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Abstract— Recently, we considered a vector version of Witsen-
hausen’s counterexample and used a new lower bound to show
that in that limit of infinite vector length, certain quantiz ation-
based strategies are provably within a constant factor of the
optimal cost for all possible problem parameters. In this paper,
finite vector lengths are considered with the vector length being
viewed as an additional problem parameter. By applying the
“sphere-packing” philosophy, a lower bound to the optimal cost
for this finite-length problem is derived that uses appropriate
shadows of the infinite-length bounds. We also introduce lattice-
based quantization strategies for any finite length. Using the
new finite-length lower bound, we show that the lattice-based
strategies achieve within a constant factor of the optimal cost
uniformly over all possible problem parameters, including the
vector length. For Witsenhausen’s original problem — which
corresponds to the scalar case — lattice-based strategies attain
within a factor of 8 of the optimal cost. Based on observations
in the scalar case and the infinite-dimensional case, we also
conjecture what the optimal strategies could be for any finite
vector length.

I. I NTRODUCTION

1Distributed control problems have long proved challenging
for control engineers. In 1968, Witsenhausen [4] gave a coun-
terexample showing that even a seemingly simple distributed
control problem can be hard to solve. For the counterexample,
Witsenhausen chose a two-stage distributed LQG system and
provided a nonlinear control strategy that outperforms all
linear laws. It is now clear that the non-classical information
pattern of Witsenhausen’s problem makes it quite challeng-
ing2; the optimal strategy and the optimal costs for the
problem are still unknown since the non-convexity of the
problem makes the search for an optimal strategy hard [6]–
[8]. Discrete approximations of the problem [9] are even NP-
complete3 [10].

In the absence of a solution, research on the counterexample
has bifurcated into two different directions. In one direction,
the emphasis is to understand what aspect of the problem

1Because this work conceptually builds upon [1], [2], there is significant
overlap in the introduction. For the same reason, there is also overlap in
the introduction with [3] although the scope there is narrower and a largely
different proof technique is employed.

2In words of Yu-Chi Ho [5], “the simplest problem becomes the hardest
problem.”

3More precisely, results in [10] imply that discrete approximations are NP-
complete if the assumption of Gaussianity of the primitive random variables is
relaxed. Further, it is also shown in [10] that with this relaxation, a polynomial
time solution to the original continuous problem would imply P = NP , and
thus conceptually the relaxed continuous problem is NP-complete (or harder).

makes it hard. This is done by modifying the problem in
various ways, and classifying the resulting problems into hard
and easy ones, e.g. [11]–[14] (see [1] for a survey of other such
modifications). In particular, the work of Rotkowitz and Lall
in [14] strongly validates the idea that the core challenge in
the Witsenhausen counterexample is coming from the fact that
distributed controllers have an incentive to “talk to each other”
through the plant itself. However, it seems intuitively clear that
this feature is likely ubiquitous in any nontrivial distributed
control system, and so the counterexample itself deserves to
be understood. This is the other direction of research. Since the
problem is non-convex, a body of literature (e.g. [7] [8] and
the references therein) is dedicated to finding good solutions.

Rather than searching over the space of all possible so-
lutions, a different approach is taken by Witsenhausen [4,
Section 6] and Mitter and Sahai [15]. They aim at systematic
constructions that perform reasonably well. Witsenhausen’s
two-point quantization strategy is motivated from the optimal
strategy for two-point symmetric distributions of the initial
state [4, Section 5] and it outperforms linear strategies for
certain parameter choices. Interpreting Witsenhausen’s strat-
egy as implicit communication between the two controllers,
Mitter and Sahai [15] propose multipoint-quantization strate-
gies. Depending on the problem parameters, these strategies
can outperform scalar strategies by an arbitrarily-large factor.

This brings us to a question that has received little attention
in the literature — how far are the proposed strategies from
the optimal? While the strategies in [8] are believed to be
optimal because of the feeling of exhaustiveness in the search
procedure, there is no guarantee that they are indeed optimal.
Witsenhausen [4, Section 7] derived a lower bound on the
costs that is loose in the interesting regimes of smallk and
largeσ2

0 [1], [3], and hence is insufficient to prove any sort
of optimality or goodness for control schemes.

Towards obtaining a guarantee, a strategic simplification
of the problem was proposed in [1], [2] where we consider
an asymptotically-long vector version of the problem. This
problem is related to a toy communication problem that we
call “Assisted Interference Suppression” (AIS) which is an
extension of the dirty-paper coding (DPC) [16] model in
information theory. There has been a burst of interest in
extensions to DPC in large part due to the work of Devroyeet
al [17] on what is now called the “cognitive radio channel.”
This has inspired many other works in asymmetric cooperation
between nodes [18]–[22]. In our work [1], [2], we develop
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a new lower bound to the optimal performance of the vec-
tor Witsenhausen problem. Using this bound, we show that
depending on the problem parameters, either simple linear
strategies or the vector analogs of quantization-based strategies
achieved within a constant factor of the optimal cost in the
limit of infinite vector length. While a constant-factor result
does not establish true optimality, such results are often helpful
in the face of intractable problems like those that are otherwise
NP-hard [23]. This constant-factor spirit has also been useful
in understanding other stochastic control problems [24], [25]
and in asymptotic analysis of problems in multiuser wireless
communication [26], [27].

While the lower bound in [1] holds for all vector lengths,
and hence for the scalar counterexample as well, the ratio
of the costs attained by the strategies of [15] and the lower
bound diverges in the limitk → 0 and σ0 → ∞. This
suggests that there is a significant finite-dimensional aspect
of the problem that is being lost in the infinite-dimensional
limit: either quantization-based strategies are bad, or the lower
bound is very loose. This effect is elucidated in [3] by deriving
a different lower bound that shows that quantization-based
strategies indeed attain within a constant4 factor of the optimal
cost for Witsenhausen’s original problem. The bound is in the
spirit of Witsenhausen’s original lower bound, but is more
intricate. It captures the idea that observation noise can force
a second-stage cost to be incurred unless the first stage cost
is large.

In this paper, we revert to the line of attack based on the
vector simplification of [1]. Building upon the vector lower
bound, we derive a new lower bound that is in the spirit of
information-theoretic bounds for finite-length communication
problems (e.g. [28]–[31]). In particular, it extends the tools
in [31] to a setting with unbounded distortion. The resulting
lower bound shows that quantization-based strategies attain
within a factor of8 of the optimal cost for the scalar problem.
To understand the significance of the result, consider the
following. At k = 0.01 and σ0 = 500, the cost attained by
optimal linear scheme is close to1. The cost attained by a
quantization-based5 scheme is8.894 × 10−4. Our new lower
bound on the cost is3.170 × 10−4. Despite the small value
of the lower bound, the ratio of the quantization-based upper
bound and the lower bound for this choice of parameters is
less than3!

