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Abstract— One way to make more spectrum available is 
through white space sharing, where secondary spectrum users are 
allowed to transmit from any location except inside exclusion zones 
(EZs) that are drawn around primary spectrum users (PUs). 
However, EZ boundaries reveal the locations of PUs, and for some 
devices, location privacy is extremely important.  Location privacy 
can be improved by increasing the area blocked inside EZs, but 
this decreases spectrum utilization efficiency. This paper derives a 
Pareto optimal strategy that builds on two such approaches: 
generating dummy PUs and creating EZs around them, and 
making EZs larger than needed for interference protection alone.  
We find that in many circumstances, including cases where an 
attacker threatens a jamming attack, the optimal strategy is to 
maximize the number of dummy PUs while making EZs as small 
as possible.  In the remaining circumstances, the optimal strategy 
is to generate no dummy EZs. We derive the Pareto optimal results 
achieved by using whichever of these strategies is best for given 
circumstances, and show that the results are far superior to those 
achieved with some previously proposed algorithms.  Moreover, 
with our approach, even a small increase in the amount of area 
blocked from secondary use can greatly improve location privacy 
for PUs, although as more and more area is blocked, there are 
diminishing returns. 

Keywords— spectrum sharing; location privacy; location 
confidentiality; dummy generation; obfuscation; spatial cloaking; 
database-driven cognitive radio network (CRN) 

I. INTRODUCTION 

Demand for spectrum is increasing rapidly [1]. Meeting this 
demand will increase public welfare and foster economic 
growth [2]. One way to make more spectrum available to meet 
this demand is through hierarchical sharing approaches such as 
primary-secondary schemes [3], [4] whereby lower-priority 
devices are only allowed to transmit if they do not cause 
harmful interference to protected devices. One way to do this is 
white space sharing, in which Exclusion Zones (EZs) are drawn 
around Primary Users of spectrum (PUs). All PUs have 
receivers that require protection from interference, and many 
have transmitters as well. Secondary Users (SUs) are 

                                                           
1 Note that this is the definition of EZs used in this paper, but it is just one of 
three commonly used definitions [5].   

transmitters that are allowed to transmit normally anywhere 
outside of EZs, and are not allowed to transmit inside EZs.1  (An 
alternative is gray space sharing, where SUs adjust dynamically 
to PUs in some regions [5]–[8]). EZ information can be stored 
in a Geolocation Database (GDB), and SUs can determine 
whether they are allowed to transmit at a given location by 
querying that GDB. Spectrum regulators have already adopted 
this form of sharing in some bands, and it has been suggested 
that similar approaches be adopted more broadly [9]. For 
example, this form of spectrum sharing has been implemented 
in the TV band in a number of countries [10], [11], in the 3.5 
GHz band in the US [12], and using the Licensed Shared Access 
(LSA) approach in Europe [13].  

However, revealing information about EZs can threaten 
operational security (OPSEC) [14], [15]. An attacker can use 
the location and shape of EZs to undermine the PU’s location 
privacy, i.e. to infer information about where PUs are located. 
Information about EZs can be obtained in a variety of ways, 
including making a series of queries to a GDB, intercepting the 
queries of other devices, or compromising a GDB directly [16], 
[17]. While PU location privacy is not a concern where PU 
operational characteristics are publicly known, as is the case for 
white space sharing in the TV band, location privacy can be 
extremely important in other cases. For example, the 3.5 GHz 
band in the U.S. and 2.3-2.4 GHz LSA band in Europe [18] 
contain military radars, satellite ground stations, air traffic 
control, and telemetry devices, for which location privacy can 
be important for national security [19], [20], [21]. Figuring out 
how to protect location privacy is critical for the 
implementation of spectrum sharing in these cases. 

This paper will address this important problem by exploring 
solutions that allow efficient spectrum sharing while protecting 
PU location privacy.  One goal of this research is to find 
strategies that maximize both spectrum utilization efficiency 
and location privacy to the extent possible, i.e. that achieve as 
much location privacy as possible for a given spectrum 
utilization efficiency and as much spectrum utilization 
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efficiency as possible for a given location privacy.  The other 
goal is to understand the inevitable tradeoff between spectrum 
utilization efficiency and location privacy, to help policymakers 
determine when the loss of one is worth the gain in the other.  
We use a combination of analysis and Monte Carlo simulation 
to achieve these research objectives. 

