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Syllabus: is here.


https://docs.google.com/document/d/1qQzNeggmrHtoo7FJCc3ATEkFOtlC0Jn-3uZFr1rskkY/edit?usp=sharing
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More often than not, today’s information is measured in bits.

Why?
Is it ok to represent signals as different as audio and video in the
same currency, bits?

Also, why do | communicate over long distances with the exact same
currency?



Video

e Video signals are made up of colors that
vary in space and time.

e Even if we are happy with pixels on a
screen how do we know that all these
colors are optimally described by bits?




Audio

e Audio signals can be thought of
as an amplitude that varies
continuously with time.

e How can we optimally represent a
continuous signal in something :
discrete like bits? .
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e These (and many other) signals can all be optimally represented by
bits.

e Information theory explains why and how.

e For now, let's say we have a single bit that we really want to
communicate to our friend. Let's say it represents whether or not it
is going to snow tonight.



Communication over Noisy Channels

e Let's say we have to transmit our bit over the air using wireless
communication.

e We have a transmit antenna and our friend has a receive antenna.

e We'll send out a negative amplitude (say —1) on our antenna when
the bit is 0 and a positive amplitude (say 1) when the bit is 1.

e Unfortunately, there are other signals in the air (natural and
man-made), or in the receiver, so the receiver sees a noisy version of
our transmission.

e |f there are lots of these little effects, then the central limit theorem
tells us we can just model them as a single Gaussian random variable.



e Here is the probability
distribution function for the
received signal. No longer a
clean —1 or 1.

e You can prove that the best
thing to do now is just decide
that it's —1 if the signal is
below 0 and 1 otherwise.

e But that leaves us with a
probability of error.




e One thing we can do is boost
our transmit power.

e The received signal will look
less and less noisy.
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Repetition Coding

e What if we can't arbitrarily increase our transmit power?

e We can just repeat our bit many times! For example, if we have a 0,
just send —1,—1,—1,...,—1 and take a majority vote.

e Now we can get the probability of error to fall with the number of
repetitions.

e But the rate of incoming bits quickly goes to zero. Can we do
better?

e | call the main result that allows us to do this as “Shannon
Whispering”. You don’t need to speak louder, you don't need to
repeat yourself many times, you just ...
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Repetition Coding

e What if we can't arbitrarily increase our transmit power?

e We can just repeat our bit many times! For example, if we have a 0,
just send —1,—1,—1,...,—1 and take a majority vote.

e Now we can get the probability of error to fall with the number of
repetitions.

e But the rate of incoming bits quickly goes to zero. Can we do
better?

e | call the main result that allows us to do this as “Shannon
Whispering”. You don’t need to speak louder, you don't need to
repeat yourself many times, you just ... need to have a lot to say,
and “code” the information.

(Need to draw on the board)
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e We know the capacity for an Gaussian channel:

1
C= 5 log (1 + SNR) bits per channel use

e Proved by Claude Shannon in 1948.

e What does this mean?



The Benefits of Blocklength

e We can't predict what the noise is going
to be in a single channel use.

e But we do know that in the long run the
noise is going to behave a certain way.

e For example, if a given channel flips bits
with probability 0.1 then in the long run Figure 10.2. Sphere packing for the Gaussion channel.
approximately % of the bits will be

ﬂ d (Cover and Thomas,
Ippeda. Elements of Information Theory)



e So if we are willing to allow for some delay we can communicate
reliably with positive rate!

o Capacity is actually very simple to calculate using the mutual
information, C' = max,) [(X;Y).



What is Information Theory?

A powerful mathematical framework that allows us to determine the
fundamental limits of information compression, storage, processing,
communication, and use.

e Provides the theoretical underpinnings as to why today's networks
are completely digital.

e Unlike many other classes, we will strive to understand “why"
through full proofs.

e As initially formulated, information theory ignores semantics of the
message. We will explicitly discuss applications on how it is being
extended to incorporate semantics.



