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Bits and Information Theory

• More often than not, today’s information is measured in bits.

• Why?

• Is it ok to represent signals as different as audio and video in the
same currency, bits?

• Also, why do I communicate over long distances with the exact same
currency?
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Video

• Video signals are made up of colors that
vary in space and time.

• Even if we are happy with pixels on a
screen how do we know that all these
colors are optimally described by bits?



Audio

• Audio signals can be thought of
as an amplitude that varies
continuously with time.

• How can we optimally represent a
continuous signal in something
discrete like bits?

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15



Just a Single Bit

• These (and many other) signals can all be optimally represented by
bits.

• Information theory explains why and how.

• For now, let’s say we have a single bit that we really want to
communicate to our friend. Let’s say it represents whether or not it
is going to snow tonight.



Communication over Noisy Channels

• Let’s say we have to transmit our bit over the air using wireless
communication.

• We have a transmit antenna and our friend has a receive antenna.

• We’ll send out a negative amplitude (say −1) on our antenna when
the bit is 0 and a positive amplitude (say 1) when the bit is 1.

• Unfortunately, there are other signals in the air (natural and
man-made), or in the receiver, so the receiver sees a noisy version of
our transmission.

• If there are lots of these little effects, then the central limit theorem
tells us we can just model them as a single Gaussian random variable.



Received Signal

• Here is the probability
distribution function for the
received signal. No longer a
clean −1 or 1.

• You can prove that the best
thing to do now is just decide
that it’s −1 if the signal is
below 0 and 1 otherwise.

• But that leaves us with a
probability of error.
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Received Signal

• One thing we can do is boost
our transmit power.

• The received signal will look
less and less noisy.
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Repetition Coding

• What if we can’t arbitrarily increase our transmit power?

• We can just repeat our bit many times! For example, if we have a 0,
just send −1,−1,−1, . . . ,−1 and take a majority vote.

• Now we can get the probability of error to fall with the number of
repetitions.

• But the rate of incoming bits quickly goes to zero. Can we do
better?

• I call the main result that allows us to do this as “Shannon
Whispering”. You don’t need to speak louder, you don’t need to
repeat yourself many times, you just . . .

need to have a lot to say,
and “code” the information.

• (Need to draw on the board)
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Point-to-Point Communication
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• We know the capacity for an Gaussian channel:

C =
1

2
log (1 + SNR) bits per channel use

• Proved by Claude Shannon in 1948.

• What does this mean?



The Benefits of Blocklength

• We can’t predict what the noise is going
to be in a single channel use.

• But we do know that in the long run the
noise is going to behave a certain way.

• For example, if a given channel flips bits
with probability 0.1 then in the long run
approximately 1

10 of the bits will be
flipped.

(Cover and Thomas,
Elements of Information Theory)



Capacity

• So if we are willing to allow for some delay we can communicate
reliably with positive rate!

• Capacity is actually very simple to calculate using the mutual
information, C = maxp(x) I(X;Y ).



What is Information Theory?

• A powerful mathematical framework that allows us to determine the
fundamental limits of information compression, storage, processing,
communication, and use.

• Provides the theoretical underpinnings as to why today’s networks
are completely digital.

• Unlike many other classes, we will strive to understand “why”
through full proofs.

• As initially formulated, information theory ignores semantics of the
message. We will explicitly discuss applications on how it is being
extended to incorporate semantics.



Organizational Details

• This is 18-753: Information Theory and Coding.

• Designed and taught by Pulkit Grover, Sanghamitra Dutta, Praveen
Venkatesh.

• Pre-requisites: Fluency in probability and mathematical maturity.

• Course Ingredients: 2− 3 Homeworks, class participation, and a
course project.

• The class focuses on formal statements, formal proofs. The main
question we are asking is: how do we arrive at informational
measures for different applications? Applications, such as
neuroscience and FATE of AI, will be introduced, but not in depth.

• Very few lectures will use slides.

• Textbook: Cover & Thomas, Elements of Info Theory, 2nd ed.
Available online:
http://onlinelibrary.wiley.com/book/10.1002/047174882X (need to
login through CMU library)

• Office Hours: TBD.