This paper examines ways to protect location privacy even 
when attackers know the EZs by making the area covered by 
EZs larger than it needs to be for interference protection only. 
This can be done by (1) generating dummy PUs and blocking 
off EZs around them, (2) making EZs larger than the minimum 
needed for interference protection alone and offsetting them 
such that PU location within the EZ is unpredictable, or (3) 
some combination of the two.  

The defender strategy affects both objectives: location 
privacy and spectrum utilization efficiency. Our location 
privacy metric (P) is the number of real PUs that an attacker 
could harm by an attack at the location that appears to the 
attacker to be most worth attacking. PUs are considered harmed 
if they are within the impact area of the attack location, as would 
be appropriate for a jamming attack or a kinetic attack. An 
attacker that knows more about the locations of PUs can pick a 
better attack location, thereby harming more PUs. Thus, a lower 
value of P implies better location privacy for the defender.  

The other objective is maximizing spectrum utilization 
efficiency. SUs are allowed to transmit from any location 
outside the EZs. Thus, our spectrum utilization efficiency 
metric is the fraction of area covered by EZs (B). If this metric 
is low, then spectrum utilization efficiency is high.   

Section II presents some past related work. Section III 
presents the defender and attacker strategies. Section IV uses 
analysis to derive the Pareto optimal defender strategy and its 
effectiveness in the simplified case where EZs contain at most a 
single PU. In Section V, we drop this simplifying assumption, 
and use Monte Carlo simulation to determine the Pareto optimal 
strategy and its effectiveness. Section VI presents our 
conclusions and their policy implications. 

II. RELATED WORK 

Location privacy has been more widely studied in other 
contexts. One example is where applications on mobile devices 
share their location to obtain services, such as driving 
directions. Location obfuscation techniques in this context 
include submitting a region in which the device is located 
instead of the exact location [22], [23], or making additional 
service requests about locations far from where the device is 
actually located so that the service provider cannot tell which 
location is real [21], [24]–[27].  These two approaches have 
some similarities to making EZs larger than necessary and 
generating dummy PUs, respectively, in the context of white-
space spectrum sharing.  However, the issues are distinctly 
different, as use of incorrect or inaccurate location information 
does not make some regions unusable for location-based 
services the way it does with spectrum sharing.  

Two approaches proposed to establish EZs that protect 
location privacy in shared spectrum are k-anonymity and k-
clustering [16], [28], [29] which are based on the k-anonymity 
method devised for statistical databases [30]. In k-anonymity, 

EZs are formed such that their boundaries are the smallest 
circles that encompass k PUs each. In k-clustering, all PUs are 
grouped into the k smallest clusters and an EZ is formed around 
each cluster. We compare the effectiveness of these approaches 
to ours in Section V(d). A related approach is to extend k-
anonymity to include l-diversity, i.e. at least l locations must be 
included when grouping PUs [28]. 

Other proposed approaches are closer to those considered in 
this paper.  Some have considered adding random noise to the 
minimum distance required between a PU and a SU, thereby 
randomly increasing EZ radius when boundaries are circles 
[16], [31], or transforming EZ boundaries to polygons [16]. We 
similarly increase EZ radius to add protection, although 
deterministically rather than stochastically. If radius is random, 
then attackers are free to choose between attacking large and 
small EZs in a way that undermines location privacy. For 
example, if an attacker is more likely to harm a PU when 
attacking a smaller EZ, then what matters is the size of the 
smallest EZ, so variation benefits the attacker. [17] considered 
using dummy PUs as well as parameter randomization. They 
estimate how long it would take before an attacker can drive 
location privacy down to a given level by querying a database, 
and how adding dummy PUs can improve this metric. These 
results are instructive.  However, none of this previous work 
compares the approaches quantitatively, or determines what 
combination of dummy PUs and larger EZ size is optimal for 
given circumstances, as this paper does. 

