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Abstract— Recently, we considered a vector version of Witsen- makes it hard. This is done by modifying the problem in
hausen’s counterexample and used a new lower bound to showvarious ways, and classifying the resulting problems irstadh
that in that limit of infinite vector length, certain quantiz ation- and easy ones, e.g. [11]-[14] (see [1] for a survey of otheln su

based strategies are provably within a constant factor of tk e . - .
optimal cost for all possible problem parameters. In this paer, modifications). In particular, the work of Rotkowitz and Lal

finite vector lengths are considered with the vector length bing N [14] strongly validates the idea that the core challenge i
viewed as an additional problem parameter. By applying the the Witsenhausen counterexample is coming from the fatt tha

“sphere-packing” philosophy, a lower bound to the optimal @st  distributed controllers have an incentive to “talk to eatined’
for this finite-length problem is derived that uses approprate o9 the plant itself. However, it seems intuitivelyari¢hat

shadows of the infinite-length bounds. We also introduce léte- this feat is likelv ubiauit . trivial distited
based quantization strategies for any finite length. Using he IS teature Is likely ubiquitous in any nontrivial dis

new finite-length lower bound, we show that the lattice-bagk control system, and so the counterexample itself deseoves t
strategies achieve within a constant factor of the optimal @st be understood. This is the other direction of research.eSime
uniformly over all possible problem parameters, including the - problem is non-convex, a body of literature (e.g. [7] [8] and
vector length. For Witsenhausen’s original problem — which 0 references therein) is dedicated to finding good saigtio
corresponds to the scalar case — lattice-based strategiestan Rather than searching over the space of all possible so-
within a factor of 8 of the optimal cost. Based on observations ] ¢ 9 . p ) p
in the scalar case and the infinite-dimensional case, we alsolutions, a different approach is taken by Witsenhausen [4,
conjecture what the optimal strategies could be for any finie Section 6] and Mitter and Sahai [15]. They aim at systematic
vector length. constructions that perform reasonably well. Witsenhagsen
two-point quantization strategy is motivated from the oyati
| INTRODUCTION strategy for tv_vo—pomt symmetrlc d|str|but_|ons of the |_ait
A _state [4, Section 5] and it outperforms linear strategias fo
Distributed control problems have long proved challengingiain parameter choices. Interpreting Witsenhauseres- s
for control engineers. In 1968, Witsenhausen [4] gave a coylyy as implicit communication between the two controllers,
terexample showing that even a seemingly simple distrbutgyitter and Sahai [15] propose multipoint-quantizatiorat
cqntrol problem can be hard to solve_z. Eor the counterexampé@es. Depending on the problem parameters, these strategie
Witsenhausen chose a two-stage distributed LQG system g o tnerform scalar strategies by an arbitrarily-lagggdr.
provided a nonlinear control strategy that outperforms all this prings us to a question that has received little aenti
linear laws. It is now clea}r that the non-classical infor@Rt , the jiterature — how far are the proposed strategies from
pat;ern of Witsenhausen's problem makes it quite challengss ontimal? While the strategies in [8] are believed to be
ing®; the optimal strategy and the optimal costs for thgntima| hecause of the feeling of exhaustiveness in thekear
problem are still unknown since the non-convexity of thgrocequre, there is no guarantee that they are indeed dptima
problem makes the search for an optimal strategy hard [Qlyjisenhausen [4, Section 7] derived a lower bound on the
[8]. Discrete approximations of the problem [9] are even NRggis that is loose in the interesting regimes of srhadind
completé [10]. . large 02 [1], [3], and hence is insufficient to prove any sort
In the absence of a solution, research on the counterexanw%ptimamy or goodness for control schemes.
has blfurcatgd _|nt0 two different directions. In one direat Towards obtaining a guarantee, a strategic simplification
the emphasis is to understand what aspect of the problggy, problem was proposed in [1], [2] where we consider

1Because this work conceptually builds upon [1], [2], thesesignificant an asym_ptoﬂcally-long vector verS|on OT the problem. This
overlap in the introduction. For the same reason, theress averlap in Problem is related to a toy communication problem that we
fjh_f? imroducti?ﬂ Wri:h. (3] ’c}lthougr thz scope there is nagpand a largely call “Assisted Interference Suppression” (AIS) which is an
ifferent proof technique is employed. . — - .
2In words of Yu-Chi Ho [5], “the simplest problem becomes trardest .extenS|o.n of the dll’ty paper COdIng (DPC) [16] _mOdel II’.I
problem.” information theory. There has been a burst of interest in
3More precisely, results in [10] imply that discrete approations are NP- extensions to DPC in large part due to the work of Devreye
complete if the assumption of Gaussianity of the primitimadom variables is 5| [17] on what is now called the “cognitive radio channel.”

relaxed. Further, it is also shown in [10] that with this seltion, a polynomial This has i ired h ks i . .
time solution to the original continuous problem would ijgt = N P, and Is has inspired many other works in asymmetric cooperatio

thus conceptually the relaxed continuous problem is NPptetm (or harder). between nodes [18]—-[22]. In our work [1], [2], we develop



a new lower bound to the optimal performance of the vestrategies performs within a constant factor of optimaldiy

tor Witsenhausen problem. Using this bound, we show thdimension. The approximation factor can be bounded by a

depending on the problem parameters, either simple linemstant uniformly over all choices of problem parameters,

strategies or the vector analogs of quantization-basatkgies including the dimensian

achieved within a constant factor of the optimal cost in the The organization of the paper is as follows. In Section I,

limit of infinite vector length. While a constant-factor tdis we define the vector Witsenhausen problem and introduce

does not establish true optimality, such results are ofedpfial  the notation. In Section lll, lattice-based strategies doy

in the face of intractable problems like those that are otier vector lengthm are described. Lower bounds (that depend on