As a next step towards showing that approximately-optimal
strategies can be found for all Witsenhausen-like problems,
we consider the vector Witsenhausen problem with a finite
vector length. The lower bounds derived here extend naturally
to this case. For obtaining decent control strategies, we observe
that the action of the first controller in the quantization-based
strategy of [15] can be thought of as forcing the state to
a point on a one-dimensionallattice. Extending this idea,
we consider lattice-based strategies for finite dimensional
spaces. We show that the class of lattice-based quantization

4The constant is large in [3], but as this paper shows, this is an artifact of
the proof rather than reality.

5The quantization points are regularly spaced about9.92 units apart. This
results in a first stage cost of about8.2 × 10−4 and a second stage cost of
about6.7 × 10−5.

strategies performs within a constant factor of optimal forany
dimension. The approximation factor can be bounded by a
constant uniformly over all choices of problem parameters,
including the dimension.

The organization of the paper is as follows. In Section II,
we define the vector Witsenhausen problem and introduce
the notation. In Section III, lattice-based strategies forany
vector lengthm are described. Lower bounds (that depend on
m) on optimal costs are derived in Section IV. Section V
shows that the ratio of the upper and the lower bounds
is bounded uniformly over the dimensionm and the other
problem parameters. The conclusion in Section VI outlines
directions of future research and speculates on the form of
finite-dimensional strategies that we conjecture are optimal.

II. N OTATION AND PROBLEM STATEMENT
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Fig. 1. Block-diagram for vector version of Witsenhausen’scounterexample
of length m.

Vectors are denoted in bold. Upper case tends to be used
for random variables, while lower case symbols represent
their realizations.W (m, k2, σ2

0) denotes the vector version
of Witsenhausen’s problem of lengthm, defined as follows
(shown in Fig. 1):

• The initial stateXm
0 is Gaussian, distributedN (0, σ2

0Im),
whereIm is the identity matrix of sizem×m.

• The state transition functions describe the state evolution
with time. The state transitions are linear:

Xm
1 = Xm

0 + Um
1 , and

Xm
2 = Xm

1 − Um
2 .

• The outputs observed by the controllers:

Ym
1 = Xm

0 , and

Ym
2 = Xm

1 + Zm, (1)

whereZm ∼ N (0, σ2
zIm) is Gaussian distributed obser-

vation noise.
• The control objective is to minimize the expected cost,

averaged over the random realizations ofXm
0 and Zm.

The total cost is a quadratic function of the state and the
input given by the sum of two terms:

J1(x
m
1 ,u

m
1 ) =

1

m
k2‖um1 ‖2, and

J2(x
m
2 ,u

m
2 ) =

1

m
‖xm2 ‖2

where ‖ · ‖ denotes the usual Euclidean 2-norm. The
cost expressions are normalized by the vector-lengthm
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so that they do not necessarily grow with the problem
size. A control strategy is denoted byγ = (γ1, γ2),
whereγi is the function that maps the observationymi
at Ci to the control inputumi . For a fixedγ, xm1 =

xm0 + γ1(x
m
0 ) is a function ofxm0 . Thus the first stage

cost can instead be written as a functionJ (γ)
1 (xm0 ) =

J1(x
m
0 + γ1(x

m
0 ), γ1(x

m
0 )) and the second stage cost

can be written asJ (γ)
2 (xm0 , z

m) = J2(x
m
0 + γ1(x

m
0 ) −

γ2(x
m
0 + γ1(x

m
0 ) + zm), γ2(x

m
0 + γ1(x

m
0 ) + zm)).

For givenγ, the expected costs (averaged overxm0 and
zm) are denoted bȳJ (γ)(m, k2, σ2

0) and J̄ (γ)
i (m, k2, σ2

0)

for i = 1, 2. We defineJ̄ (γ)
min(m, k2, σ2

0) as follows

J̄min(k
2) := inf

γ
J̄ (γ)(m, k2, σ2

0) (2)

• The information patternrepresents the information avail-
able to each controller at each time it takes an action (it
has implicitly been specified above). Following Witsen-
hausen’s notation in [32], the information pattern for the
vector problem is

Y1 = {ym1 }; U1 = ∅,

Y2 = {ym2 }; U2 = ∅.

HereYi denotes the information about the outputs in (1)
available at the controlleri ∈ {1, 2}. Similarly, Ui
denotes the information about the previously applied
inputs available at thei-th controller.
Note that the second controller does not have knowledge
of the output observed or the input applied at the first
stage. This makes the information pattern non-classical
(and non-nested), and the problem distributed.

We note that for the scalar case ofm = 1, the problem above
reduces to Witsenhausen’s original counterexample [4].

Without loss of generality (as in [4]), we only consider the
variance of the observation noise asσ2

z = 1. However, we
often need to consider a hypothetical observation noise with
varianceσ2

G. The pdf of this test noise is denoted byfG(·),
and the noise of variance1 has densityfZ(·).

III. L ATTICE-BASED QUANTIZATION STRATEGIES

We introduce lattice-based quantization strategies as gener-
alizations of scalar quantization-based strategies [15] to the
vector problem. An introduction to lattices can be found
in [34], [35]. Relevant definitions are reviewed below.B
denotes the unit ball inRm.

Definition 1 (Packing and packing radius): Given an
m-dimensional latticeΛ and a radiusr, the setΛ + rB is a
packingof Euclideanm-space if for all pointsxm,ym ∈ Λ,
(xm+rB)

⋂
(ym+rB) = ∅. The packing radiusrp is defined

asrp := sup{r : Λ + rB is a packing}.
Definition 2 (Covering and covering radius): Given an

m-dimensional latticeΛ and a radiusr, the setΛ + rB is a
coveringof Euclideanm-space ifRm ⊂ Λ+rB. The covering
radiusrc is defined asrc := inf{r : Λ + rB is a covering}.

Definition 3 (Packing-covering ratio): The packing-
covering ratio(denoted byξ) of a latticeΛ is the ratio of its
covering radius to its packing radius,ξ = rc

rp
.

covering radius

x
n

0

x
n

1

packing radius

x
n

1

x̂
n

1

z
n

z
n

x̂
n

1

Fig. 2. Covering and packing for the 2-dimensional hexagonal lattice. The
packing-covering ratio for this lattice isξ = 2√

3
≈ 1.15 [33, Appendix C].