Information Theory

• Consider the following (hypothetical) interactions between two
students in CMU.

• A: Have you ever been to the Museum of Natural History?
B: Yes.

• A: Have you ever been to the moon?
B: No.

• Both questions had two possible answers. Which interaction
conveyed more information?

• The “amount of information” in an event appears to be related to
how likely the event is.

• Maybe also on the utility of the answer?

• Classical information theory takes the former view (just based on
likelihood). In this course, we will start with the classical view, and
then go significantly beyond that.
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My personal motivation for going beyond

I was bothered for a very long time, and still am, that information
theory is largely a theory of communication/compression. A theory of
information should be much broader.

• My PhD thesis examined how information theory can solve a
distributed control problem (the Witsenhausen counterexample,
1967). This is an application of information theory to a problem
where end-use of information matters: it is defined by the
optimization goal (which is not communication).
– also, this is a scalar problem.

• I then examined a problem of communication and computing:
minimizing total (comm+compute) energy in a communication
system. Shannon capacity does not fall out as the answer.

• Since then, I have examined error correction in distributed
computing, measures of information flow in neural circuits, and
measures of fairness in machine learning.

• In no case is Shannon capacity the answer. But in every case, a
careful, theoretical approach, yields answers and insights.
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Classic applications: Compression and Communication

• Information Theory is the science of measuring of information.

• This science has had a profound impact on sensing, compression,
storage, extraction, processing, and communication of information.

• Compressing data such as audio, images, movies, text, sensor
measurements, etc. (Example: We will see the principle behind the
‘zip’ compression algorithm in this course.)

• Communicating data over noisy channels such as wires, wireless links,
memory (e.g. hard disks), etc.

• Specifically, we will be interested in determining the fundamental
limits of compression and communication. This will shed light on
how to engineer near-optimal systems.

• We will use probability as a “language” to describe and derive these
limits.

• Information Theory has strong connections to Statistics, Physics,
Biology, Computer Science, and many other disciplines. Some of
those connections/applications are the focus of this course.
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A General Communication Setting

• Information Source: Data we want to send (e.g. a movie).

• Noisy Channel: Communication medium (e.g. a wire).

• Encoder: Maps source into a channel codeword (signal).

• Decoder: Reconstructs source from channel output (signal).

• Fidelity Criterion: Measures quality of the source reconstruction.

Source Encoder
Noisy

Channel
Decoder

Source

Reconstruction

• Goal: Transmit at the highest rate possible while meeting the
fidelity criterion.

• Example: Maximize frames/second while keeping mean-squared error
below 1%.

• Look Ahead: We will see a theoretical justification for the layered
protocol architecture of communication networks (combine optimal
compression with optimal communication)
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Bits: The currency of information for communication

• As we will see, bits are a “universal” currency of information for
single sender, single receiver communication.

• Specifically, when we talk about sources, we often describe their size
in bits. Example: A small JPEG is around 100kB.

• Also, when we talk about channels, we often mention what rate they
can support. Example: A dial-up modem can send 14.4kB/sec.

• But this requires a sophisticated source-channel separation theorem
to hold. That theorem holds for point-to-point communication, but
breaks down for even small communication networks. It certainly
breaks down for computing problems, and beyond. So, bits may not
be the currency to express information in your problem.



Applications

The course is aimed to understand informational measures. In
introductory information theory courses, these are classically examined
only for compression and communication. This course, on the other
hand, will focus on two other applications specifically:

• Information flow in neural circuits.

• Fairness, Accountability, Transparency, Explainability (FATE) in/of
AI.

There are many other applications where information theory is used,
which we will a.s. not discuss in great detail:

• Large deviation theory.

• Deriving minimax lower bounds in statistics.

• Quantifying relevance of data features being sampled from different
sensors.

• Distributed computing.
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High Dimensions

• To compress and communicate data close to the fundamental limits,
we will need to operate over long blocklengths.

