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Code passing through 

channel

Models:
AWGN

BI-AWGN
BSC
. . . 

implementation

(encoding/decoding)

Models:
??

Just as we have channel models to understand transmit power, we need 
models of decoding implementation to understand decoding power
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Wire model

Power consumption increases 
linearly with the wire-length

Message PEs

Channel output PEs

Helper PEs

Interconnect (wire) power :
dominant sink of dynamic power 

microprocessors, FPGAs, ASICs etc.
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Neighborhood size: exponential in girth
Area: square of (longest wire x girth) } Longest wire exponential in girth

Theorem [Grover, Sahai ’11]
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Longest wire in our model 
(with Mahattan wiring)

Theorem [Grover, Sahai CISS‘11]

t×Wmax = O

��
log

1

Pe

�ζ
�

There exist              -regular LDPC codes such that(dv, dc)

Wmax ≤ 4

��
2(dv + dc)dvdcq

3
4 gcode−a + 1

��
Anode

π
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Talk outline

18

1. How do we build power-efficient communication systems?

- do not operate too close to capacity!

- understanding processing/decoding power

3. Decoding power model: “Wire model”

- design codes for just the required performance (no better!)

2. A “VLSI model” of decoding computation

B1

B2

B3

B4

X5

X6

X7

X8
4. Can more complex nodes help?



/24

Models of power consumption

19

B1

B2

B3

B4

X5

X6

X7

X8

Wire model

Power consumption increases 
linearly with the wire-length



/24

Models of power consumption

19

B1

B2

B3

B4

X5

X6

X7

X8

Node model

Each node consumes fixed 
power per iteration

Wire model

Power consumption increases 
linearly with the wire-length



/22

Can more complex nodes help?

20

B1

B2

B3

B4

X5

X6

X7

X8



/22

Can more complex nodes help?

20

B1

B2

B3

B4

X5

X6

X7

X8

α = 4



/22

Can more complex nodes help?

20

B1

B2

B3

B4

X5

X6

X7

X8

“Visible universe” of a bit is limited by the connectivity

α = 4



/22

Can more complex nodes help?

20

B1

B2

B3

B4

X5

X6

X7

X8

B2

“Visible universe” of a bit is limited by the connectivity

α = 4



/22

Can more complex nodes help?

20

B1

B2

B3

B4

X5

X6

X7

X8

B2

B B B B

“Visible universe” of a bit is limited by the connectivity

α = 4



/22

Can more complex nodes help?

20

B1

B2

B3

B4

X5

X6

X7

X8

B2

B B B B

B B B B B B B B B B B B

“Visible universe” of a bit is limited by the connectivity

α = 4



/22

Can more complex nodes help?

20

B1

B2

B3

B4

X5

X6

X7

X8

*  [Grover, Sahai ISIT ’08]Theorem

* precise result for any     and any gap appears in [Grover, Woyach, Sahai ’11]Pe

iterations � 1

log(α− 1)
log

�
log 1

Pe

(C(PT )−R)2

�
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*  [Grover, Sahai ISIT ’08]Theorem

* precise result for any     and any gap appears in [Grover, Woyach, Sahai ’11]Pe

iterations � 1

log(α− 1)
log

�
log 1

Pe

(C(PT )−R)2

�

B2

B B B B

B B B B B B B B B B B B

. . . for any code, and any message-passing algorithm

“Visible universe” of a bit is limited by the connectivity

α = 4
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“Node model”: Every node consumes constant energy per iteration

Ptotal = min
PT

PT + Pdecoding
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“Node model”: Every node consumes constant energy per iteration

Shannon limit
(Tx power)
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transmit power

Total power
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Ptotal = min
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• VLSI model of decoding implementation

Handouts/papers/summary: http://www.eecs.berkeley.edu/~pulkit

• Decoding power can be large

http://www.eecs.berkeley.edu/~pulkit
http://www.eecs.berkeley.edu/~pulkit
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energy per operation E = 3 pJ,
distance = 10 m,
f = 3 GHz
path-loss exponent = 3, 
maximum node connectivity= 4
T = 300 K
Rate = 1/4 bits/ch-use

[Grover, Sahai ’09]
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Morals: 1. Regular LDPCs (not capacity-approaching 
LDPCs) are order optimal!

2. need new joint code/decoder designs
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An interference-aware perspective on decoding
power

Pulkit Grover, Kristen Ann Woyach, Hari Palaiyanur and Anant Sahai
Wireless Foundations, EECS Department, UC Berkeley, CA-94720, USA

{pulkit, kwoyach, hpalaiya, sahai}@eecs.berkeley.edu

Abstract— Traditionally, coding has been seen as a way of sav-
ing transmit power: capacity-approaching codes require minimal
transmitted energy-per-bit given the bandwidth available. But
because transmit power is often smaller than decoding power at
short distances, many recent wireless system designs continue to
use uncoded transmission!

We first observe that in wireless systems that both generate
and face interference, coding serves another purpose (assuming
interference is treated as noise): it allows a system to support a
higher density of transmitter-receiver pairs. Bringing decoding
power into the picture, we propose an approach to investigate
which code/decoder to use and whether to use any coding at all.
It turns out that the code’s gap to capacity determines how high
the maximum supportable link density can be when power is
plentiful, whereas the code’s decoding complexity governs what
link densities can be supported at low power.