The first controller forces the initial statexm
0 to the lattice point nearest to

it. The second controller estimatesbxm
1 to be a lattice point at the centre of

the sphere if it falls in one of the packing spheres. Else it essentially gives
up and estimatesbxm

1 = y
m
2 , the received output itself. A hexagonal lattice-

based scheme would perform better for the 2-D Witsenhausen problem than
the square lattice (ofξ =

√
2 ≈ 1.41 [33, Appendix C]) because it has a

smallerξ.
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Because it creates no ambiguity, we do not include the
dimensionm and the choice of latticeΛ in the notation of
rc, rp andξ, though these quantities depend onm andΛ.

For dimensionm, we use a lattice of covering radiusrc and
packing radiusrp. The actionγ1(·) of the first controller, C1,
andγ2(·) of the second controller, C2, are then given by

γ1(x
m
0 ) = −xm0 + arg min

x
m
1 ∈Λ

‖xm1 − xm0 ‖2

γ2(y
m
2 ) =

{
x̃m1 if ∃ x̃m1 ∈ Λ s.t.‖ym2 − x̃m1 ‖2 ≤ r2p
ym2 otherwise

In the event that more than onex̃m1 satisfies‖ym2 −x̃m1 ‖2 ≤ r2p,
the decoder chooses the one with the smallest distance from
ym2 . The event where there exists no suchx̃m1 ∈ Λ is referred
to asdecoding failure. In the following, we denoteγ2(y

m
2 ) by

x̂m1 , the estimate ofxm1 .
Theorem 1: Using a lattice-based strategy (as described

above) forW (m, k2, σ2
0) with rc andrp the covering and the

packing radius for the lattice, the total average cost is upper
bounded by

J̄ (γ)(m, k2, σ2
0)

≤ inf
P≥0

k2P +

(√
ψ(m+ 2, rp) +

√
P

ξ2

√
ψ(m, rp)

)2

,

whereξ = rc

rp
is the packing-covering ratio for the lattice, and

ψ(m, r) = Pr(‖Zm‖ ≥ r). The following looser bound also
holds

J̄ (γ)(m, k2, σ2
0)

≤ inf
P>ξ2

k2P +

(
1 +

√
P

ξ2

)2

e
−mP

2ξ2 + m+2
2

“
1+ln

“
P

ξ2

””

.

Remark: The latter loose bound is useful for analytical manip-
ulations when deriving bounds on the ratio of the upper and
lower bounds in Section V.

Proof: Note that becauseΛ has a covering radius ofrc,
‖xm1 −xm0 ‖2 ≤ r2c . Thus the first stage cost is bounded above
by 1

m
k2r2c . A tighter bound can be provided for a specific

lattice and finitem (for example, form = 1, the first stage
cost is approximatelyk2 r

2
c

3 if r2c ≪ σ2
0).

We now provide bounds on the second stage cost obtained
by using the latticeΛ. Observe that

E

[
‖Xm

1 − X̂m
1 ‖2

]
= E

[
E

[
‖Xm

1 − X̂m
1 ‖2|Xm

1

]]
. (3)

We upper boundE
[
‖Xm

1 − X̂m
1 ‖2|Xm

1

]
for each lattice point

Xm
1 . Denote byEm the event{‖Zm‖2 ≥ r2p}. Observe that

under the eventEcm, X̂m
1 = Xm

1 , resulting in zero second-stage
cost. Thus,

E

[
‖Xm

1 − X̂m
1 ‖2|Xm

1

]
= E

[
‖Xm

1 − X̂m
1 ‖211{Em}|Xm

1

]
.

We now bound the squared-error under the error eventEm,
when eitherxm1 is decoded erroneously, or there is a decoding
failure. If xm1 is decoded erroneously to a lattice pointx̃m1 6=

xm1 , the squared-error can be bounded as follows

‖xm1 − x̃m1 ‖2 = ‖xm1 − ym2 + ym2 − x̃m1 ‖2

≤ (‖xm1 − ym2 ‖ + ‖ym2 − x̃m1 ‖)2

≤ (‖zm‖ + rp)
2
.

If xm1 is decoded asym2 , the squared-error is simply‖zm‖2,
which we upper bound by(‖zm‖ + rp)

2. Thus, under event
Em, the squared error‖xm1 − x̂m1 ‖2 is bounded above by
(‖zm‖ + rp)

2, and hence

E

[
‖Xm

1 − X̂m
1 ‖2|Xm

1

]
≤ E

[
(‖Zm‖ + rp)

2 11{Em}|Xm
1

]
.

(4)
We chooser2c = mP , so that the first stage cost is at most
k2P . Thus, r2p = mP

ξ2
. With this choice ofrc, we have the

following lemma.
Lemma 1: For a given lattice withr2p =

r2c
ξ2

= mP
ξ2

, the
following bound holds

1

m
E

[
(‖Zm‖ + rp)

2
11{Em}|Xm

1

]

≤
(√

ψ(m+ 2, rp) +

√
P

ξ2

√
ψ(m, rp)

)2

.

The following (looser) bound also holds as long asP > ξ2,

1

m
E

[
(‖Zm‖ + rp)

2
11{Em}|Xm

1

]

≤
(

1 +

√
P

ξ2

)2

e
−mP

2ξ2 + m+2
2

“
1+ln

“
P

ξ2

””

.

Proof: See Appendix I.
The theorem now follows from (3), (4) and Lemma 1.

IV. L OWER BOUNDS ON THE COST

Bansal and Basar [6] use information theoretic techniques
related to rate-distortion and channel capacity to show the
optimality of linear strategies in a modified version of Wit-
senhausen’s counterexample where the cost function does not
contain a product of two decision variables. Following the
same spirit, in [1] we derive the following lower bound for
Witsenhausen’s counterexample itself.

Theorem 2: ForW (m, k2, σ2
0), the following lower bound

holds on the total cost for any strategy

J̄ (γ)(m, k2, σ2
0) ≥ inf

P≥0
k2P +

((√
κ(P, σ2

0) −
√
P

)+
)2

.

where(·)+ is shorthand formax(·, 0) and

κ(P, σ2
0) =

σ2
0

σ2
0 + P + 2σ0

√
P + 1

. (5)

Furthermore,

((√
κ(P, σ2

0) −
√
P
)+
)2

is a lower bound

on the second-stage cost given that the first stage is constrained
to use an input with average power at mostP .