Organizational Details

e This is 18-753: Information Theory and Coding.

e Designed and taught by Pulkit Grover, Sanghamitra Dutta, Praveen
Venkatesh.

e Pre-requisites: Fluency in probability and mathematical maturity.

o Course Ingredients: 2 — 3 Homeworks, class participation, and a
course project.

e The class focuses on formal statements, formal proofs. The main
question we are asking is: how do we arrive at informational
measures for different applications? Applications, such as
neuroscience and FATE of Al, will be introduced, but not in depth.

o Very few lectures will use slides.

e Textbook: Cover & Thomas, Elements of Info Theory, 2nd ed.
Available online:
http://onlinelibrary.wiley.com/book/10.1002/047174882X (need to
login through CMU library)

e Office Hours: TBD.
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Information Theory

¢ Consider the following (hypothetical) interactions between two
students in CMU.

e A: Have you ever been to the Museum of Natural History?
B: Yes.

e A: Have you ever been to the moon?
B: No.

e Both questions had two possible answers. Which interaction
conveyed more information?

e The "amount of information” in an event appears to be related to
how likely the event is.

e Maybe also on the utility of the answer?

e Classical information theory takes the former view (just based on
likelihood). In this course, we will start with the classical view, and
then go significantly beyond that.



My personal motivation for going beyond

| was bothered for a very long time, and still am, that information
theory is largely a theory of communication/compression. A theory of
information should be much broader.

e My PhD thesis examined how information theory can solve a
distributed control problem (the Witsenhausen counterexample,
1967). This is an application of information theory to a problem
where end-use of information matters: it is defined by the
optimization goal (which is not communication).

— also, this is a scalar problem.
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My personal motivation for going beyond

| was bothered for a very long time, and still am, that information
theory is largely a theory of communication/compression. A theory of
information should be much broader.

My PhD thesis examined how information theory can solve a
distributed control problem (the Witsenhausen counterexample,
1967). This is an application of information theory to a problem
where end-use of information matters: it is defined by the
optimization goal (which is not communication).

— also, this is a scalar problem.

| then examined a problem of communication and computing:
minimizing total (comm-compute) energy in a communication
system. Shannon capacity does not fall out as the answer.
Since then, | have examined error correction in distributed
computing, measures of information flow in neural circuits, and
measures of fairness in machine learning.

In no case is Shannon capacity the answer. But in every case, a
careful, theoretical approach, yields answers and insights.



e Information Theory is the science of measuring of information.



Classic applications: Compression and Communication

e Information Theory is the science of measuring of information.

e This science has had a profound impact on sensing, compression,
storage, extraction, processing, and communication of information.

e Compressing data such as audio, images, movies, , sensor
measurements, etc. (Example: We will see the principle behind the
‘zip’ compression algorithm in this course.)

e Communicating data over noisy channels such as wires, wireless links,
memory (e.g. hard disks), etc.



Classic applications: Compression and Communication

e Information Theory is the science of measuring of information.
e This science has had a profound impact on sensing, compression,
storage, extraction, processing, and communication of information.

e Compressing data such as audio, images, movies, , sensor
measurements, etc. (Example: We will see the principle behind the
‘zip’ compression algorithm in this course.)

e Communicating data over noisy channels such as wires, wireless links,
memory (e.g. hard disks), etc.

e Specifically, we will be interested in determining the fundamental
limits of compression and communication. This will shed light on
how to engineer near-optimal systems.



Classic applications: Compression and Communication

e Information Theory is the science of measuring of information.
e This science has had a profound impact on sensing, compression,
storage, extraction, processing, and communication of information.

e Compressing data such as audio, images, movies, , sensor
measurements, etc. (Example: We will see the principle behind the
‘zip’ compression algorithm in this course.)

e Communicating data over noisy channels such as wires, wireless links,
memory (e.g. hard disks), etc.

e Specifically, we will be interested in determining the fundamental
limits of compression and communication. This will shed light on
how to engineer near-optimal systems.

e We will use probability as a “language” to describe and derive these
limits.