NP-hard [23]. This constant-factor spirit has also beeriuisem) on optimal costs are derived in Section IV. Section V

in understanding other stochastic control problems [22%] [ shows that the ratio of the upper and the lower bounds

and in asymptotic analysis of problems in multiuser wirgless bounded uniformly over the dimension and the other

communication [26], [27]. problem parameters. The conclusion in Section VI outlines
While the lower bound in [1] holds for all vector lengthsdirections of future research and speculates on the form of

and hence for the scalar counterexample as well, the rafimite-dimensional strategies that we conjecture are agitim

of the costs attained by the strategies of [15] and the lower

bound diverges in the limit — 0 and o9 — oo. This II. NOTATION AND PROBLEM STATEMENT

suggests that there is a significant finite-dimensional cspe

of the problem that is being lost in the infinite-dimensional

limit: either quantization-based strategies are bad, ®tdiver m D) Xy ‘1‘@ X R
bound is very loose. This effect is elucidated in [3] by dieiyv X0 L \
a different lower bound that shows that quantization-based _Tum _Tum

s

strategies indeed attain within a consfdactor of the optimal l S :

cost for Witsenhausen’s original problem. The bound is & th
spirit of Witsenhausen’s original lower bound, but is more w
intricate. It captures the idea that observation noise cacef
a second-stage cost to be incurred unless the first stage €@stl. Block-diagram for vector version of Witsenhausertsinterexample
is large. of length m.

In this paper, we revert to the line of attack based on the

vector simplification of [1]. Building upon the vector lower \ectors are denoted in bold. Upper case tends to be used
bound, we derive a new lower bound that is in the spirit b, yandom variables, while lower case symbols represent
information-theoretic bounds for finite-length communica iy realizations. W (m. k2, 02) denotes the vector version

problems (e.g. [28]-[31]). In particular, it extends th®I® of witsenhausen’s problem of length, defined as follows
in [31] to a setting with unbounded distortion. The resuytin(shown in Fig. 1):

o e, ezl hesed SeleGe . The il satex; is Gaussian dsrbute (0.l
P P : wherel,, is the identity matrix of sizen x m.

To understand the significance of the result, co_nS|der the_ The state transition functions describe the state evaiutio
foIIc_)W|ng: Atk =0.01 :?md oo = 500, the cost at.talned by with time. The state transitions are linear:
optimal linear scheme is close to The cost attained by a
quantization-bas&dscheme i8.894 x 10~ Our new lower X = Xpr+Uft, and
bound on the cost i8.170 x 10~*. Despite the small value Xy = XpP-Up.
of the lower bound, the ratio of the quantization-based uppe
bound and the lower bound for this choice of parameters ise The outputs observed by the controllers:
less than3! _ _ _ Y? = X7, and
As a next step towards showing that approximately-optimal . m "
strategies can be found for all Witsenhausen-like problems Yyt = X7 +Z7, @)
we consider the vector Witsenhausen problem with a finite  \hereZ™ ~ A/(0,021,,) is Gaussian distributed obser-
vector length. The lower bounds derived here extend ndyural  yation noise.

to this case. For obtaining decent control strategies, \gervie « The control objective is to minimize the expected cost,

that the action of the first controller in the quantizaticaséd averaged over the random realizationsXyf* and Z™.
strategy of [15] can be thought of as forcing the state t0  The total cost is a quadratic function of the state and the
a point on a one-dimensionddttice. Extending this idea, input given by the sum of two terms:
we consider lattice-based strategies for finite dimensiona 1
spaces. We show that the class of lattice-based quantizatio J(x{u) = —Fk*|[u|?, and
m

4The constant is large in [3], but as this paper shows, thisiargifact of m .m _ l m||2
the proof rather than reality. Ja(x3', ug’) m e

H N . . .

The quantization points are regularly spaced al¥@2 units apart. This where ” ) ” denotes the usual Euclidean 2-norm. The

results in a first stage cost of aba#i2 x 10~* and a second stage cost of . .
about6.7 x 1072, cost expressions are normalized by the vector-lemgth



so that they do not necessarily grow with the problem

size. A control strategy is denoted by = (v1,72),
where~; is the function that maps the observatigft
at G to the control inputu;”. For a fixedy, x" =
xp+ v (x7) is a function ofx{'. Thus the first stage
cost can instead be written as a functidﬁ”)(x{f) =
Ji(x7 + 11(x), 1 (xgr)) and the second stage cos
can be written as]z(”)(xgl,zm) = Jo(x{" + m(x7") —
Y2(xg" + i (xg") +2™), 2 (x5 + 1 (xg") +2™)).

For given~, the expected costs (averaged ox&r and
z™) are denoted by (") (m, k2, 62) and J\" (m, k2, 62)
for i = 1,2. We defineJ? (m, k? o2) as follows

min

Join(k?) := inf JO) (m, k2, 62) (2)
Y

« Theinformation patterrrepresents the information avail-
able to each controller at each time it takes an action
has implicitly been specified above). Following Witsen
hausen’s notation in [32], the information pattern for th
vector problem is

yl = {y’in}a ul = Qa
Vo = {y3'}; U= 2.

Here); denotes the information about the outputs in (1
available at the controllei < {1,2}. Similarly, U;
denotes the information about the previously applie
inputs available at thé-th controller.