Proof: See [1].
The techniques do not yield a tight bound because there is
a tension in the Gaussianity ofxm1 . On one hand, aligning
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Fig. 3. A pictorial representation of the proof for the lowerbound assuming
σ2
0 = 30. The solid curves show the vector lower bound of [1] for

various values of observation noise variances, denoted byσ2
G

. Conceptually,
multiplying these curves by the probability of that channelbehavior yields
the shadow curves for the particularσ2

G
, shown by dashed curves. The scalar

lower bound is then obtained by taking the maximum of these shadow curves.
The circles at points along the scalar bound curve indicate the optimizing value
of σG for obtaining that point on the bound.

um1 with xm0 yields a large power Gaussian distribution on
xm1 that maximizes the capacity of the implicit channel,
potentially reducing the estimation error. On the other, large
power Gaussian sources are also the hardest to estimate across
a Gaussian channel, and thus non-Gaussian (probably discrete)
distributions onxm1 might perform better. Our bounding tech-
nique ignores this tension.

Observe that the lower bound expression is the same for all
vector lengths. In the following, the sphere-packing styleargu-
ments [36] are extended based on [29]–[31] to a joint source-
channel setting where the distortion measure is unbounded.
The obtained bounds are tighter than those in Theorem 2 and
depend on the vector lengthm.

Theorem 3: ForW (m, k2, σ2
0), the following lower bound

holds on the total cost

J̄min(m, k
2, σ2

0) ≥ inf
P≥0

k2P + η(P, σ2
0), (6)

where

η(P, σ2
0) = sup

σ2
G
≥1, L>0

σmG
cm(L)

exp

(
−mL

2(σ2
G − 1)

2

)

((√
κ2(P, σ2

0 , σ
2
G, L) −

√
P

)+
)2

,

where

κ2(P, σ
2
0 , σ

2
G, L) :=

σ2
0σ

2
G

c
2
m
m (L)e1−dm(L)((σ0+

√
P )2+cm(L)σ2

G)
,

where cm(L) := (1 − ψ(m,L
√
m))

−1 and dm(L) :=

cm(L) (1 − ψ(m+ 2, L
√
m)) = 1−ψ(m+2,L

√
m)

1−ψ(m,L
√
m)

> 0. Recall

thatψ(m, r) = Pr(‖Zm‖ ≥ r). Further, this bound is at least
as tight as that of Theorem 2 for all values ofk andσ2

0 .
Proof: DefineP := 1

m
E
[
‖Um

1 ‖2
]

as the average power
of the input at the first stage. For givenP , a lower bound on

the average second stage cost is given by

((√
κ−

√
P
)+
)2

(see Theorem 2). We derive another lower bound that is equal
to the expression forη(P, σ2

0). The intuition behind this lower
bound is presented in Fig. 3.

DefineSGL := {zm : ‖zm‖2 ≤ mL2σ2
G} and use subscripts

to denote which probability model is being used for the second
stage observation noise.Z denotes white Gaussian of variance
1 while G denotes white Gaussian of varianceσ2

G. In the
following, expectation overxm0 is not denoted explicitly in
the notation for clearer exposition.

EZ

[
J

(γ)
2 (Xm

0 ,Z
m)
]

=

∫

zm

∫

x
m
0

J
(γ)
2 (xm0 , z

m)f0(x
m
0 )fZ(zm)dxm0 dz

m

≥
∫

zm∈SG
L

(∫

x
m
0

J
(γ)
2 (xm0 , z

m)f0(x
m
0 )dxm0

)
fZ(zm)dzm

=

∫

zm∈SG
L

(∫

x
m
0

J
(γ)
2 (xm0 , z

m)f0(x
m
0 )dxm0

)

fZ(zm)

fG(zm)
fG(zm)dzm.

The ratio of the two probability density functions is given by

fZ(zm)

fG(zm)
=
e−

‖zm‖2

2

(√
2π
)m

(√
2πσ2

G

)m

e
− ‖zm‖2

2σ2
G

= σmG e
− ‖zm‖2

2

„
1− 1

σ2
G

«

.

Thus forzm ∈ SGL ,

fZ(zm)

fG(zm)
≥ σmG e

−mL2σ2
G

2

„
1− 1

σ2
G

«

≥ σmG e
−mL2(σ2

G
−1)

2 . (7)

Thus,

EZ

[
J

(γ)
2 (Xm

0 ,Z
m)
]

≥ σmG e
−mL2(σ2

G
−1)

2

∫

zm∈SG
L

(∫

x
m
0

J
(γ)
2 (xm0 , z

m)f0(x
m
0 )dxm0

)
fG(zm)dzm

= σmG e
−mL2(σ2

G
−1)

2 EG

[
J

(γ)
2 (Xm

0 ,Z
m)11{Zm∈SG

L}
]

(8)

But

PrG(Zm ∈ SGL ) = PrG
(
‖Zm‖2 ≤ mL2σ2

G

)

= 1 − PrG

((‖Zm‖
σG

)2

> mL2

)

= 1 − ψ(m,L
√
m),



6

becauseZ
m

σG
∼ N (0, Im). Thus,

(a)
= σmG e

−mL2(σ2
G

−1)

2 EG

[
J

(γ)
2 (Xm

0 ,Z
m)|Zm ∈ SGL

]

×(1 − ψ(m,L
√
m))

=
σmG e

−mL2(σ2
G

−1)

2

cm(L)
EG

[
J

(γ)
2 (Xm

0 ,Z
m)|Zm ∈ SGL

]
,(9)

We now need the following lemma, which connects the new
finite-length lower bound to the infinite-length lower bound
of [1].

Lemma 2:

EG

[
J

(γ)
2 (Xm

0 ,Z
m)|Zm ∈ SGL

]

≥
((√

κ2(P, σ2
0 , σ

2
G, L) −

√
P

)+
)2

,

for anyL > 0.
Proof: See Appendix II.

The lower bound on the total average cost now follows
from (9) and Lemma 2. We now verify that this new lower
bound is at least as tight as the one in Theorem 2. Choosing
σ2
G = 1 in the expression forη(P, σ2

0),

η(P, σ2
0) ≥ sup

L>0

1

cm(L)

((√
κ2(P, σ2

0 , 1, L) −
√
P

)+
)2

.

Now notice thatcm(L) anddm(L) converge to1 asL→ ∞.

Thus κ2(P, σ
2
0 , 1, L)

L→∞−→ κ(P, σ2
0) and therefore,η(P, σ2

0)

is lower bounded by

((√
κ−

√
P
)+
)2

, the lower bound in

Theorem 2.