Classic applications: Compression and Communication

e Information Theory is the science of measuring of information.
e This science has had a profound impact on sensing, compression,
storage, extraction, processing, and communication of information.

e Compressing data such as audio, images, movies, , sensor
measurements, etc. (Example: We will see the principle behind the
‘zip’ compression algorithm in this course.)

e Communicating data over noisy channels such as wires, wireless links,
memory (e.g. hard disks), etc.

e Specifically, we will be interested in determining the fundamental
limits of compression and communication. This will shed light on
how to engineer near-optimal systems.

e We will use probability as a “language” to describe and derive these
limits.
o Information Theory has strong connections to Statistics, Physics,

Biology, Computer Science, and many other disciplines. Some of
those connections/applications are the focus of this course.



A General Communication Setting

e Information Source: Data we want to send (e.g. a movie).

e Noisy Channel: Communication medium (e.g. a wire).

e Encoder: Maps source into a channel codeword (signal).

e Decoder: Reconstructs source from channel output (signal).

o Fidelity Criterion: Measures quality of the source reconstruction.

Noi
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e Goal: Transmit at the highest rate possible while meeting the
fidelity criterion.

e Example: Maximize frames/second while keeping mean-squared error
below 1%.



A General Communication Setting

e Information Source: Data we want to send (e.g. a movie).
Noisy Channel: Communication medium (e.g. a wire).

Encoder: Maps source into a channel codeword (signal).
Decoder: Reconstructs source from channel output (signal).
Fidelity Criterion: Measures quality of the source reconstruction.

Noi
sy Decoder |— Source

Source — Encoder )
Channel Reconstruction

e Goal: Transmit at the highest rate possible while meeting the
fidelity criterion.

e Example: Maximize frames/second while keeping mean-squared error
below 1%.

e Look Ahead: We will see a theoretical justification for the layered
protocol architecture of communication networks (combine optimal
compression with optimal communication)



Bits: The currency of information for communication

e As we will see, are a “universal” currency of information for
single sender, single receiver communication.

e Specifically, when we talk about sources, we often describe their size
in bits. Example: A small JPEG is around 100kB.

e Also, when we talk about channels, we often mention what rate they
can support. Example: A dial-up modem can send 14.4kB/sec.

e But this requires a sophisticated source-channel separation theorem
to hold. That theorem holds for point-to-point communication, but
breaks down for even small communication networks. It certainly
breaks down for computing problems, and beyond. So, bits may not
be the currency to express information in your problem.



The course is aimed to understand informational measures. In
introductory information theory courses, these are classically examined
only for compression and communication. This course, on the other
hand, will focus on two other applications specifically:

e Information flow in neural circuits.

e Fairness, Accountability, Transparency, Explainability (FATE) in/of
Al.



Applications

The course is aimed to understand informational measures. In
introductory information theory courses, these are classically examined
only for compression and communication. This course, on the other
hand, will focus on two other applications specifically:

e Information flow in neural circuits.

e Fairness, Accountability, Transparency, Explainability (FATE) in/of
Al.

There are many other applications where information theory is used,
which we will a.s. not discuss in great detail:

e Large deviation theory.

e Deriving minimax lower bounds in statistics.

Quantifying relevance of data features being sampled from different
sensors.

Distributed computing.



High Dimensions

e To compress and communicate data close to the fundamental limits,
we will need to operate over long blocklengths.

e This is on its face an extremely complex problem: nearly impossible
to “guess and check” solutions.

e Using probability, we will be able to reason about the existence (or
non-existence) of good schemes. This will give us insight into how
actually construct near-optimal schemes.

e Along the way, you will develop a lot of intuition for how
high-dimensional random vectors behave.

e We will now review some basic elements of probability that we will
need for the course.