Note that the second controller does not have knowled
of the output observed or the input applied at the fir:
stage. This makes the information pattern non-classic
(and non-nested), and the problem distributed.

We note that for the scalar casef= 1, the problem above
reduces to Witsenhausen'’s original counterexample [4].

Without loss of generality (as in [4]), we only consider the
variance of the observation noise a$ = 1. However, we
often need to consider a hypothetical observation noish w
variancec?. The pdf of this test noise is denoted By:(-),
and the noise of variance has densityf(-).

IIl. L ATTICE-BASED QUANTIZATION STRATEGIES

We introduce lattice-based quantization strategies asrger
alizations of scalar quantization-based strategies [@5fhe
vector problem. An introduction to lattices can be foun
in [34], [35]. Relevant definitions are reviewed belog.
denotes the unit ball ifR™.

Definition 1 (Packing and packing radius): Given  an
m-~dimensional latticeA and a radiug-, the setA + B is a
packingof Euclideanm-space if for all pointsx™,y™ € A,
(x™4+rB) N (y™+rB) = 0. The packing radius,, is defined
asry, :=sup{r : A+ rBis a packing.

Definition 2 (Covering and covering radius): Given an
m-~dimensional latticeA and a radius:, the setA + B is a
coveringof Euclideanm-space ifR™ C A+rB. The covering
radiusr. is defined asg. := inf{r : A + rB is a covering.

Definition 3 (Packing-covering ratio): The packing-
covering ratio(denoted by¢) of a lattice A is the ratio of its
covering radius to its packing radius—= T—p

T

covering radius

.‘

0

Fig. 2.

Covering and packing for the 2-dimensional hexaptatice. The

packing-covering ratio for this lattice & = =~ 1.15 [33, Appendix C].

The first controller forces the initial state]* to the lattice point nearest to
it. The second controller estimat&g™ to be a lattice point at the centre of
the sphere if it falls in one of the packing spheres. Else sepsally gives
up and estimateg]" = y1*, the received output itself. A hexagonal lattice-
based scheme would perform better for the 2-D Witsenhausgsigm than
the square lattice (of = v/2 ~ 1.41 [33, Appendix C]) because it has a
smalleré.



Because it creates no ambiguity, we do not include thd&", the squared-error can be bounded as follows
dimensionm and the choice of latticé\ in the notation of m ~mi2
re, rp @and&, though these quantities depend :anand A. e — 33"
For dimensionn, we use a lattice of covering radius and
packing radius-,. The actiony,(-) of the first controller, ¢,
and~(-) of the second controller,  are then given by

= |IxP" -y +y5 — x|
~m 2
(Ix7" = y3' I + llys" — x1"1])
2
(2" +7p)” -

IN A

If x* is decoded ay?y, the squared-error is simplyz™||?,

() = —x{ 4+ arg min|[x — x7||? which we upper bound byl|z" | + rp.)Q. Thus, under event
X7 EA Em, the squared erroffx* — X7*||? is bounded above by
~ . ~ ~ 2
) = X7 if 3XP e Ast|lyy — x| <2 (|lz™| 4+ r,)", and hence
22 )= ym otherwise

m Sm m m 2 m
o B E [HXl — X7 ||2|X1} <E [(IIZ [ 7p) e, 31X -
In the event that more than o&g" satisfies|y4' —x7"||* < 17, (4)
the decoder chooses the one with the smallest distance frpp chooser? = mP, so that the first stage cost is at most

y5'. The event where there exists no sugh € A is referred p2p. Thus,rg — mP \ith this choice ofr., we have the

to asdecoding failuren the following, we denote»(y3*) by  following lemma. &
X7*, the estimate _Ofcin. _ ) Lemma 1: For a given lattice withr} = 2—2 = ?—f, the
Theorem 1: Using a lattice-based strategy (as descrlbqguowing bound holds
above) forW (m, k?, 02) with r. andr, the covering and the
packing radius for the lattice, the total average cost iseupp lE [(HZmH + Tp)2]1{g }|Xﬂ
m -

bounded by

T (m, k2, o3) , < (, [(m +2,1p) + \/EE;1 /w(m,rp)> .
< ziagfokQP + (N/w(m +2,1rp) + \/gzgy/w(m,rp)> ,

The following (looser) bound also holds as longs> £2,

1
where¢ = = is the packing-covering ratio for the lattice, and —E {(I\Zmll + Tp)QlL{smHXT]
Y(m,r) = Pr(|Z™| > r). The following looser bound also 2
holds P\ skemd2 (1em(E))

S| 1+ z ) e

70 (. k2. 2 §

S (m, k7, 05) ) Proof: See Appendix I.

P mp+m+2<1+ln<%)) The theorem now follows from (3), (4) and Lemma 1. |
2)).