V. COMBINATION OF LINEAR AND LATTICE -BASED

STRATEGIES ATTAIN WITHIN A CONSTANT FACTOR OF THE

OPTIMAL COST

It has been observed that for the infinite-length vector
case [1] and for the scalar case [7] that in some regimes, linear
strategies perform better than quantization based strategies.
Thus for an upper bound on the optimal cost, we consider the
minimum of that achieved by lattice-based strategies and the
optimal linear strategy. In this section we show that the cost
attained by this upper bound is within a constant factor of the
lower bound of Section IV uniformly over allm, k2, σ2

0 .
Theorem 4 (Constant-factor optimality): The costs for

W (m, k2, σ2
0) are bounded as follows.

inf
P≥0

k2P + η(P, σ2
0) ≤ J̄min(m, k

2, σ2
0)

≤ µ

(
inf
P≥0

k2P + η(P, σ2
0)

)
,

where µ = 300ξ2, ξ is the packing-covering ratio of any
lattice in R

m, andη(·, ·) is as defined in Theorem 3. Further,
depending on the(m, k2, σ2

0) values, the upper bound can
be attained by lattice-based quantization strategies or linear
strategies. Form = 1, a computer calculation shows that
µ < 8.

Proof: Let P ∗ denote the optimumP that attains the
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lower bound in Theorem 3. Consider the two simple linear
strategies of zero-forcing (um1 = −xm0 ) and zero-input (um1 =
0) followed by MMSE estimation at C2. It is easy to see [1]
that the cost attained using these two strategies isk2σ2

0 and
σ2
0

σ2
0+1

< 1 respectively. An upper bound is obtained using the
best amongst the two linear strategies and the lattice-based
quantization strategy. We show that the ratio of this upper
bound and the lower bound in Theorem 3 is bounded.

ConsiderP ∗ ≥ σ2
0

300 . Then the first stage cost is larger than

k2 σ
2
0

300 . Consider the upper bound ofk2σ2
0 obtained by zero-

forcing the input. The ratio of the upper bound and the lower
bound is no larger than300. Thus, for the rest of the analysis,
we assume thatP ∗ < σ2

0

300 .

Now considerσ2
0 < 50, andP ∗ ≤ σ2

0

300 . Then, using the
bound from Theorem 2 (which is a special case of the bound
in Theorem 3),

κ =
σ2

0

(σ0 +
√
P ∗)2 + 1

(P∗<
σ2
0

300 ,σ
2
0<50)

≥ σ2
0

50
(
1 + 1√

300

)2

+ 1
≈ σ2

0

56.94
≥ σ2

0

57
.

Thus, forσ2
0 < 50 andP ∗ ≤ σ2

0

300 ,

J̄min ≥
(
(
√
κ−

√
P ∗)+

)2

≥ σ2
0

(
1√
57

− 1√
300

)2

≥ σ2
0

180
.

Using the zero-forcing upper bound ofσ
2
0

σ2
0+1

, the ratio of the

upper and lower bounds is at most180
σ2
0+1

≤ 180.

From now on, we assume thatP ∗ ≤ σ2
0

300 andσ2
0 > 50. We

divide the rest of the analysis into two cases.
Case 1: P ∗ ≤ 1

4 .
In this case,

κ =
σ2

0

(σ0 +
√
P ∗)2 + 1

P∗≤ 1
4≥ σ2

0

(σ0 + 0.5)2 + 1
(a)

≥ 50

(
√

50 + 0.5)2 + 1
≥ 0.75,

where (a) follows from σ2
0 > 50 and the observation that

x2

(x+b)2+1 = 1

(1+ b
x)2

+ 1
x2

is an increasing function ofx for

x, b > 0. Thus,
(
(
√
κ−

√
P )+

)2

≥ (
√

0.75 − 0.5)2 ≥ 0.13.

Using the upper bound ofσ
2
0

σ2
0+1

< 1, the ratio of the upper
and the lower bounds is smaller than10.

We observe that the proof until here does not use the new
lower bound, and hence works for any vector lengthm.

Case 2: σ2
0 > 50, 1

4 < P ∗ ≤ σ2
0

300
Sincedm(L) > 0, we further lower bound the lower bound

in Theorem 3 by replacingdm(L) in the expression by zero.

Now, usingL = 2,

cm(L) =
1

PrG(‖zm‖2 ≤ mL2σ2
G)

(a)

≤ 1

1 − mσ2
G

mL2σ2
G

L=2
≤ 4

3
,

where(a) is obtained using Markov’s inequality. In the bound,

we are free to use anyσ2
G ≥ 1. Using σ2

G = 4c
2
m
m (2)P ∗ > 1

andcm(2) ≤ 4
3 yields

κ2

=
4c

2
m
m (2)P ∗σ2

0(
(σ0 +

√
P ∗)2 + 4c

1+ 2
m

m (2)P ∗
)
c

2
m
m (2)e1−dm

„
P∗<

σ2
0

300

«

≥ 4P ∗
((

1 + 1√
300

)2

+ 4
(

4
3

)1+ 2
m 1

300

)
e

(m≥1)

≥ 1.294P ∗.

Thus for this case,
(
(
√
κ2 −

√
P ∗)+

)2

≥ P ∗(
√

1.294 − 1)2 ≥ P ∗

60
. (10)

Now, using the full form of the lower bound in Theorem 3,
and substitutingL = 2,

J̄min(m, k2, σ2
0)

≥ k2P ∗ +
σmG
cm(2)

exp

(
−mL

2(σ2
G − 1)

2

)

((√
κ2 −

√
P ∗
)+
)2

(σ2
G=4c

2
m
m (2)P∗)

≥ k2P ∗ + 4
m
2 P ∗ m

2 e2ne−8nc
2
m
m P∗ P ∗

60
(cm(2)≤ 4

3 )

≥ k2P ∗ + (4P ∗)
m
2 e2ne−8n( 4

3 )
2
m P∗ P ∗

60

(m≥1,4P∗>1)

≥ k2P ∗ + e2e−m
128
9 P∗ P ∗

60
(P∗≥ 1

4 ,
128
9 <15)

> k2P ∗ +
e2

60 × 4
e−15mP∗

> k2P ∗ +
1

33
e−15mP∗

. (11)
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We now concentrate on the lattice-based upper bound from
Theorem 1. Here,P is a part of the optimization:

J̄min(m, k
2, σ2

0)

≤ inf
P>ξ2

k2P +

(
1 +

√
P

ξ2

)2

e
−mP

2ξ2 + m+2
2

“
1+ln

“
P

ξ2

””

= inf
P>ξ2

k2P +
1

33
e
− mP

20ξ2

×e−m
„

9P

20ξ2 − 1+ 2
m

2 (1+ln
“

P

ξ2

”
)− 2

m
ln

“
1+

q
P

ξ2

”
− ln(33)

m

«

(m≥1)

≤ inf
P>ξ2

k2P +
1

33
e
− mP

20ξ2

×e−m
“

9P

20ξ2 − 3
2

“
1+ln

“
P

ξ2

””
−2 ln

“
1+

q
P

ξ2

”
−ln(33)

”

≤ inf
P≥31ξ2

k2P +
1

33
e
− mP

20ξ2 ,

where the last inequality follows from the fact that9P20ξ2 >

3
2

(
1 + ln

(
P
ξ2

))
+ 2 ln

(
1 +

√
P
ξ2

)
+ ln (33) for P

ξ2
> 31.