Probability Review: Events

Elements of a Probability Space (92, 7, P):
@ Sample space 2 = {wi,ws, ...} the set of possible outcomes.

@® Set of events F = {F4, Ea,...}, where each event is a set of
possible outcomes (from 2). We say that the event E; occurs if the
outcome w; is an element of E;.

© Probability measure P : 7 — R, an assignments of probabilities to
events, a function that satisfies

(i) P(0) =o0.
(i) P(Q) = 1.
(iii) If E; N E; =0 (i.e. E; and Ej are disjoint) for all ¢ # j, then

oo

P( U E) = : P(E;) .

i=1



Union of Events:
e P(E1UEy) =P(Ey) +P(E2) —P(E; N E2). (Venn Diagram)
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Union of Events:
e P(E1UEy) =P(Ey) +P(E2) —P(E; N E2). (Venn Diagram)
e More generally, we have the inclusion-exclusion principle:

n n
IP( U E) => P(E;)-> P(EiNE;)+ > PENE;NE)
i=1 i=1 i<j i<j<k
L

G VALY P(mEi)+"'

11 <ig<--<ip m=

e Very difficult to calculate, often rely on the union bound:

n

P(Qﬂ) <> P(E).

i=1



Independence:

e Two events F7 and FE» are independent if

P(El N Eg) = P(El)]P(Ez) .



Independence:

e Two events F7 and FE» are independent if
P(El N EQ) = P(El)]P(Ez) .

e The events Ey,..., E, are mutually independent (or just
independent) if, for all subsets Z C {1,...,n},

P(ﬂEi) =[P .

1€l i€l



Conditional Probability:

e The conditional probability that event F; occurs given that event Es

occurs is
]P(El N Ez)

P(E2)
Note that this is well-defined only if P(E2) > 0.

P(EN|Es) =



Conditional Probability:

e The conditional probability that event F; occurs given that event Es

occurs is
P(El N Ez)

P(E2)
Note that this is well-defined only if P(E2) > 0.

P(EN|Es) =

¢ Notice that if F; and Ej are independent and P(E3) > 0,

P(El N EQ) . ]P)(El)]P(Ez)

FEIE) = "5E) = B(Ey

=P(Ey) .



Law of Total Probability:

[e.e]
o If E1, F>,... are disjoint events such that Q) = U E;, then for any

i=1
event A
P(A) = P(ANE;) =Y P(AE)P(E;) .
i=1 i=1
Bayes’ Law:

[e.e]
o If Fq1, Fs,... are disjoint events such that Q2 = U FE;, then for any
i=1

P(E;]A) = P(AIE;)P(E))

oo

Z P(A|E;)P(E;)

event A




e A random variable X on a sample space 2 is a real-valued function,
X:Q->R

e Cumulative Distribution Function (cdf): Fx(z) =P(X < x).

Discrete Random Variables:



Probability Review: Random Variables

e A random variable X on a sample space (2 is a real-valued function,
X:Q—->R

e Cumulative Distribution Function (cdf): Fx(z) =P(X < x).
Discrete Random Variables:
e X is discrete if it only takes values on a countable subset X of R.

e Probability Mass Function (pmf): For discrete random variables, we
can define the pmf px(z) = P(X = z).

e Example 1: Bernoulli with parameter q.

px(x)—{l_q z=0

q r=1.

e Example 2: Binomial with parameters n and q.

n _
px (k) = (k)qk(l—Q)" Fok=0,1,...,n



Continuous Random Variables:

e A random variable X is called continuous if there exists a
nonnegative function fx(x) such that

b
]P(a<X§b)=/fX(:1:)dw forall —co<a<b<oo.

This function fx(z) is called the probability density function (pdf)
of X.



e Example 1: Uniform with parameters a and b.
1

fX(x):{m psrsh

0 otherwise.

e Example 2: Gaussian with parameters ;. and o2,

1 _@=w?