< inf K’P+ L+ /= | e 2272

T p>e &2
Remark The latter loose bound is useful for analytical manip- IV. L OWER BOUNDS ON THE COST
ulations when deriving bounds on the ratio of the upper andBansal and Basar [6] use information theoretic techniques
lower bounds in Section V. related to rate-distortion and channel capacity to show the
Proof: Note that becaus& has a covering radius of., optimality of linear strategies in a modified version of Wit-
|x7 —x1|? < 2. Thus the first stage cost is bounded abov&enhausen’s counterexample where the cost function ddes no
by #k%g. A tighter bound can be provided for a specificontain a product of two decision variables. Following the
lattice and finitem (for example, form = 1, the first stage same spirit, in [1] we derive the following lower bound for

cost is approximatelyﬁ%g if 72 < od). Witsenhausen’s counterexample itself.
We now provide bounds on the second stage cost obtainedheorem 2: For W (m, k?, o3), the following lower bound
by using the latticeA. Observe that holds on the total cost for any strategy

~ ~ 2
m _ xm||2| _ mo_Nmi|2|ym _ +
E|IXy - KPP =B [B[IXP -XPPXT] ] @) o), e 02 s 2P+ << P fp) ) |
We upper bound® {||X71" - X]"H2|X’1’j for each lattice point B
X7 Denote by&,, the event{||Z™||* > r2}. Observe that

under the everf,, X{* = X", resulting in zero second-stage P o2) — i 5
’{( 50'0) ) . ( )

cost. Thus, 02+ P +209VP +1

E Xm_ﬁm 2xm - E Xm_XmQ Xm| + 2
1% vl 1} [” ! T e 1% } Furthermore,<(\/n(P, 02) — \/ﬁ) ) is a lower bound

We now bound the squared-error under the error e#ent op, the second-stage cost given that the first stage is coresira
when either" is decoded erroneously, or there is a decoding se an input with average power at mést

failure. If x}* is decoded erroneously to a lattice pokijt # Proof: See [1]. -

where ()" is shorthand fommax(-,0) and

The techniques do not yield a tight bound because there is
a tension in the Gaussianity off’. On one hand, aligning



thaty(m,r) = Pr(||Z™]| > r). Further, this bound is at least
as tight as that of Theorem 2 for all valuesiofind o3.

Proof: Define P := LE [||UT*||?] as the average power
of the input at the first stage. For givéh, a lower bound on

+
the average second stage cost is give h{x/ﬁ — \/ﬁ)

(see Theorem 2). We derive another lower bound that is equal
to the expression foy( P, o2). The intuition behind this lower
bound is presented in Fig. 3.

DefineS¢ := {z™ : ||z™||? < mL?c%} and use subscripts
to denote which probability model is being used for the sdcon
stage observation noisg. denotes white Gaussian of variance
1 while G denotes white Gaussian of varianeg. In the
following, expectation overk(’ is not denoted explicitly in
the notation for clearer exposition.

{J(’Y)( Zm)}

MMSE

Power P

Fig. 3. A pictorial representation of the proof for the lovund assuming
03 = 30. The solid curves show the vector lower bound of [1] for _ / / J("Y) Xo ’ Zm)fo (Xgn)fZ(Zm)nglem
various values of observation noise variances, denotedcpyConceptuaIIy X

multiplying these curves by the probability of that chanbehavior yields
the shadow curves for the particul@%, shown by dashed curves. The scalar

lower bound is then obtained by taking the maximum of theselalv curves. / /
The circles at points along the scalar bound curve indide@ptimizing value zm eS¢ X
of o for obtaining that point on the bound.

IS (2™ fo (x?)dxz)”) f2(2"™)dz"™

m
0

L
= / (/ JQ(W)(X?,Zm)fo(XB”)dXB”)
ZMGSE xm

0

ul” with x* yields a large power Gaussian distribution on fZ(Zm)f (z™)dz™.
x7* that maximizes the capacity of the implicit channel, fa(z™)
potentially reducing the estimation error. On the othergéa The ratio of the two probability density functions is givey b
power Gaussian sources are also the hardest to estimagsacro m
m 2

a Gaussian channel, and thus non-Gaussian (probablyudzl)scrc?z zm) o («/szé) - =72 (1,%2)
distributions onx}* might perform better. Our bounding tech- fo(z™) = (\/2—)m Tz 9G¢e @
nique ignores thls tension. T e G

Observe that the lower bound expression is the same for f{ ;s forz™ ¢ S¢
vector lengths. In the following, the sphere-packing sarigu-

ments [36] are extended based on [29]-[31] to a joint source- fz(z™) > gm ,%ﬂ(l,%) S gm ,mbzg?;m 7
channel setting where the distortion measure is unbounded.f. (zm) = 7 =9c¢ - ()
The obtained bounds are tighter than those in Theorem 2 aﬂg
depend on the vector length.
Theorem 3: For W (m, k?, o2), the following lower bound E, {JQ(V) (X, zm)}

holds on the total cost i2(e2 1)

7 2 2 P 2 > oge T 2

Jmin(mak 700) > }};fok P+77(P7 00)7 (6)
where /zmesc (/xm Jé”(X&Z’")fo(x?Mx?) fa(z™)dz™

L 0
ps L2(0'2 — 1) mL2(c2,—1
Po2) = G _mboc =) . e k) () j~m rm
n(P,05) Ué;ﬁpbo (D) exp( 5 = ofe > Eq {Jz (X5 2 )ﬂ{zmesg}}
2 8
(( mg(P,Ug,aé,L)—\/ﬁ) ) , But
where Pre(Z™ € Sf) = Pig (|27 <mL’0%)
Zm|\?
ko(P 08, 0%, L) = = 1-Prg (u) > mL?
2o 76
e (L)et=dm (@) (00 +v/P)2 4em(L)oZ ) = 1—¢(m,Lv/m),

where ¢, (L) = (1—v¢(m,Lym))”" and dn(L) =
(L) (1= p(m + 2, Ly/m)) = =0md2.Lvin)  ( Recall

1= (m, L\/m)



becauseZ— ~ N (0,1,,). Thus,

(a) mL2(a2G71)