This can be checked easily by plotting it.6

Using P = 300ξ2P ∗ ≥ 75ξ2 > 31ξ2 (since P ∗ ≥ 1
4 )

in (12),

J̄min(m, k2, σ2
0) ≤ k2300ξ2P ∗ +

1

33
e
−m 300ξ2P∗

20ξ2

= k2300ξ2P ∗ +
1

33
e−15mP∗

. (12)

Using (11) and (12), the ratio of the upper and the lower
bounds is bounded for allm since

µ ≤ k2300ξ2P ∗ + 1
33e

−15mP∗

k2P ∗ + 1
33e

−15mP∗ ≤ k2300ξ2P ∗

k2P ∗ = 300ξ2.

(13)
Form = 1, ξ = 1, and thus in the proof the ratioµ ≤ 300.

Form large,ξ ≈ 2 [35], andµ . 1200. For arbitrarym, using
the recursive construction in [37, Theorem 8.18],ξ ≤ 4, and
thus µ ≤ 4800 regardless ofm. We also observe here that
the simple grid-lattice hasξ that scales asΘ(

√
m), and thus

the lattice strategy that is good for scalars is not good for the
vector problem, an observation consistent with [2].

The entire proof above is admittedly an ugly and coarse
calculation without much intuitive appeal. However, it does the
job and since the underlying performance bounds themselves
can probably be tightened a bit more, it is not worth optimizing
the proof for increased elegance at this time. Therefore, even
though this ratio of300ξ2 seems large, it is clear that it is
loose. Computer calculation (see Fig. 4) shows that form = 1
(the original Witsenhausen problem),µ < 17 even for the
current bounds. Interestingly, form = 2 using the hexagonal
lattice,µ < 14.75, even though the packing-covering ratio for
hexagonal lattice is larger than that for the uniform lattice for
n = 1. This occurs because the large-deviation bounds in the
sphere-packing argument tighten asn gets large.

6It can also be verified symbolically by examining the expression g(b) =
9
20

b2 − 3
2
(1 + ln b2) − 2 ln(1 + b) − ln 33, taking its derivativeg′(b) =

18
20

b− 3
b
− 2

1+b
, and second derivativeg′′(b) = 18

20
+ 3

b2
+ 2

(1+b)2
> 0. The

g function is convex-∪ and the first derivative is clearly positive whenever
b > 3. Evaluatingg(

√
31) ≈ 0.03 and sog(b) > 0 wheneverb ≥

√
31.

For the lattice strategy form = 1, the first stage cost
can be evaluated explicitly because the lattice corresponds to
uniform quantization. Similarly, the second stage cost canalso
be evaluated explicitly by weighted summation of probabilities
of ym2 falling in a bin other than the transmitted bin7, where
the weights are‖x̂m

1
− xm1 ‖2. The ratio of the upper bound

thus obtained and the lower bound is bounded above by8, as
shown in Fig. 5.

VI. D ISCUSSIONS ANDCONCLUSIONS

Though lattice-based quantization strategies allow us to get
within a constant factor of the optimal cost for the vector
Witsenhausen problem, they are not optimal. This is known
for the scalar [8] and the infinite-length case [1]. It is shown
in [1] that the strategy of Lee, Lau and Ho [8] that is believed
to be very-close to optimal in the scalar case can be viewed as
an instance of a linear scaling followed by a dirty-paper coding
(DPC) strategy. Such DPC-based strategies are also the best
known strategies in the asymptotic infinite-dimensional case,
where they achieve costs within a factor of2 of the optimal.
This suggests that DPC-based strategies might be very good
for finite lengths as well.

A DPC-based strategy would work as follows. Given the
initial statexm0 , scale it by a factorα < 1 and quantize it using
the lattice to a quantization pointxmq . Now useum1 = xmq −
αxm0 as the first stage input, producingxm1 = xmq +(1−α)xm0 .
The controller C2 can now perform an MMSE estimation.
Alternatively, as a low-complexity estimation algorithm,C2

can estimate the lattice pointxmq followed by linear estimation
for the Gaussian(1 − α)xm0 .

There are plenty of open problems that arise naturally.
Both the lower and the upper bounds have room for im-
provement. The lower bound can be improved by tightening
the lower bound on the infinite-length problem and obtaining
corresponding finite length results using the sphere-packing
tools developed here. In [1] we showed the correspondence
between the vector Witsenhausen problem and the commu-
nication problem of Assisted Interference Suppression (AIS).
Further work on the closely related “distributed dirty-paper
coding” problem of Kotagiri and Laneman [22] has appeared
in [21] where Philosofet al derive new outer bounds. These
techniques could help tighten the lower bounds on the vector
Witsenhausen problem as well.

Tightening the upper bound can be performed by using the
DPC-based technique over lattices, as outlined above. Further,
an exact analysis of the required first-stage power when using
a lattice would yield an improvement (as pointed out earlier,
for m = 1, 1

m
k2r2c overestimates the required first-stage cost),

especially for smallm. Improved lattice designs with better
packing-covering ratios would also improve the upper bound.

Perhaps a more significant set of open problems are the
next steps in understanding more realistic versions of Wit-
senhausen’s problem, specifically those that include costson
all the inputs and all the states, with noisy state evolution
and noisy observations at both controllers. The hope is that

7We note that nearest neighbor decoding is not the MMSE strategy at the
second controller.
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solutions to these problems can then be used as the basis
for provably-good nonlinear controller synthesis in larger
distributed systems. Further, tools developed for solvingthese
problems could help address multiuser problems in informa-
tion theory, in the spirit of [38], [39].
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APPENDIX I
PROOF OFLEMMA 1

E

[
(‖Zm‖ + rp)

2
11{Em}|Xm

1

]

(a)
= E

[
(‖Zm‖ + rp)

2
11{Em}

]

= E
[
‖Zm‖211{Em}

]
+ r2p Pr(Em)

+2rpE
[(

11{Em}
) (

‖Zm‖11{Em}
)]

(b)

≤ E
[
‖Zm‖211{Em}

]
+ r2p Pr(Em)

+2rp

√
E
[
11{Em}

]√
E
[
‖Zm‖211{Em}

]

=

(√
E
[
‖Zm‖211{Em}

]
+ rp

√
Pr(Em)

)2

, (14)

where (a) follows from the independence of(Zm, Em) and
Xm

1 , and (b) from the Cauchy-Schwartz inequality [40, Pg.
13].