I. INTRODUCTION
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Fig. 1. The traditional Shannon waterfall curve, which provides the minimum
required SNR for small bit-error probabilities, predicts a bounded transmit
power even as error probability converges to zero. In contrast, uncoded
transmission requires power that diverges to infinity.

Shannon theory predicts that when source and channel
are perfectly matched, uncoded transmission is optimal. In
practice however, the two are almost always mismatched
and theory predicts that uncoded transmission requires much
higher transmit power. This is illustrated in the traditional
Shannon waterfall, shown in Fig 1: for tiny bit-error probabil-
ities, while coded transmissions can have a bounded SNR, the
required SNR for uncoded transmission diverges to infinity.

It may therefore seem surprising that for short-distance
wireless communication, recent implementations that aim
at reducing system power consumption use regular LDPC
codes [1] (that are known to operate far from capacity) or

even uncoded transmissions (see, for example, [2]). A closer
look at these systems exposes another mismatch of sorts
— one between the theory and practice of short-distance
communication. While coding succeeds in saving transmit
power, the power consumed by the decoder itself is often
substantially larger than the transmit power. By contrast, the
use of uncoded transmission requires more transmit power, but
only trivial decoding effort!

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−30

−25

−20

−15

−10

−5

0

Maximum achievable density (nodes/m
2
)

lo
g

1
0
(P

e)

 

 

Uncoded 

Coded
(at capacity) 

Coded
(1 dB from capacity) 

Coded
(3 dB from capacity) 

Fig. 2. A plot of achievable link densities with decreasing bit-error probability
for a rate of R = 1 Gbps, path-loss decay exponent α = 2.5, bandwidth
W = 3.5 GHz, central frequency fc = 60 GHz, distance r = 1 meter
between the transmitters and their receivers, and angle θ = π

4 (see Fig. 3). The
plot shows the maximum attainable density with arbitrarily large (but equal)
transmission powers. The Shannon-waterfall is reflected as another waterfall
for coded transmissions, yielding a non-zero node density even as the desired
error probability decreases to zero. Similar behavior is demonstrated by codes
that operate a few dBs away from capacity. In contrast, because the transmit
power for uncoded transmissions must diverge to infinity as Pe → 0, the link
density with uncoded transmissions decreases to zero.

Are transmit power and decoding power always exchange-
able, as the above argument presupposes1? At the face of
it, the argument seems reasonable: both are measured in the
same unit, Watts, and to minimize the system power drain
(to maximize the battery-life), one should minimize the sum
of all the powers at the transmitter and the receiver. However,
there is a crucial difference between the transmit and decoding
powers that shows up in multiterminal situations: transmit
power pollutes. Loud transmissions by one link increase the
interference faced by other links, thereby reducing their rates.
In interference-limited multiterminal systems, increasing the
transmit power beyond a certain limit is ineffective: because
the transmit power of every user increases, the interference

1The question was posed to the authors by Rüdiger Urbanke [3].

Traditional picture: Waterfall
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and theory predicts that uncoded transmission requires much
higher transmit power. This is illustrated in the traditional
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ities, while coded transmissions can have a bounded SNR, the
required SNR for uncoded transmission diverges to infinity.

It may therefore seem surprising that for short-distance
wireless communication, recent implementations that aim
at reducing system power consumption use regular LDPC
codes [1] (that are known to operate far from capacity) or

even uncoded transmissions (see, for example, [2]). A closer
look at these systems exposes another mismatch of sorts
— one between the theory and practice of short-distance
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power for uncoded transmissions must diverge to infinity as Pe → 0, the link
density with uncoded transmissions decreases to zero.

Are transmit power and decoding power always exchange-
able, as the above argument presupposes1? At the face of
it, the argument seems reasonable: both are measured in the
same unit, Watts, and to minimize the system power drain
(to maximize the battery-life), one should minimize the sum
of all the powers at the transmitter and the receiver. However,
there is a crucial difference between the transmit and decoding
powers that shows up in multiterminal situations: transmit
power pollutes. Loud transmissions by one link increase the
interference faced by other links, thereby reducing their rates.
In interference-limited multiterminal systems, increasing the
transmit power beyond a certain limit is ineffective: because
the transmit power of every user increases, the interference

1The question was posed to the authors by Rüdiger Urbanke [3].

Density picture 
[Grover, Woyach, Palaiyanur, Sahai ’10]
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Ongoing work

• Multiuser setups:

- broadcast [Grover, Sahai ISIT ’09]

- collection of point-to-point links [Grover, Woyach, Sahai JSAC ’11]

• Accounting for receiver power beyond just the decoding power

- ADC, equalizer, etc. Understanding various tradeoffs. [ongoing with 
Nikolic, Park]

27
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Option 2: “black-box” abstractions for processing power
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upshot: bursty transmissions (“go to sleep”)

!"#"

The Tx and Rx consume a fixed amount of power when “on”

[Cui, Goldsmith Bahai]
[Massaad, Medard, Zheng]
[Prabhakaran]
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