• This is on its face an extremely complex problem: nearly impossible
to “guess and check” solutions.

• Using probability, we will be able to reason about the existence (or
non-existence) of good schemes. This will give us insight into how
actually construct near-optimal schemes.

• Along the way, you will develop a lot of intuition for how
high-dimensional random vectors behave.

• We will now review some basic elements of probability that we will
need for the course.



Probability Review: Events

Elements of a Probability Space (Ω,F ,P):
1 Sample space Ω = {ω1, ω2, . . .} the set of possible outcomes.

2 Set of events F = {E1, E2, . . .}, where each event is a set of
possible outcomes (from Ω). We say that the event Ei occurs if the
outcome ωj is an element of Ei.

3 Probability measure P : F → R+, an assignments of probabilities to
events, a function that satisfies

(i) P(∅) = 0.
(ii) P(Ω) = 1.
(iii) If Ei ∩ Ej = ∅ (i.e. Ei and Ej are disjoint) for all i ̸= j, then

P

( ∞∪
i=1

Ei

)
=

∞∑
i=1

P(Ei) .



Probability Review: Events

Union of Events:

• P(E1 ∪ E2) = P(E1) + P(E2)− P(E1 ∩ E2). (Venn Diagram)

• More generally, we have the inclusion-exclusion principle:

P
( n∪

i=1

Ei

)
=

n∑
i=1

P(Ei)−
∑
i<j

P(Ei ∩ Ej) +
∑

i<j<k

P(Ei ∩ Ej ∩ Ek)

· · ·+ (−1)ℓ+1
∑

i1<i2<···<iℓ

P
( ℓ∩

m=1

Eim

)
+ · · ·

• Very difficult to calculate, often rely on the union bound:

P
( n∪

i=1

Ei

)
≤

n∑
i=1

P(Ei) .
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Probability Review: Events

Independence:

• Two events E1 and E2 are independent if

P(E1 ∩ E2) = P(E1)P(E2) .

• The events E1, . . . , En are mutually independent (or just
independent) if, for all subsets I ⊆ {1, . . . , n},

P
(∩

i∈I
Ei

)
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∏
i∈I
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Probability Review: Events

Conditional Probability:

• The conditional probability that event E1 occurs given that event E2

occurs is

P(E1|E2) =
P(E1 ∩ E2)

P(E2)
.

Note that this is well-defined only if P(E2) > 0.

• Notice that if E1 and E2 are independent and P(E2) > 0,

P(E1|E2) =
P(E1 ∩ E2)

P(E2)
=

P(E1)P(E2)

P(E2)
= P(E1) .
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Probability Review: Events

Law of Total Probability:

• If E1, E2, . . . are disjoint events such that Ω =

∞∪
i=1

Ei, then for any

event A

P(A) =

∞∑
i=1

P(A ∩ Ei) =

∞∑
i=1

P(A|Ei)P(Ei) .

Bayes’ Law:

• If E1, E2, . . . are disjoint events such that Ω =

∞∪
i=1

Ei, then for any

event A

P(Ej |A) =
P(A|Ej)P(Ej)

∞∑
i=1

P(A|Ei)P(Ei)

.



Probability Review: Random Variables

• A random variable X on a sample space Ω is a real-valued function,
X : Ω → R.

• Cumulative Distribution Function (cdf): FX(x) = P(X ≤ x).

Discrete Random Variables:

• X is discrete if it only takes values on a countable subset X of R.
• Probability Mass Function (pmf): For discrete random variables, we
can define the pmf pX(x) = P(X = x).

• Example 1: Bernoulli with parameter q.

pX(x) =

{
1− q x = 0

q x = 1 .

• Example 2: Binomial with parameters n and q.

pX(k) =

(
n

k

)
qk(1− q)n−k k = 0, 1, . . . , n
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Probability Review: Random Variables

Continuous Random Variables:

• A random variable X is called continuous if there exists a
nonnegative function fX(x) such that

P(a < X ≤ b) =

∫ b

a
fX(x)dx for all −∞ < a < b < ∞ .

This function fX(x) is called the probability density function (pdf)
of X.