We wish to expressE
[
‖Zm‖211{Em}

]
in terms of

ψ(m, rp) := Pr(‖Zm‖ ≥ rp) =
∫
‖zm‖≥rp

e
−

‖zm‖2

2

(
√

2π)m dzm.

Denote byAm(r) := 2π
m
2 rm−1

Γ(m
2 )

the surface area of a sphere

of radiusr in R
m [41, Pg. 458], whereΓ(·) is the Gamma-

function satisfyingΓ(m) = (m− 1)Γ(m− 1), Γ(1) = 1, and
Γ(1

2 ) =
√
π. Dividing the spaceRm into shells of thickness

dr and radiir,

E
[
‖Zm‖211{Em}

]
=

∫

‖zm‖≥rp

‖zm‖2 e
− ‖zm‖2

2

(√
2π
)m dzm

=

∫

r≥rp

r2
e−

r2

2

(√
2π
)mAm(r)dr

=

∫

r≥rp

r2
e−

r2

2

(√
2π
)m

2π
m
2 rm−1

Γ
(
m
2

) dr

=

∫

r≥rp

e−
r2

2 2π
(√

2π
)m+2

2π
m+2

2 rm+1

πΓ
(
m+2

2

)
2
m

dr

= mψ(m+ 2, rp). (15)

Using (14), (15), andrp = mP
ξ2

E

[
(‖Zm‖ + rp)

2
11{Em}|Xm

1

]

≤ m

(√
ψ(m+ 2, rp) +

√
P

ξ2

√
ψ(m, rp)

)2

,

which yields the first part of Lemma 1 on usingrp =
√

mP
ξ2

.

To obtain a closed-form upper bound we considerP > ξ2. It
now suffices to boundψ(·, ·).
ψ(m, rp) = Pr(‖Zm‖2 ≥ r2p)

= Pr(exp(ρ

m∑

i=1

Z2
i ) ≥ exp(ρr2p))

(a)

≤ E

[
exp(ρ

m∑

i=1

Z2
i )

]
e−ρr

2
p

= E
[
exp(ρz2

1)
]m

e−ρr
2
p

(for 0<ρ<0.5)
=

1

(1 − 2ρ)
m
2
e−ρr

2
p ,

where (a) follows from the Markov inequality, and the last
inequality follows from the fact that the moment generating
function of a standardχ2

2 random variable is 1

(1−2ρ)
1
2

for ρ ∈
(0, 0.5) [42, Pg. 375]. Since this bound holds for anyρ ∈
(0, 0.5), we choose the minimizingρ∗ = 1

2

(
1 − m

r2p

)
. Since

r2p = mP
ξ2

, ρ∗ is indeed in(0, 0.5) as long asP > ξ2. Thus,

ψ(m, rp) ≤ 1

(1 − 2ρ∗)
m
2
e−ρ

∗r2p

= e
−

r2
p
2 + m

2 + m
2 ln

„
r2

p
m

«

.

Using the substitutionsr2c = mP , ξ = rc

rp
andr2p = mP

ξ2
,

Pr(Em) = ψ(m, rp) = ψ

(
m,

√
mP

ξ2

)

≤ e
−mP

2ξ2 + m
2 + m

2 ln
“

P

ξ2

”

. (16)

E
[
‖Zm‖211{Em}

]
≤ mψ

(
m+ 2,

√
mP

ξ2

)

≤ me
−mP

2ξ2 + m+2
2 + m+2

2 ln
“

mP

(m+2)ξ2

”

. (17)

From (14), (16) and (17),

E

[
(‖Zm‖ + rp)

2
11{Em}|xm1

]

≤
(√

me
−mP

4ξ2 + m+2
4 + m+2

4 ln
“

mP

(m+2)ξ2

”

+

√
mP

ξ2
e
−mP

4ξ2 + m
4 + m

4 ln
“

P

ξ2

”)2

(sinceP>ξ2)
<

(
√
m

(
1 +

√
P

ξ2

)
e
−mP

4ξ2 + m+2
4 + m+2

4 ln
“

P

ξ2

”)2

= m

(
1 +

√
P

ξ2

)2

e
−mP

2ξ2 + m+2
2 + m+2

2 ln
“

P

ξ2

”

.

APPENDIX II
PROOF OFLEMMA 2

The following lemma is taken from [1].



10

Lemma 3: For any three random variablesA, B andC,
√

E [‖B − C‖2] ≥
∣∣∣
√

E [‖A− C‖2] −
√

E [‖A−B‖2]
∣∣∣

≥
(√

E [‖A− C‖2] −
√

E [‖A−B‖2]
)+

.

Proof: See [1, Appendix II].
ChoosingA = Xm

0 , B = Xm
1 andC = X̂m

1 ,

EG

[
J

(γ)
2 (Xm

0 ,Z
m)|Zm ∈ SGL

]

=
1

m
EG

[
‖Xm

1 − X̂m
1 ‖2|Zm ∈ SGL

]

≥
((√

1

m
EG

[
‖Xm

0 − X̂m
1 ‖2|Zm ∈ SGL

]

−
√

1

m
EG

[
‖Xm

0 − Xm
1 ‖2|Zm ∈ SGL

])+)2

=

((√
1

m
EG

[
‖Xm

0 − X̂m
1 ‖2|Zm ∈ SGL

]

−
√
P

)+)2

, (18)

since Xm
0 − Xm

1 = Um
1 is independent ofZm and

E
[
‖Um

1 ‖2
]

= mP . DefineYm
L := Xm

1 +ZmL to be the output
when the observation noiseZmL is distributed as follows

fZL
(zmL ) =





cm(L) e
−

‖zm
L

‖2

2σ2
G“√

2πσ2
G

”m zmL ∈ SGL
0 otherwise.

(19)

Let the estimate at the second controller on observingymL
be denoted byX̂m

L . Then, by the definition of conditional
expectations,

EG

[
‖Xm

0 − X̂m
1 ‖2|Zm ∈ SGL

]
= EG

[
‖Xm

0 − X̂m
L ‖2

]
.

(20)
To get a lower bound, we now allow the controllers to optimize
themselves with the additional knowledge that the observation
noise must fall inSGL . We follow the rate-distortion spirit
and consider the mutual information between the initial state
Xm

0 and the estimatêXm
L . Notice that there is a Markov

chain Xm
0 − Xm

1 − Ym
L − X̂m

L . Using the data-processing
inequality [43],

I(Xm
0 ; X̂m

L ) ≤ I(Xm
1 ;Ym

L ). (21)

To upper bound the term on the RHS, we first upper bound
the power ofXm

1 .