Ixlw) = o= >

e Example 3: Exponential with parameter A.

Ae ™ >0
fX(m)_{o z<0.
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e Discrete rvs: E[g(X)] = Z g()px ()

zeX
o0

e Continuous rvs: E[g(X)] =/ g(x) fx(x)dx

—00

Special Cases

Mean:
e Discrete rvs: E[X] = Z xpx ()
TEX
o
e Continuous rvs: E[X] :/ xfx(x)dx
—00

Bernoulli  Binomial Uniform Gaussian Exponential

+b 1
p np o I X



Special Cases Continued

mth Moment:
e Discrete rvs: E[X™] = Z " px (z)

reX
oo
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—00

Variance:
o Var(X) = E[(X - E[X])*] = E[X?] - (E[X])2



Special Cases Continued

mth Moment:
e Discrete rvs: E[X™] = Z " px (z)

reX
oo

e Continuous rvs: E[X™] =/ " fx(z)dz

—00

Variance:
o Var(X) = E[(X - E[X])*] = E[X?] - (E[X])2

Bernoulli  Binomial Uniform Gaussian Exponential
b— 2
p(1—p) mp(l-p) L= o’ 3=



Probability Review: Collections of Random Variables

Pairs of Random Variables (X,Y):

e Joint cdf: Fxy(z,y) =P(X <z,Y <y)

e Joint pmf: pxy(z,y) = P(X = xz,Y =y) (for discrete rvs)
e Joint pdf: If fxy satisfies

Pla< X <be<Y <d) = //nyxy)dydx

forall —co < a < b<ooand —oco < c<d< oo then fxy is called
the joint pdf of (X,Y"). (for continuous rvs)

e Marginalization:
= pxv(z,y)
TEX

y) = /_Oo fxy (z,y)dx



n-tuples of Random Variables (X1,...,X,):

e Joint cdf: Fx,..x,(z1,...,2p) =P(X1 < z1,..., Xy < )
e Joint pmf: px,.x, (x1,...,2n) =P(X1 =21,..., X, = xp)
e Joint pdf: If fx,..x, satisfies

P(al <Xy Sbl,...,an<Xn§bn)
b1 bn

=/ fxox, (@1, .o o )dey, - - - day
al Qan

for all —oo < a; < b; < oo then fx,..x, is called the joint pdf of
(X17 s 7Xn)



Independence of Random Variables:
e Xq,...,X, are independent if

FleXn(fﬁla .. .,.ivn) = FXl(ml) . FXn(ajn)
Vl‘l,mQ,. ey Tp

e Equivalently, we can just check if

Pxy X, (1, Tn) = px, (1) -+ - px, (zn) (discrete rvs)

fxyox, (@1, mn) = fx,(z1) -+ fx, (n) (continuous rvs)



Probability Review: Collections of Random Variables

Conditional Probability Densities:

e Given discrete rvs X and Y with joint pmf pxy (x,y), the
conditional pmf of X given Y = y is defined to be

rxv(z,y)

x|y (zly) = Tov(y) py(y) >0
0 otherwise.

e Given continous rvs X and Y with joint pdf fxy(z,y), the
conditional pdf of X given Y =y is defined to be

fxy(z,y) f (
= fy(y) >0
Ixpy (@ly) = { Fely)

0 otherwise.

e Note that if X and Y are independent, then px |y (z|y) = px(z) or
fxiy(zly) = fx(z).



Linearity of Expectation:
o Ela1 X1+ +anXy] = aE[Xq] + - - - + a,E[X,,] even if the X;
are dependent.

Expectation of Products:

e If Xq,...,X, are independent, then
E[g1(X1) -+ gn(Xn)] = E[g1(X1)] - - - E[gn(Xy)] for any
deterministic functions g;.