Probability Review: Random Variables

• Example 1: Uniform with parameters a and b.

fX(x) =

{
1

b−a a < x ≤ b

0 otherwise.

• Example 2: Gaussian with parameters µ and σ2.

fX(x) =
1√
2πσ2

e−
(x−µ)2

2σ2

• Example 3: Exponential with parameter λ.

fX(x) =

{
λe−λx x ≥ 0

0 x < 0 .



Probability Review: Random Variables

Expectation:

• Discrete rvs: E[g(X)] =
∑
x∈X

g(x)pX(x)

• Continuous rvs: E[g(X)] =

∫ ∞

−∞
g(x)fX(x)dx

Special Cases

Mean:

• Discrete rvs: E[X] =
∑
x∈X

xpX(x)

• Continuous rvs: E[X] =

∫ ∞

−∞
xfX(x)dx

• Bernoulli Binomial Uniform Gaussian Exponential

p np a+b
2 µ 1

λ
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Probability Review: Random Variables

Special Cases Continued

mth Moment:

• Discrete rvs: E[Xm] =
∑
x∈X

xmpX(x)

• Continuous rvs: E[Xm] =

∫ ∞

−∞
xmfX(x)dx

Variance:

• Var(X) = E
[
(X − E[X])2

]
= E[X2]−

(
E[X]

)2

•
Bernoulli Binomial Uniform Gaussian Exponential

p(1− p) np(1− p) (b−a)2

12 σ2 1
λ2
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Probability Review: Collections of Random Variables

Pairs of Random Variables (X,Y ):

• Joint cdf: FXY (x, y) = P(X ≤ x, Y ≤ y)

• Joint pmf: pXY (x, y) = P(X = x, Y = y) (for discrete rvs)

• Joint pdf: If fXY satisfies

P(a < X ≤ b, c < Y ≤ d) =

∫ b

a

∫ d

c
fXY (x, y)dydx

for all −∞ < a < b < ∞ and −∞ < c < d < ∞ then fXY is called
the joint pdf of (X,Y ). (for continuous rvs)

• Marginalization:
pY (y) =

∑
x∈X

pXY (x, y)

fY (y) =

∫ ∞

−∞
fXY (x, y)dx



Probability Review: Collections of Random Variables

n-tuples of Random Variables (X1, . . . , Xn):

• Joint cdf: FX1···Xn(x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn)

• Joint pmf: pX1···Xn(x1, . . . , xn) = P(X1 = x1, . . . , Xn = xn)

• Joint pdf: If fX1···Xn satisfies

P(a1 < X1 ≤ b1, . . . , an < Xn ≤ bn)

=

∫ b1

a1

· · ·
∫ bn

an

fX1···Xn(x1, . . . , xn)dxn · · · dx1

for all −∞ < ai < bi < ∞ then fX1···Xn is called the joint pdf of
(X1, . . . , Xn).



Probability Review: Collections of Random Variables

Independence of Random Variables:

• X1, . . . , Xn are independent if
FX1···Xn(x1, . . . , xn) = FX1(x1) · · ·FXn(xn)
∀x1, x2, . . . , xn

• Equivalently, we can just check if

pX1···Xn(x1, . . . , xn) = pX1(x1) · · · pXn(xn) (discrete rvs)

fX1···Xn(x1, . . . , xn) = fX1(x1) · · · fXn(xn) (continuous rvs)



Probability Review: Collections of Random Variables

Conditional Probability Densities:

• Given discrete rvs X and Y with joint pmf pXY (x, y), the
conditional pmf of X given Y = y is defined to be

pX|Y (x|y) =

{
pXY (x,y)
pY (y) pY (y) > 0

0 otherwise.

• Given continous rvs X and Y with joint pdf fXY (x, y), the
conditional pdf of X given Y = y is defined to be

fX|Y (x|y) =

{
fXY (x,y)
fY (y) fY (y) > 0

0 otherwise.

• Note that if X and Y are independent, then pX|Y (x|y) = pX(x) or
fX|Y (x|y) = fX(x).



