Carnegie Mellon University

Competing Models for Spectrum Sharing

Jon M. Peha Carnegie Mellon University

Professor and Associate Director, Center for Wireless & Broadband Networking www.ece.cmu.edu/~peha peha@cmu.edu

Feb. 28, 2006, National Academy of Sciences

© 2006 Jon Peha

peha@cmu.edu

This Session is on "unlicensed, short-term, dynamic, and shared-use" mechanisms

- Many specific proposals.
 - feasible
 - offering different opportunities.
- NTIA and FCC should give spectrum-users the ability and incentive to match the right spectrum-sharing model to the intended applications.

peha@cmu.edu

© 2006 Jon Peha

Different Spectrum-Sharing Models

- Sharing among equals
 - Devices coexist, perhaps avoid mutual interference,
 e.g. today's unlicensed bands
 - Devices cooperate, carry each other's traffic
 - Potential for cooperative gain, increased capacity.
 - Many technical and policy challenges, outside scope of this talk.
- Sharing between licensed primary and secondary.
 Secondary must not cause harmful interference to primary.
 - Secondary may or may not coordinate with primary.
 - Secondary may or may not be licensed.
- Each of the models above is good for different things.

© 2006 Jon Peha

peha@cmu.edu

3

Unlicensed Bands

- Good for mobile wireless systems:
 - Mobile LANs, PBXs, etc.
 - Works anywhere, regardless of license-holders or incumbents.
- Good when many owners have many low-power devices.
 - No lengthy or expensive licensing process required.
- Hard to prevent interference. No QOS guarantees possible.
- Less incentive to conserve shared spectrum. We have analyzed scenarios where this is a problem.
- FCC or NTIA can
 - keep utilization low (power limits, fees, permits, etc.)
 - design rules to promote efficiency for intended applications
 - Different rules in different bands can provide opportunities and incentives for different applications.

peha@cmu.edu

© 2006 Jon Peha

Primary and Secondary Coexist

- Secondary is invisible to primary
- All complexity in secondary devices. Good where legacy systems are not easily changed.
- Probably no QOS guarantee possible for secondary.
- Secondary transmits
 - at low power, or
 - opportunistically after sensing the environment
- Technology of opportunistic access is
 - challenging in some environments.
 An area of current research.
 - easier if primary transmitters are fixed,
 e.g. where broadcasters or fixed point-point are primary.

© 2006 Jon Peha

peha@cmu.edu

_

Primary and Secondary Coordinate

- Example: secondary requests permission to use spectrum before transmitting
 - an opportunity for primary to guarantee QOS
 - an opportunity to collect payment, if commercial
- Primary needs component that can act as gatekeeper.
 - e.g. more convenient for cellular than broadcaster
- We've analyzed scenarios where extensive communications among secondaries is possible with little impact on primary.
 - Use location technology to enhance frequency reuse, and secure payment system technology.

6

A Licensed Secondary

- A possibility not included in agenda for this session, but a viable alternative for *some* application types.
- A licensed secondary need not contend with other secondaries
- If/when primary can be avoided, QOS is guaranteed
- Two approaches
 - No coordination: Operates in spectrum unused by primary, e.g. white space or guard bands, and/or transmits opportunistically
 - Coordination: Operates as licensed system except when primary is active, e.g. interruptible service
- We've analyzed scenarios where extensive communications among secondaries is possible with little impact on primary
 - Sometimes the primary's need for spectrum is sporadic, e.g. public safety
 - Sometimes there is "white space" to exploit

© 2006 Jon Peha peha@cmu.edu

Primary-Secondary Models

Research at CMU has considered the following models.

Primary: blue Secondary: red	Secondary is unlicensed	Secondary is licensed
No coordination between primary and secondary	Unlicensed underlay. e.g. Broadcasters with site licenses and opportunistic devices w.o. QOS guarantees	Licensed secondary with exclusive access in white space, guard bands, e.g. Broadcasters and microcellular or cellular
Coordination between primary and secondary	Real-time secondary market, e.g. Cellular and devices with temporary QOS guarantees	Secondary with exclusive access but interruptible access, e.g. Public safety and cellular

© 2006 Jon Peha peha@cmu.edu

No Choosing the "Best" Model

- We must explore primary-secondary sharing.
 - Essential to increasing efficiency of spectrum use, thereby alleviating spectrum shortage.
 - Four models, each appropriate for a different set of primary and secondary applications
- Unlicensed bands are also needed
 - A proven and successful approach

© 2006 Jon Peha

peha@cmu.edu

ç

Carnegie Mellon University

Some of the papers referred to in these slides are available at www.ece.cmu.edu/~peha/wireless.html

Jon M. Peha

Professor and Associate Director,
Center for Wireless & Broadband Networking
Carnegie Mellon University

© 2006 Jon Peha

peha@cmu.edu

10