In those cases where an attacker obtains information about 
EZs by querying a database, another way to protect location 
privacy is by limiting queries. For example, the database may 
not respond to a query from a SU that is not at its stated location 
[32], or when the database believes that the SU has accumulated 
too much knowledge [33], [34]. Another proposed approach 
[31] is to introduce a random element.  For example, requests 
for spectrum might be denied randomly, either irrespective of 
location, or only if the query is close to an EZ.  Approaches like 
these may improve location privacy in some scenarios, but they 
do not help when EZs are known to the attacker, which is the 
case considered in this paper. Even when EZs are determined 
through queries, limiting queries is of limited help when PU 
locations change very slowly relative to query rate. Attackers 
can also learn about EZs in other ways, such as compromising 
the database, or observing queries from other devices. 

III. ATTACKER & DEFENDER STRATEGIES 

Attackers and defenders are engaged in a zero-sum game; 
attackers try to maximize location privacy metric P and 
defenders try to minimize it, while allowing as much spectrum 
as possible to be shared. To defend against an intelligent attack, 
the defender must assume that the attacker knows the defense 
algorithm, but not the input parameters. It is also assumed that 
the attacker knows EZ boundaries. The attacker may know EZ 
boundaries because they are in a public database, or by making 
a large number of queries to a database that is not public, or by 
cooperating with a database operator who is complicit with the 
attacker, or by compromising the database. Therefore, this 
model can be applicable even when the GDB acts as an “oracle” 



 
 

that responds to queries with only select necessary information. 
We also assume that the attacker has no source of information 
about PU locations other than EZ boundaries. Finally, we 
assume the attacker knows the interference that a protected PU 
can tolerate, and the path loss model used by the defender, so 
the attacker can infer from EZ boundaries which point(s) within 
the EZ that the defender protected from interference. 

The attacker uses its knowledge of defender strategy and the 
EZ boundaries to determine the point at which the expected 
number of PUs harmed is highest. Similarly, the defender 
considers the locations of PUs, and chooses EZ boundaries to 
minimize the attacker’s estimate of expected number of PUs at 
the point where it is greatest. The following subsections present 
the defender strategy and the attacker strategy. 

A. Basic Defender Strategy  

The defender must set EZ boundaries such that every PU is 
within an EZ and is protected from SU interference. As 
described in Section I, to protect location privacy, the defender 
can include more area than is necessary in the EZs by (i) making 
EZs larger than they need to be and offsetting the EZ such that 
PU location within the EZ is unpredictable, (ii) creating more 
EZs than needed, or (iii) some combination of the two.  

In cases where the defender generates more EZs than PUs, 
the first step is to create dummy PUs. Dummy PUs must be 
indistinguishable from real PUs to an attacker [27]. Thus, the 
locations of dummy PUs are generated randomly based on a 
probability distribution that is representative of the possible 
locations of real PUs. In the next step, EZs are defined around 
all PUs, both dummy and real, in the same manner. Thus, the 
size and shape of an EZ tells the attacker nothing about whether 
that EZ contains a real PU or a dummy PU. 

We first consider generating EZs in the case where PUs are 
sufficiently far apart that no EZ contains more than one. When 
creating an EZ, the defender first selects  
an “inner region”, which we define as the region that will be 
protected from SU interference. The defender makes the size 
and shape of that inner region the same for all EZs.  The EZ 
then consists of all points where an SU transmitter would cause 
interference above threshold in the inner region. For this section 
on basic defender strategy, we assume that the defender has 
already determined the size and shape of this inner region and 
the number of EZs. Sections IV and V will investigate how a 
defender should make these choices to best achieve the 
defender’s objectives.  

For PUs that are close together, EZs are generated 
independently around each PU as described above and allowed 
to overlap. In some cases, the shape of the EZ might reveal to 
an attacker that there are multiple PUs inside, because the inner 
region does not have the correct shape for a single PU. In this 
way, this algorithm is not quite optimal; a defender may wish 
to make minor adjustments in these cases so that the attacker 
cannot tell that there are multiple PUs.  However, this is close 
enough to optimal for our purposes. 

B. Attacker Strategy / Threat Model 

We consider attacks which harm PUs within a certain 
impact area around the point of attack, such as jamming attacks 

and kinetic attacks.  As described in Section I, our location 
privacy metric P is the expected number of PUs harmed at the 
point where this number is greatest. To find this value, the 
attacker first calculates this expected number at every point, 
given the EZ boundaries observed and knowledge of path loss, 
which depends on terrain. The expected number of PUs is 0 
outside EZs, and at points close to the EZ boundary where PUs 
certainly do not exist. For the remaining points, the expected 
number of PUs per area can be calculated from the area of the 
inner region. The attacker finds the expected number of PUs 
near any given location by adding up the expected value of all 
points within attack’s impact area for that location.  The attacker 
then determines the location where this value is highest, which 
is the best attack location, and this reveals the value of the 
privacy metric. 