Probability Review: Collections of Random Variables

Linearity of Expectation:

• E[a1X1 + · · ·+ anXn] = a1E[X1] + · · ·+ anE[Xn] even if the Xi

are dependent.

Expectation of Products:

• If X1, . . . , Xn are independent, then
E[g1(X1) · · · gn(Xn)] = E[g1(X1)] · · ·E[gn(Xn)] for any
deterministic functions gi.



Probability Review: Collections of Random Variables

Conditional Expectation:

• Discrete rvs: E[g(X)|Y = y] =
∑
x∈X

g(x)pX|Y (x|y)

• Continuous rvs: E[g(X)|Y = y] =

∫ ∞

−∞
g(x)fX|Y (x|y)dx

• E[Y |X = x] is a number. This number can be interpreted as a
function of x.

• E[Y |X] is a random variable. It is in fact a function of the random
variable X. (Note: A function of a random variable is a random
variable.)

• Lemma: EX

[
E[Y |X]

]
= E[Y ].
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Probability Review: Collections of Random Variables

Conditional Independence:

• X and Y are conditionally independent given Z if

pXY |Z(x, y|z) = pX|Z(x|z)pY |Z(y|z) (discrete rvs)

fXY |Z(x, y|z) = fX|Z(x|z)fY |Z(y|z) (continuous rvs)



Probability Review: Collections of Random Variables

Markov Chains:

• Random variables X, Y , and Z are said to form a Markov chain
X → Y → Z if the conditional distribution of Z depends only on Y
and is conditionally independent of X.

• Specifically, the joint pmf (or pdf) can be factored as

pXY Z(x, y, z) = pX(x)pY |X(y|x)pZ|Y (z|y) (discrete rvs)

fXY Z(x, y, z) = fX(x)fY |X(y|x)fZ|Y (z|y) (continuous rvs) .

• X → Y → Z if and only if X and Z are conditionally independent
given Y .

• X → Y → Z implies Z → Y → X (and vice versa).

• If Z is a deterministic function of Y , i.e. Z = g(Y ), then
X → Y → Z automatically.
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Probability Review: Inequalities

Convexity:

• A set X ⊆ Rn is convex if, for every x1,x2 ∈ X and λ ∈ [0, 1], we
have that λx1 + (1− λ)x2 ∈ X .

• A function g on a convex set X is convex if, for every x1,x2 ∈ X
and λ ∈ [0, 1], we have that

g(λx1 + (1− λ)x2) ≤ λg(x1) + (1− λ)g(x2) .

• A function g is concave if −g is convex.

Jensen’s Inequality:

• If g is a convex function and X is a random variable, then

g
(
E[X]) ≤ E

[
g(X)

]
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Probability Review: Inequalities

Markov’s Inequality:

• Let X be a non-negative random variable. For any t > 0,

P(X ≥ t) ≤ E[X]

t
.

Chebyshev’s Inequality:

• Let X be a random variable. For any ϵ > 0,

P
(∣∣X − E[X]

∣∣ > ϵ
)
≤ Var(X)

ϵ2
.
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Probability Review: Inequalities

Weak Law of Large Numbers (WLLN):

• Let Xi be a sequence of independent and identically distributed
(i.i.d.) random variables with finite mean, µ = E[Xi] < ∞.

• Define the sample mean X̄n =
1

n

n∑
i=1

Xi.

• For any ϵ > 0, the WLLN implies that

lim
n→∞

P
(∣∣X̄n − µ

∣∣ > ϵ
)
= 0 .

• That is, the sample mean converges (in probability) to the true
mean.



Probability Review: Inequalities

Strong Law of Large Numbers (SLLN):

• Let Xi be a sequence of independent and identically distributed
(i.i.d.) random variables with finite mean, µ = E[Xi] < ∞.

• Define the sample mean X̄n =
1

n

n∑
i=1

Xi.

• The SLLN implies that

P
({

lim
n→∞

X̄n = µ
})

= 1 .

• That is, the sample mean converges (almost surely) to the true
mean.
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