Y g R I (Xp, 22 € 86
X (1= 4(m, Lv/m))

mL%(c%-1)
Uge_ 2 (7) m rm m G
- Z¢¢ ' g [J ZMZ™ e S } 9
Cm(L) G 2 ( 0 )| € L ( )
We now need the following lemma, which connects the ne
finite-length lower bound to the infinite-length lower bount

N
o
]

=
(5]
Il

=
o
1

ratio of upper and lower bounds

of [1].
Lemma 2: 57
m m m 0
B [ (x5, zm) |z € S| |
+ 2 1.5 o5 el
> << Ko (P, og, 04, L) — \/ﬁ) ) ; log, (0,) 108,
forany L > 0.
Proof: See Appendix Il [ |

The lower bound on the total average cost now follown
from (9) and Lemma 2. We now verify that this new lowe
bound is at least as tight as the one in Theorem 2. Choos
o =1 in the expression fon(P, o3),

+ 2
n(P,og)Zsup;<< nz(P,ag,l,L)—\/ﬁ) ) :

L>0 Cm (L)

=
[«2]
/

L
T N

ratio of upper and lower bounds
(o2}
I

Now notice thate,, (L) andd,, (L) converge tol as L — .

L—oo

Thus ko (P, 03,1,L) — k(P,0%) and thereforep(P, o3)

+
is lower bounded b;((\/— — \/ﬁ) ) , the lower bound in —
Theorem 2. ] log, (c 0)' o 2 log, (k)

V. COMBINATION OF LINEAR AND LATTICE -BASED . h . ‘it d the | bounds f h |
Fig. 4. The ratio of the upper and the lower bounds for the asca
STRATEGIES ATTAIN WITHIN A CONSTANT FACTOR OF THE Witsenhausen problem (top), and the 2-D Witsenhausen grol{bottom,
OPTIMAL COST using hexagonal lattice of = 13) for a range of values of andog. The

It has been observed that for the infinite-length vect }i)o is tl:))lounded above by7 for the scalar problem, and bi4.75 for the
case [1] and for the scalar case [7] that in some regimesriné problem.
strategies perform better than quantization based stesteg
Thus for an upper bound on the optimal cost, we consider t
minimum of that achieved by lattice-based strategies ard t
optimal linear strategy. In this section we show that thet ca
attained by this upper bound is within a constant factor ef tt
lower bound of Section IV uniformly over ath, k%, o3.

Theorem 4 (Constant-factor optimality): The costs for
W (m, k? o3) are bounded as follows.

. 2 2 < T . 2 2
Jljléfok‘ P+77(P, UQ) >~ szn(mak 700)

(&) [} ~ [e<)
I I I J

ratio of upper and lower bounds
N
1

< . 2 2
< (}gréfok P+77(P,Uo)> ,

where 1 = 300¢£2, ¢ is the packing-covering ratio of any 25

lattice inIR™, andn(-,-) is as defined in Theorem 3. Further 08 46

depending on them, k% 03) values, the upper bound can ' 0 -2 log, (K)

0.4

. . A ) ) [
be attained by lattice-based quantization strategiesnaati 2l

strategies. Form = 1, a computer calculation shows that

w<8. Fig. 5. An exact calculation of the first and second stagescgisids an
Proof: Let P* denote the optimun® that attains the improved maximum ratio smaller thanfor the scalar Witsenhausen problem.



lower bound in Theorem 3. Consider the two simple lineddow, usingL = 2,

strategies of zero-forcingif{* = —xg") and zero-inputg}* = 1
0) followed by MMSE estlmatlon at:Q It is easy to. see [1] em(L) = Pro(z |2 < mL20%)
that the cost attained using these two strategigs’i and (@) .

—t < 1 respectively. An upper bound is obtained using the <
best amongst the two linear strategies and the latticedbase 1- mL—2G2
guantization strategy. We show that the ratio of this upper L=2 4
bound and the Iower bound in Theorem 3 is bounded. < 3’

ConsiderP” > 300 Then the first stage cost is larger thalthere( ) is obtained using Markov's inequality. In the bound,

k? ;000 Consider the upper bound éfog obtained by zero- \ o are free to use any? > 1. Using o2 = 4672 2)P* > 1
forcing the input. The ratio of the upper bound and the Iow%,rndC (2)< 4 ! yields

bound is no larger thaB00. Thus, for the rest of the analysis,

we assume thaP* < 5050. K2 .
2 =
Now considersj < 50, and P* < Z&. Then, using the B 4c$( )P*o—g
bound from Theorem 2 (which is a special case of the bound ((0_0 n \/P—*)g + 4ol t ( )P*) m( Jel—dum
in Theorem 3), "
0.2 <P*<%> *
o _ 0 N 4P
(UO+\/P*)2+1 - 1 MnI1+2
(1+\/30 ) +4(§) 300 ) ©
(G <300’00<50) 08 08 0'3
2 = . (m>1)
50 (1 + %) 41 T 5691 7 57 S 1.204pP",
o2 Thus for this case,
Thus, forog < 50 and P* < &, , P
L\ 03 ((\/—n - \/P*)+) > PI(VI2OE-172 > . (10)
mzn - -V P* ) > . .
((\/_ ) <\/ /300 > Now, using the full form of the lower bound in Theorem 3,

and substituting. = 2,

Using the zero-forcing upper bound e& the ratio of the B
upper and lower bounds is at moéfi—l < 180. Tmin(m, k?, 05) )
o L -1
From now on, we assume that < 300 andcr0 > 50. We > kK2P* + UG2 exp (—%)
divide the rest of the analysis into two cases. cm(2) N
Case 1 P* < 1. ( — /_)+
In this case, ( "
2 2 2 *
90 (og=4cit (2)P7) . P*
K = 2 p* * 5 2n —SncmP
(00 +VP*)2+1 =z KPP +4% P Ee 0
pr<i o2 (em(2)<3) m a2 e P*
> 0 > kQP* 4 4P* TeQnefgn(g)mp -
- (0o +0.5)2+1 - (4F7) 60
(;) 50 > 0.75 (m>1,4P*>1) P*
T (VB0405)2+1 7 7 T > K2P* 4 e2e ST ©
whege (a) follows from o3 > 50 and the observation that (P*>7,13%<15) 12 p* e ismp*
(Hﬂg)QH = (1+§;2+% is an increasing function of for - P+ 60 < 4°
x,b > 0. Thus, > E*P* + 1 —15mpe (11)

