths, the optimal costs are characterized to within a factor of 2 for all values of k and σ2

0. Further,
the factor is close to 1 for most values in the (k, σ2

0) parameter space.

• Lattices attain within a constant factor of the optimal costs for the vector Witsenhausen counterexample
uniformly over the number of dimensions m, k, and σ0.

• A possible recipe for attacking some distributed control problems is thus as follows:

– Formulate an infinite length version of the problem, and solve it (perhaps only approximately) using
information-theoretic tools.

– Use sphere-packing and lattice techniques to obtain finite dimensional results.