E
[
‖Xm

1 ‖2
]

= E
[
‖Xm

0 + Um
1 ‖2

]

= E
[
‖Xm

0 ‖2
]
+ E

[
‖Um

1 ‖2
]
+ 2E

[
Xm

0
T
Um

1

]

≤ E
[
‖Xm

0 ‖2
]
+ E

[
‖Um

1 ‖2
]

+2
√

E [‖Xm
0 ‖2]

√
E [‖Um

1 ‖2]

≤ m(σ0 +
√
P )2.

Let P̄ := (σ0 +
√
P )2. In the following, we derive an

expression forC(m)
G , an upper bound on1

m
I(Xm

1 ;Ym
L ).

C
(m)
G ≤ sup

p(Xm
1 ):E[‖Xm

1 ‖2]≤mP̄

1

m
I(Xm

1 ;Ym
L )

= sup
p(Xm

1 ):E[‖Xm
1 ‖2]≤mP̄

1

m
h(Ym

L ) − 1

m
h(Ym

L |Xm
1 )

= sup
p(Xm

1 ):E[‖Xm
1 ‖2]≤mP̄

1

m
h(Ym

L ) − 1

m
h(ZmL )

≤ sup
p(Xm

1 ):E[‖Xm
1 ‖2]≤mP̄

1

m

m∑

i=1

h(YL,i) −
1

m
h(ZmL )

(a)

≤ 1

m

m∑

i=1

1

2
log2

(
2πe(P̄i + σ2

G,i)
)
− 1

m
h(ZmL )

(b)

≤ 1

2
log2

(
2πe(P̄ + cm(L)σ2

G)
)
− 1

m
h(ZmL ). (22)

In (a), we used the fact that Gaussian random variables
maximize differential entropy and used the notationP̄i =
E
[
X2

1,i

]
and σ2

G,i = E
[
Z2
L,i

]
(by symmetry,ZL,i are zero

mean random variables). The inequality(b) follows from the
concavity of thelog(·) function. We also use the fact that
1
m

∑m

i=1 σ
2
G,i ≤ cm(L)σ2

G, which can be proven as follows.

1

m
EG

[
m∑

i=1

Z2
L,i

]

=
1

m

∫

zm∈SG
L

‖zm‖2cm(L)
exp

(
− ‖zm‖2

2σ2
G

)

(√
2πσ2

G

)m dzm

≤ cm(L)

m

∫

zm∈Rm

‖zm‖2
exp

(
− ‖zm‖2

2σ2
G

)

(√
2πσ2

G

)m dzm

≤ cm(L)σ2
G,

sinceEG

[
‖Zm‖2

]
= mσ2

G. We now lower boundh(ZmL )

h(ZmL )

=

∫

zm∈SG
L

fZL
(zm) log2

(
1

fZL
(zm)

)
dzm

=

∫

zm∈SG
L

fZL
(zm) log2





(√
2πσ2

G

)m

cm(L)e
−‖zm‖2

2σ2
G



 dzm

= − log2 (cm(L)) +
m

2
log2

(
2πσ2

G

)

+

∫

zm∈SG
L

cm(L)fG(zm)
‖zm‖2

2σ2
G

log2 (e) dzm. (23)
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Analyzing the last term,
∫

zm∈SG
L

cm(L)fG(zm)
‖zm‖2

2σ2
G

log2 (e) dzm

=
cm(L) log2 (e)

2
EG

[(‖Zm‖
σG

)2

11n
‖Zm‖

σG
≤
√
mL2

o

]

eZm:=Z
m

σG=
cm(L) log2 (e)

2
E

[
‖Z̃m‖211{‖eZm‖≤

√
mL2}

]

=
cm(L) log2 (e)

2

(
E

[
‖Z̃m‖2

]

−E

[
‖Z̃m‖211{‖eZm‖>

√
mL2}

])

(using (15))
=

cm(L) log2 (e)

2

(
m−mψ(m+ 2,

√
mL2)

)

=
m log2 (e)

2
cm(L)

(
1 − ψ(m+ 2, L

√
m)
)
. (24)

Define dm(L) := cm(L) (1 − ψ(m+ 2, L
√
m)). Then, the

expressionC(m)
G can be upper bounded using (22), (23)

and (24) as follows.

C
(m)
G ≤ 1

2
log2

(
2πe(P̄ + cm(L)σ2

G)
)

+
1

m
log2 (cm(L))

−1

2
log2

(
2πσ2

G

)
− 1

2
log2

(
edm(L)

)

=
1

2
log2

(
2πe(P̄ + cm(L)σ2

G)
)

+
1

2
log2

(
c

2
m
m (L)

)

−1

2
log2

(
2πσ2

G

)
− 1

2
log2

(
edm(L)

)

=
1

2
log2

(
2πe(P̄ + cm(L)σ2

G)c
2
m
m (L)

2πσ2
Ge

dm(L)

)

=
1

2
log2

(
e1−dm(L)(P̄ + cm(L)σ2

G)c
2
m
m (L)

σ2
G

)
. (25)

Now, recall that the Gaussian rate-distortion functionDm(R)
is defined as follows

Dm(R) := inf
p(X̂m

L |Xm
0 )

1
m
I(Xm

0 ; X̂m
L ) ≤ R

1

m
E

[
‖Xm

0 − X̂m
L ‖2

]

(26)
SinceI(Xm

0 ; X̂m
L ) ≤ mC

(m)
G , using the converse to the rate

distortion theorem [43, Pg. 349] and the upper bound on the
mutual information,

1

m
E

[
‖Xm

0 − X̂m
L ‖2

]
≥ Dm(C

(m)
G ). (27)

Since the Gaussian source is iid,Dm(R) = D(R), where
D(R) = σ2

02−2R is the distortion-rate function for a Gaussian
source of varianceσ2

0 [43, Pg. 346]. Thus, using (18), (20)
and (27),

EG

[
J

(γ)
2 (Xm

0 ,Z
m)|Zm ∈ SGL

]

≥
((√

D(C
(m)
G ) −

√
P

)+
)2

.

Substituting the bound onC(m)
G from (25),

D(C
(m)
G ) ≥ σ2

02
−2C

(m)
G

=
σ2

0σ
2
G

c
2
m
m (L)e1−dm(L)(P̄ + cm(L)σ2

G)

Using (18), this completes the proof of the lemma. Notice that
cm(L) → 1, cm(L) > 1, anddm(L) → 1 both for fixedm
asL → ∞ and for fixedL > 1 asm → ∞. So D(C

(m)
G )

approachesκ of Theorem 2 in both of these two limits.
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