Conditional Expectation:

e Discrete rvs: E[g(X)|Y =y] = Z 9(@)pxy (zly)

reX
oo

e Continuous rvs: E[g(X)|Y = y] :/ 9(x) fxy (zly)dx

—00



Probability Review: Collections of Random Variables

Conditional Expectation:

e Discrete rvs: E[g(X)|Y =y] = Z g(x)px\y(xly)

TEX
o0

e Continuous rvs: E[g(X)]Y =y] = / 9(z) fxy (x|y)dx

—00

e E[Y|X = z] is a number. This number can be interpreted as a
function of z.

e E[Y|X] is a random variable. It is in fact a function of the random
variable X. (Note: A function of a random variable is a random
variable.)

e Lemma: Ex [E[Y|X]] = E[Y].



Conditional Independence:

e X and Y are conditionally independent given Z if

pxv|z(®, yl2) = px|z(®|2)py|z(ylz) (discrete rvs)

Ixviz(®,ylz) = fxz(w|2) fyz(y|z) (continuous rvs)



Markov Chains:

e Random variables X, Y, and Z are said to form a Markov chain
X — Y — Z if the conditional distribution of Z depends only on Y
and is conditionally independent of X.
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Markov Chains:

e Random variables X, Y, and Z are said to form a Markov chain
X — Y — Z if the conditional distribution of Z depends only on Y
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e Specifically, the joint pmf (or pdf) can be factored as
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Probability Review: Collections of Random Variables

Markov Chains:

e Random variables X, Y, and Z are said to form a Markov chain
X — Y — Z if the conditional distribution of Z depends only on Y
and is conditionally independent of X.

Specifically, the joint pmf (or pdf) can be factored as
pxvz(®,y,2) = px (x)py|x (ylz)pzy (2]y) (discrete rvs)
fxvz(z,y,2) = fx (@) fy|x (ylz) fz)y (2]y) (continuous rvs) .

e X »Y — Zifand only if X and Z are conditionally independent
given Y.

e X Y — Zimplies Z - Y — X (and vice versa).

If Z is a deterministic function of Y, i.e. Z = g(Y'), then
X — 'Y — Z automatically.
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e Aset X CR" is convex if, for every x1,x2 € X and \ € [0, 1], we
have that Ax; + (1 — A)x2 € X.
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Convexity:

e Aset X CR" is convex if, for every x1,x2 € X and \ € [0, 1], we
have that Ax; + (1 — A)x2 € X.

e A function g on a convex set X is convex if, for every x1,x9 € X
and X € [0, 1], we have that

g(Ax1 4 (1 = A)x2) < Ag(x1) + (1 = N)g(x2) .

e A function g is concave if —g is convex.
Jensen’s Inequality:

e If g is a convex function and X is a random variable, then

9(E[X]) < E[g(X)]



Markov’s Inequality:

e Let X be a non-negative random variable. For any ¢ > 0,

Pox 2 < B



Markov’s Inequality:
e Let X be a non-negative random variable. For any ¢ > 0,

E
PO s < B0
Chebyshev’s Inequality:
e Let X be a random variable. For any € > 0,

P(|X ~EX]| > ¢) < Vaz(zX) .




Probability Review: Inequalities

Weak Law of Large Numbers (WLLN):

e Let X; be a sequence of independent and identically distributed
(i.i.d.) random variables with finite mean, p = E[X;] < 0.

. I
e Define the sample mean X,, = - ZlXZ
1=

e For any € > 0, the WLLN implies that

lim P(| X, — | > ¢) =0.

n—0o0

e That is, the sample mean converges (in probability) to the true
mean.



Strong Law of Large Numbers (SLLN):

e Let X; be a sequence of independent and identically distributed
(i.i.d.) random variables with finite mean, u = E[X;] < cc.

_ 1
e Define the sample mean X,, = — ZXi'
n

=1

e The SLLN implies that
IP’({ li_)m X :,u}>=1.

e That is, the sample mean converges (almost surely) to the true
mean.
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