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Coordination is of central importance in decentralized
control. Communication is a natural way to create
coordination.

Toy problems here that have been studied can be clas-
sified into three types: plain communication, commu-
nication for tracking an unstable source, and implicit
communication. Of the three, implicit communication
is the least understood.

1.1 Implicit and communication
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We define implicit communication as one of two possibilities:

• Implicit Message: the message is generated endogenously by the
system.

• Implicit Channel: the system state itself is used to send messages.

One often has the engineering freedom to attach an explicit communi-
cation channel between controllers. In presence of such a channel, is
implicit communication at all useful? What are the good strategies for
communicating implicitly and explicitly? These are the questions we
are interested in.

2 A toy problem of implicit communication: Witsenhausen’s counterexample
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The Witsenhausen counterexample [Witsenhausen’68] is a deceptively
simple two-controller two-time-step problem of maneuvering the state
of a system to the origin. Costs are imposed on the input u1 of the first
controller, and the state x2 after action of the two controllers. Since
there is no cost on the input u2 of the second controller, it is best to
choose u2 = x̂1, the MMSE estimate of x1.

The counterexample is the simplest example of a problem that displays
both implicit message and implicit channel. The communication inter-
pretation of the problem, where the controllers are interpreted as an
encoder and a decoder, brings this out. The goal is to communicate the
implicit message x1 to the decoder through the implicit channel, while
using minimum power of the encoder input u1.



3 Implicit versus explicit communication
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The first problem is Witsenhausen’s counterexample — purely im-
plicit communication. The second is Shannon’s point-to-point
explicit communication problem. Which one has lower costs?
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It turns out that quantization-based implicit communication can
outperform explicit-communication by an arbitrarily large factor.
However, the optimal cost using implicit communication in the
first problem is still unknown. Our results [Grover, Sahai, Park
’09] provide the optimal costs within a constant factor of 8 for all
problem parameters.
What if both implicit and explicit communication are possible in
a problem — can we build on this understanding?
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Approximate-optimality
for (scalar) Witsenhausen counterexample

[Grover, Sahai, Park '09]

3.1 A toy problem of implicit and explicit communication
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The problem is an extension of Witsenhausen’s counterexample
where a rate-limited external channel connects the two controllers.
Similar extensions (with Gaussian external channel) were consid-
ered in [Shoarinejad ’02] and [Martins ’06].

A natural strategy:
When there is no possibility of implicit communication, the op-
timal strategy is to communicate the state [Goblick ’65]. If the
external channel is not present, quantization is approximately op-
timal [Grover, Sahai, Park ’09].

Therefore, a seemingly natural strategy (used in [Martins ’06]) is
to use quantization for implicit communication, and communicate
the state on the external channel. Can we do better?



3.2 A deterministic abstraction, and resulting strategies
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A deterministic abstraction of the problem, inspired by determin-
istic models in information theory [Avestimehr, Diggavi and Tse
’08].

Bits b1, b2 are received noiselessly. Since noise corrupts the lower
order bits, the external channel can be used to send b3, b4. Since
the capacity of the external channel is now exhausted, the encoder
can use its input to force b5 to zero. The decoder now has a perfect
estimate of x1.

The scheme is known as a binning strategy in information theory.
Fine information, one of four bin-colors, is sent over the external
channel. Implicit communication is used to send the higher order
bits and force the state to a fine quantization point.

3.3 Binning based strategies are much better!
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ratio diverges to infinity!
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The external channel in [Martins ’06] is an additive Gaussian noise chan-
nel with an average power constraint Pch and noise variance 1. For
comparison with results in [Martins ’06], we plot the performance of
our strategy when used over this Gaussian external channel. Bin-size is
assumed to be a free parameter in the optimization for both strategies.

As σ20 →∞, the ratio of costs diverges to infinity as well.

3.4 An approximately optimal solution to the asymptotically infinite-length problem
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Binning-based strategies attain within a factor of 8 of
the optimal cost in the limit of infinite lengths.



3.5 Asymptotic lower-bound is insufficient for the scalar case

−2
−1.5

−1
−0.5

0

0

0.5

1

1.5
0

10

20

30

40

log
10

(k)log
10

(σ
0
)

ra
ti

o
 o

f 
u
p
p
er

 b
o
u
n
d
 (

q
u
an

ti
za

ti
o
n
/l

in
ea

r)
an

d
 v

ec
to

r 
lo

w
er

 b
o
u
n
d

diverges to infinity!

ratio of scalar upper bound to vector lower bound

The asymptotic lower bound is insufficient to show approximate-optimality for the
scalar case. We need tighter lower bounds that take vector length into account.

3.6 A tighter KL-divergence-based “sphere-packing” lower bound for the scalar problem
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A tighter lower bound that is specific to a given vector length. The
derivation is based on that for Witsenhausen’s counterexample [Grover,
Sahai, Park ’09]. It is a large deviations perspective on the “sphere-
packing” bounding technique. The observation noise can behave as if
its variance is much larger, thereby increasing the lower bound. For finite
dimensions, the probability of such atypical behavior is approximately
characterized by the KL-divergence between the typical and the atypical
distributions.

Intuitively, for a fixed power P , we can find a lower bound on the
MMSE assuming a test noise variance of σ2G > 1. Multiplying this lower
bound on MMSE with the probability that the channel noise behaves as
Gaussian with variance σ2G provides a lower bound to our problem.

The figure illustrates this intuition in the scalar case for Rex = 0.

3.7 Approximate optimality for the scalar problem?
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gies can be shown to attain within a constant factor of
the optimal cost for any fixed rate Rex on the external
channel. However, as Rex → ∞, the ratio diverges to
infinity as well.

We believe that tightening of the upper bound (i.e.
a better achievable strategy) in the regime of large-k,
large-σ0 is required to attain within a constant fac-
tor of the optimal cost, and to not have the constant
depend on Rex.

4 Summary

This talk intends to bring out the following ideas:

• Implicit communication has the potential to be extremely useful way of building coordination— if substituted
with explicit communication, the system performance is much worse.

• Good control strategies use implicit and explicit communication synergistically. Deterministic models can
yield valuable insights on how to design such strategies.

• KL-divergence is an indispensable tool for proving approximate-optimality at finite-lengths.


