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1 Witsenhausen’s counterexample
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In the first stage, C
1
,the first controller, acts on the initial

state x0 using its input u1 and forces it to x1. In the second
stage, C

2
,the second controller observes x1+w and acts on x1

to obtain state x2. The first stage cost is k
2
u1

2 and the sec-
ond stage cost is x2

2. Thus, the total cost is C = k
2
u1

2+x2
2.

2 Quantization based signaling strategies
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The counterexample contains an implicit com-
munication channel. Using quantization-based
signaling strategies, it was shown in [Mitter and
Sahai, 99] that the ratio of cost attained by
the optimal linear strategy to that attained by
the optimal nonlinear strategy can be arbitrarily
large.

Numerical optimization results in [Baglietto,
Parisini and Zoppoli][Lee, Lau and Ho] suggest
that in an interesting regime of small k and large
σ

2
0 , soft-quantization based strategies might be

optimal. The inset figure is taken from [Bagli-
etto, Parisini and Zoppoli]



3 Vector version of Witsenhausen’s counterexample
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We extend the counterexample to a vector problem of vector
length m. Interpreted as an information theory problem, the
first controller is an “encoder” that drives x0 to x1 using an
average power constrained input u1. The second controller,
acting as a “decoder”, estimates x1. The objective is to
minimize the mean-square error in estimation of x1.

Because of the diagonal state evolution and the diagonal
covariance, the best linear strategies continue to be scalar.

3.1 Vector quantization strategy
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Our first nonlinear strategy is a vector quanti-
zation based strategy where the first controller
drives the state x0 to the nearest quantization
point . These quantization points have power
smaller than σ

2
0. Provided the number of quan-

tization points is sufficiently small, they can
be decoded correctly at the second controller.
Asymptotic cost is k

2
σ

2
w and 0 for the first and

the second stage respectively.

When do we need nonlinear strategies?
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Vector quantization
cost = k2

scalar nonlinear
outperform linear
[Baglietto et al]
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In the zero-forcing linear strategy, the first con-
troller chooses u = −x0, and thus x1 = 0. In
the zero-input linear strategy, the first controller
uses u = 0, and the second controller estimates
x1 based on its observation.

The figure shows which among the three strate-
gies, the two trivial linear schemes and the vec-
tor quantization strategy, outperform the other
two. Linear strategies perform quite well in sit-
uations when σ

2
0 is small, or when k is large.

For small k and large σ
2
0 , consistent with obser-

vations in [Baglietto, Parisini and Zoppoli][Lee,
Lau and Ho], the nonlinear vector quantization
strategy performs better than the linear strate-
gies.



3.2 Lower bounds to the vector Witsenhausen problem

Witsenhausen derived the following lower bound to the total cost for the scalar problem.

C̄scalar
min ≥ 1

σ0

∫ +∞

−∞
φ

(
ξ

σ0

)

Vk(ξ)dξ,

where φ(t) = 1√
2π

exp(− t2

2 ), Vk(ξ) := mina[k2(a − ξ)2 + h(a)], and h(a) :=
√

2πa
2
φ(a)

∫ +∞
−∞

φ(y)
cosh(ay)dy.

Our lower bound
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Witsenhausen's scalar
lower bound

Witsenhausen’s lower bounding technique does not extend
to the vector case. We provide the following new lower
bound to the optimal costs which is valid for all vector
lengths m ≥ 1,

C̄min ≥ inf
P≥0

k
2
P +

(

(
√

κ(P ) −
√

P )+
)2

,

where κ(P ) = σ2
0

σ2
0+2σ0

√
P+P+1

.

For a particular path kσ0 = 1 in the parameter space, in
the limit of σ0 → ∞, the ratio of our lower bound to that of
Witsenhausen diverges to infinity. The vector quantization
strategy comes close to our lower bound.
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Ratio of costs achieved by (vector 
quantization and two trivial linear 

schemes) and the lower bound

The ratio of our upper bound (obtained by using the vector
quantization strategy and the two trivial linear schemes) and
our lower bound is no greater than 4.45. Analytically, we
can show that the ratio is bounded by 11. Observe that the
ratio is quite close to 1 for “most” values of k and σ

2
0 .

3.3 Another look at “quantization” to intervals
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The quantization to intervals strategies in
[Baglietto et al][Lee, Lau, Ho] can be thought
of as follows. First, the state x0 is scaled down
to a shadow state αx0. This shadow state is now
quantized, and the resulting u1 is applied to x0.



3.4 Dirty-Paper Coding based strategies
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In the view of the above interpretation, we
propose a second strategy Dirty-Paper Coding
(DPC) in information theory where the shadow
state αx0 is driven to the nearest quantization
point . This is a natural generalization of strate-
gies in [Baglietto et al][Lee, Lau, Ho].

For α = 1, the strategy is a hard-quantization
strategy which outperforms vector quantization.
For α < 1, the strategy is conceptually a vector
extension of the soft-quantization strategies in
[Baglietto, Parisini and Zoppoli][Lee, Lau and
Ho]. The first stage cost can be lowered at the
expense of nonzero second stage costs.

3.5 Approximately optimal solution
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Ratio of costs attained by combination (DPC+linear) strategy 
and our lower bound

A combination strategy is also proposed. This
strategy divides its power between a linear strat-
egy and the DPC strategy. It performs at least
as well, and in some cases strictly better than
the DPC strategy alone.

The figure shows the ratio of the asymptotic cost
attained by the combination strategy and our
lower bound. This ratio is uniformly bounded
by 2 for all values of k and σ

2
0 .

4 Summary

This talk intends to bring out the following ideas:

• Witsenhausen’s counterexample can be simplified by considering a vector extension. This extension retains
the essence of the original counterexample.

• For this extension, in the limit of long vector lengths, the optimal costs are characterized to within a factor
of 2 for all values of k and σ

2
0 . Further, the factor is close to 1 for most values in the (k, σ

2
0) parameter space.