, 33
(Wr=VP)*) = (V075 - 05)* = 0.13.

Using the upper bound of& < 1, the ratio of the upper
and the lower bounds is smaIIer tha6.

We observe that the proof until here does not use the new
lower bound, and hence Works for any vector length

Case 203 > 50, 1 < P* < ?‘)’(;JO

Sinced,, (L) > 0, We further lower bound the lower bound
in Theorem 3 by replacing,,,(L) in the expression by zero.



We now concentrate on the lattice-based upper bound fromFor the lattice strategy forn =

Theorem 1. HereP is a part of the optimization:

jmin(ma k27 0(2))

@@) o (1om(5))

P

1
= inf k2P + —e 2062
mn + 336

< inf k*P +
pP>¢?

P>g2

o (Bt () n(14 ) -2
T2V k2P 507

20¢

s A +336

Xe—m(% (1+1n(5 ))—21n(1+\/§)—1n(33))
< inf /{2P+i67%,

P>31¢2

where the last inequality follows from the fact thg%P— >
2(1+m (&) +2m(1+/5) +m(33) for & > 31.
This can be checked easily by plottingf it.

Using P = 300§2P* > 75¢% > 31£2 (since P* > 1)
in (12),
_ 1 —m 2P*
Tnin(m, k?,08) < K*300°P" + e o
= k%30062P* + = —15mPT - (12)

Using (11) and (12), the ratio of the upper and the low?(lternatlvely

bounds is bounded for ath since
k23OO§2P* 715mP

§ 1230062 P*
H=""ap ¢

k2P

= 3002,

(13)

Form =1, £ = 1, and thus in the proof the ratio < 300.
Form large,£ ~ 2 [35], andu < 1200. For arbitrarym, using
the recursive construction in [37, Theorem 8.18K 4, and

6 15mP* -

1, the first stage cost
can be evaluated explicitly because the lattice correspomd
uniform quantization. Similarly, the second stage costalan
be evaluated explicitly by weighted summation of probé#bii
of yi falling in a bin other than the transmitted bjrwhere
the weights arg|x}* — x7*||2. The ratio of the upper bound
thus obtained and the lower bound is bounded abovg, las
shown in Fig. 5. |

V1. DISCUSSIONS ANDCONCLUSIONS

Though lattice-based quantization strategies allow useto g
within a constant factor of the optimal cost for the vector
Witsenhausen problem, they are not optimal. This is known
for the scalar [8] and the infinite-length case [1]. It is simow
in [1] that the strategy of Lee, Lau and Ho [8] that is believed
to be very-close to optimal in the scalar case can be viewed as
an instance of a linear scaling followed by a dirty-paperiegd
(DPC) strategy. Such DPC-based strategies are also the best
known strategies in the asymptotic infinite-dimensionalega
where they achieve costs within a factor 0bf the optimal.

This suggests that DPC-based strategies might be very good
for finite lengths as well.

A DPC-based strategy would work as follows. Given the
initial statexg’, scale it by a factosr < 1 and quantize it using
the lattice to a quantization poist’. Now useuj” = x;* —
ax(' as the first stage input, producing' = x;" + (1 —a)xg".

The controller G can now perform an MMSE estimation.
as a low-complexity estimation algorithi@y
can estimate the lattice poirf" followed by linear estimation
for the Gaussiaril — a)x{".

There are plenty of open problems that arise naturally.
Both the lower and the upper bounds have room for im-
provement. The lower bound can be improved by tightening
the lower bound on the infinite-length problem and obtaining
corresponding finite length results using the sphere-packi

thus 1 < 4800 regardless ofn. We also observe here thattools developed here. In [1] we showed the correspondence
the simple grid-lattice hag that scales a®(,/m), and thus between the vector Witsenhausen problem and the commu-
the lattice strategy that is good for scalars is not goodHer tnication problem of Assisted Interference SuppressiorSjAl

vector problem, an observation consistent with [2].

Further work on the closely related “distributed dirty-pap

The entire proof above is admittedly an ugly and coarsmding” problem of Kotagiri and Laneman [22] has appeared

calculation without much intuitive appeal. However, it dake

in [21] where Philosofet al derive new outer bounds. These

job and since the underlying performance bounds themselteshniques could help tighten the lower bounds on the vector
can probably be tightened a bit more, it is not worth optimgzi Witsenhausen problem as well.

the proof for increased elegance at this time. Thereforenev Tightening the upper bound can be performed by using the
though this ratio of300£? seems large, it is clear that it isDPC-based technique over lattices, as outlined abovehé&urt

loose. Computer calculation (see Fig. 4) shows thabfos 1

an exact analysis of the required first-stage power whergusin

(the original Witsenhausen problem), < 17 even for the a lattice would yield an improvement (as pointed out earlier
current bounds. Interestingly, fen = 2 using the hexagonal for m = 1, %k%? overestimates the required first-stage cost),
lattice, 1 < 14.75, even though the packing-covering ratio foespecially for smalln. Improved lattice designs with better

hexagonal lattice is larger than that for the uniform lattior

packing-covering ratios would also improve the upper bound

n = 1. This occurs because the large-deviation bounds in thePerhaps a more significant set of open problems are the

sphere-packing argument tighten-agets large.

