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Can more complex nodes help?
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Can more complex nodes help?

“Visible universe” of a bit is limited by the connectivity
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[Grover, Sahai ISIT "08]

1 log -
iterations 2 log ( = )

~ log(a — 1) (C(Pr) — R)?

. J

... for any code, and any message-passing algorithm

* precise result for any P.and any gap appears in [Grover, Woyach, Sahai '11] 20722



Node model:
Fundamental bounds on total power
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“Node model”: Every node consumes constant energy per iteration
Ptotal — min PT =+ Pdecoding

log lO(Pe)

Fundamental bounds on total power

Node model:

Pr
T 'T\
Total power
(lower bound)
- Shannon limit Optimizing
(TX power) transmit power
0 0.05 0.1 0.15 0.2

Total power (Watts)
Moral: do not operate too close to capacity
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Conclusions

e Decoding power can be large
¢ \/LS|I model of decoding implementation
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e “Wire/Node model”
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B

- stay away from capacity!

- design codes/decoders for just the required performance (no better!)

e Other architectures? (e.g. not fully parallel, memory access, sleeping
nodes?)

e Multiple users, equalization, ADC"

Handouts/papers/summary: http://www.eecs.berkeley.edu/~pulkit
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Capacity-approaching LDPCs or regular LDPCs?
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Shannon waterfall
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maximum node connectivity= 4
T=300K

Rate = 1/4 bits/ch-use

|Grover, Sahai ’09]
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path-loss exponent = 3,
maximum node connectivity= 4
T=300K

Rate = 1/4 bits/ch-use

|Grover, Sahai ’09]

Morals: 1. Regular LDPCs (not capacity-approaching

LDPCs) are order optimal!

2. need new joint code/decoder designs 24/22
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“Wire model” of power consumption

1
P iCapacitance x V? xt

Interconnect gypstrate

Computational

Capacitance o< Wire length

Thus, P o<t x Wire length
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Ongoing work
e Multiuser setups:
- broadcast [Grover, Sahai ISIT "09]
- collection of point-to-point links [Grover, Woyach, Sahai JSAC "11]

e Accounting for receiver power beyond just the decoding power

- ADC, equalizer, etc. Understanding various tradeoffs. [ongoing with
Nikolic, Park]
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Option 2: “black-box” abstractions for

Reducing power consumnm

ption:

Orocessing power

Prabhakaran]

'he Tx and Rx consume a fixed amount of power when “on”

Cui, Goldsmith Bahali
Massaad, Medard, Zheng]
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Reducing power consumption:
Option 2: “black-box™ abstractions for processing power

'he Tx and Rx consume a fixed amount of power when “on”

Cui, Goldsmith Bahali
Massaad, Medard, Zheng]
Prabhakaran]

upshot: bursty transmissions (“go to sleep”)
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Decoders with short wires:

a purely iImplementation issue”?

Comm
Optimize performance

Circuits

Minimize wire lengths

|(Grover, Sahai "11]

For a regular (c,d)-LDPC code

\/Anoe G L
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