61t can also be verified symbolically by examining the expiasg(b) =
%98 b2 — —(1 +Inb?) — 2In(1 + b) — In 33, taking its derivativeg’ (b) =
3 and second derivativg” (b) = 45 + 7% + ﬁ > 0. The

20 b 1+b

g function is convex- and the first denvatlve is clearly positive whenever

b > 3. Evaluatingg(v/31) ~ 0.03 and sog(b) > 0 wheneverb > /31.

next steps in understanding more realistic versions of Wit-
senhausen’s problem, specifically those that include awsts

all the inputs and all the states, with noisy state evolution
and noisy observations at both controllers. The hope is that

“We note that nearest neighbor decoding is not the MMSE giraé the
second controller.



solutions to these problems can then be used as the bagigch yields the first part of Lemma 1 on using = £2
for provably-good nonlinear controller synthesis in largerg optain a closed-form upper bound we consiffer £2. It
distributed systems. Further, tools developed for solWivege now suffices to bound(-, -).

problems could help address multiuser problems in informa-

tion theory, in the spirit of [38], [39]. Y(m,rp) = Pr(||Z™)? > r2)
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APPENDIX | = E [exp(pzi)] " e "
PROOF OFLEMMA 1 (for 0<p<0.5) L
(1-2p)% ’
{ IZ™| + rp) ]1{5 X7 } where (a) follows from the Markov inequality, and the last
i " inequality follows from the fact that the moment generating
@ [ I1Z™|| + 7p) ﬂ{sm}} function of a standarg3 random variable |s— for p €
_ [HzmH e, }] +T Pr(&n) (0,0.5) [42, Pg. 375]. Since this bound holds for apye
+2r,E [ (e, ) (”Zm”]]{g )] (0,0. 5) we choose the minimizing* = = (1 - ) Since
(b) o " k= £2 , p* is indeed in(0,0.5) as long asP > 52 Thus,
< E[|Z"Le,] + 75 Pr(En) L
(m,r < ———e "
+27"p\/]E []]{em}]\/E[||ZmH2]1{5m}] (m, ) (1—2p*)%

: e
- (VE[IIZmPﬂ{gm}]+rNPr(5m>> . (4 - cEereen(E)

Using the substitutions? = mP, { = 2= andr? = 2
P

where (a) follows from the independence ™, ¢&,,) and &

X7, and (b) from the Cauchy-Schwartz inequality [40, Pg. P
13]. Pr(&n) = (m,rp) =4 (m, \/ %)

We wish to expressE [||Z™|*Ii¢, ;] in terms of

N i > ) — ~ 1= <« ZEtzrzm(5) 6
Y(m,rp) = Pr(|Z™] = 1p) _f||zmH>rp (\/—) dz™ < e 2 ¢ (16)
Denote byA,,(r) := % the surface area of a sphere
of radiusr in R™ [41, Pg. 458], wherd’(-) is the Gamma- [HZ’”H ]l{gm} ( ,/ )
function satisfyingl’(m) = (m — 1)I'(m — 1), I'(1) = 1, and
F(%) = \/E Dividing the spaceR™ into shells of thickness < me —nE+ (m+2)52)_ (17)
dr and radiir,
2 From (14), (16) and (17),
IE Zm 2]1 = / Zm 2%dznl m 2 m
11Z™ [*1e,.3 ] p— 2™ || (27 E [(HZ | +7,) ]L{Sm}|xlj|
7‘2 m m m m
- / P A (r)dr < (meé vt n( )
r>1p (\/ 27T) 5
P + m_fe—z?5+T+Tln<§)>
/ 5 €T 27T?rm’1dr 3
= T ™ m 9
r>rp (V f”) I ( 2 ) (since P>¢?) NAE P —mb | mba | mi2 1“(5%)
/ e~ 221 27Tm2+2rm+1d < m |1+ 5_2 e
= mt2 mi2) 2
T>Tp (\/27T) ﬂ—l—‘( 2 )m P 2 7m_P+M+L+21n(£)

= m¢(m+2,7°p). (15) = m 1+ 5_2 e 262 2 2 2 ),

Using (14), (15), and, = %7
" 9 " APPENDIXII
E [(HZ [+ 7p) Nge, 3 1XY } PROOF OFLEMMA 2

2 . .
[p The following lemma is taken from [1].
<m<\/w(m+2,rp)+ 5—2\/¢(m,rp)> ,
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Lemma 3: For any three random variables B andC, Let P := (09 + VP)?. In the following, we derive an

expression foiC', ", an upper bound oﬁn—I(X ;Y.
VEIIB=CIP] = |VE[A-CIP] - VE[IA- B ¢ b

1
+ cim < sup —IX Y
> (VE[IA-CI7 - VE[IA-BIF) . ¢ S XPYE[IXT I <P T
Proof: See [1, Appendix II]. R [ | 1
Choosing4d = X7, B = X7* andC = X7, = sup —h(Ym) —h(YT'IXT")

o p(X)E[|X7 2] <mP T
Eq [ (Xg, )|z € 5§

1
) = sup Eh(Ym) mh(Zf)
= —Eg |IX} - X722 € S| PX)E[IXT ] <m P
1 1
1 S < sup — > h(Yr;)— —h(Z])
m m m G ) L
Z <<\/EEG |:HXO - Xl ||2|Z € SL:| p(X{”):lE[HX{”IIZ]SmP m ; m
1 G 2 (a) 1 - 1 D 2 1 m
—\/—Eq [IXg — X7[2[Zm € 5] < = 5log, (2me(P +0g,)) — —h(Z])
i=1
1 m Xm||2|7m G ® 1 D 2 1 m
_ —Eg [I1xg - X212 € ¢ < 5 log, 2me(P + n(L)od)) — —h(ZE). (22)
JP \? 18 In (a), we used the fact that Gaussian random variables
N ’ (18) maximize differential entropy and used the notatifh =
since X7* — X7* = U7 is independent ofZ™ and E[X7;] andog,; = E (27, (by symmetry.Z,; are zero

mean random variables). The inequality follows from the
concavity of thelog(-) function. We also use the fact that
Ly 08 < em(L)og, which can be proven as follows.

E [[[U]|?] = mP. DefineY7" := X7+ Z7" to be the output
when the observation nois&]” is distributed as follows

=712
87 20% m G 1 i
Jzu(ag) = § Dy “E ST ) —Eq Y23,
0 otherwise. i=1 P
Let the estlmate at the second controller on obseryifiy _ i 122 (L) p (—_zag )dzm

be denoted bem Then, by the definition of conditional m Jomeso " ( 2m2)m

expectations, G2
_ 2" )

m Am m m Am exp o
Ec [I\Xo - X7z e Sf] =Ee [HXO .Y Iﬂ : < C’”(L)/ ||zm|2(—2%mdzm
(20) m mER™ (« / 2770%)

To get a lower bound, we now allow the controllers to optimize 9
themselves with the additional knowledge that the obsemat cm(L)og,

noise must fall inSLG. We follow the rate-distortion spirit sincel [”me = mgé_ We now lower bounch(Z7")
and consider the mutual information between the initialesta

IN

X and the estlmateX’” Not|ce that there is a Markov h(Z7')
chaln X — X7 — Y7 — X7, Using the data-processing — / 2™ 1o < 1 >dzm
inequality [43], mesC fz,(2") log [z, (z™)

(X Xy < IS YP). (21) i (voroZ) |
/ <o fZL (Z ) 10g2 W dZ
e

cm(L)e 7%

m
—log, (em (L)) + ) log, (27mé)

To upper bound the term on the RHS, we first upper bound
the power ofX{".

E[IXP]) = E[IX5+ 07 .
Z
= E[IX"I?] +E [I07)7] + 2E | X570y +/mesccm(L)fG(Zm) 352 108 (€) 2. (23)

< E[IXg|P"] +E[[07]

+2,/E [1Xg12]/E (10712
m(og + VP)?2.

IN



Analyzing the last term,

Zzm 2
/ Cm<L>fc<zm>“2 ) log, (0) 2"
zmesf ) 9G
Ccm (L)1 e z"
= %EG <|00”> ﬂ{%gm}
2m=%5  cm(L)10gy () 1 1 5m
— %E [HZ Hzﬂ{uzmusmﬂ
B Cm(L) 1og (6) [m
- w5 gn]
-E [||Zm|\2]1{||zmu>\/m}} >
_ [1]
(usmg(lS) M (m— my(m + 2, meQ))
_ M%Q(e)cm(L) (1—(m+2,Lvm)). (24)

Define d,,, (L) := ¢m(L) (1 —¢(m + 2, Ly/m)). Then, the [
expressionCém can be upper bounded using (22), (23)

and (24) as follows. [3]

cyY < 1og2 (2me(P + en(L)og)) + 10%2 (em(L) 1
1
—— 1og2 (27T0'G ~3 log, (ed’” ) (5]
= 1og2 (2me(P + em(L)og)) + log2 (cm (L)) [6]
1 dm (L
—= 1og2 (27TO'G —3 log, (e ) -
1 ) 2me(P + cm(L)UG)Clr’i (L)
T %% 2o Zedm (L) (8]
1—dm(L)( B 2 .
- log, e (P+ c;n(L)ch)cm (L) (25) [

9a
Now, recall that the Gaussian rate-distortion functiop (R) [10]

is defined as follows

Dn(R):= _inf g fixp - xpp]
pXpXg) "
LI(Xy:Xp) < R 12
(26)
Since I(X{? Xm) < mC(m , using the converse to the rate

distortion theorem [43, Pg 349] and the upper bound on tHé&!
mutual information,

1 v m
—E [|X§" - X7 |1?] = Dul(CE").

Since the Gaussian source is iif),,(R) = D(R), where 19
D(R) = 02272 is the distortion-rate function for a Gaussian
source of variancer? [43, Pg. 346]. Thus, using (18), (20)
and (27),

|:J(’Y)( [17]

( DMy — \/ﬁ)+

p.zm)z e SE|
2

(18]
>

[19]
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Substituting the bound oﬁ*g”) from (25),

or(m)
032 2Cq

DEcgMy >

2 2
000G

cii (L)el=dn(E)(P + ¢ (L)o2,)

Using (18), this completes the proof of the lemma. Notice tha
e¢m(L) — 1, ¢ (L) > 1, andd,, (L) — 1 both for fixedm
as L — oo and for fixed > 1 asm — oo. So D(CI™)
approaches of Theorem 2 in both of these two limits.
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