IV. ANALYTICAL DETERMINATION OF DEFENDER STRATEGY  

The previous section described the basic defender strategy 
when given the number of dummy PUs and the area of each 
inner region. In this section, we determine analytically the 
Pareto optimal values for these parameters. We also explore the 
tradeoff between location privacy and spectrum utilization 
efficiency if this Pareto optimal strategy is adopted. 

To make the analysis tractable, it is assumed in this section 
that there is a negligible probability that any two PUs are close 
enough together to be harmed by a single attack. This 
assumption is reasonable when the fraction of area within EZs 
is small. We relax this assumption in Section V. It is also 
assumed that path loss is isotropic, i.e. depends only on 
distance. Thus, a PU is protected if it is at least a protection 
distance ݎ away from any SU.  Moreover, the danger from an 
attack depends only on the distance from that attack, so that a 
PU is harmed from an attack if and only if its distance to the 
attack location is less than attack radius ݎ. Finally, we assume 
that PU locations are uniformly distributed and independent. 

With isotropic path loss, for a given EZ area, the shape that 
maximizes the size of the inner region where a PU might be is 
a circle.  We define ݎ to be the EZ radius. To create a circular 
EZ such that a PU could be anywhere except within one 
protection distance ݎ  of the edge, the defender randomly 
chooses a point within (ݎா −  ) of the actual PU locationݎ
using a uniform distribution, and makes that the center of an EZ 
with radius ݎா . This algorithm is not quite optimal, in that a 
defender may wish to make the probability of placing a PU 
within an attack radius of the boundary slightly greater, but this 
algorithm is close enough to optimal for our purposes.  

From the attacker’s perspective, if the inner region of an EZ 
has a circular boundary, which the attacker can easily determine 
using its knowledge of EZ boundaries and path loss, then there 
is only one (real or dummy) PU inside, and its location has a 
uniform distribution among the points inside the EZ that are not 
within ݎ of the boundary. Thus, the expected number of PUs 

per area throughout this region is  
ଵ

  (୰ుౖ – ୰బ)మ  .  If the inner 

region does not have a circular boundary, then the inner region 
is the union of overlapping disks, each of which includes one 
(real or dummy) PU.  For each point in such an EZ, the attacker 
determines how many overlapping disks could conceivably 



 
 

include that point, and multiplies the above estimate of expected 
PUs per area by that number. 

A. Finding the Optimal Number of Dummy PUs (f) 

In this section, we determine the defender strategy that 
optimizes location privacy metric P for a given spectrum 
utilization efficiency. More specifically, we determine the 
fraction f of dummy PUs out of total PUs that minimizes P for 
a given fraction of area blocked by EZs B. Results depend on 
the density of real PUs, i.e. average number of real PUs per area, 
which we define to be d. At a constant B and d, increasing f 
would increase the number of EZs but decrease the radius ݎா  
of each EZ, so increasing f could either increase or decrease 
location privacy P. We first derive P as a function of f, B, d, 
minimum protection distance ݎ , and attack radius ݎ . For a 
given B, the ݎா  is largest when ݂ =  0, i.e. when there are no 
dummy PUs and all blockable area is used to enlarge EZs 
around real PUs. We call this  ݎா  value ݎ௫. These variable 
definitions are summarized in Table I.  
 

Assumptions made for analytical simplicity in this section are: 
 No two EZs i and j are close enough that a PU in EZ i and a 

PU in EZ j are within an attack radius of a single point. 
 PUs are uniformly distributed across an infinite plane, so 

edge effects can be ignored. 
PUs need to be inside EZs and at least a minimum protection 
distance ݎ  away from the EZ boundaries, so a PU can only 
exist within the inner circle at the center of the EZ with the 
radius of ൫ݎா − ாݎ൯.  If ൫ݎ  −  ൯ is less than the attack radiusݎ 
 , then the attacker always hits the PU if it attacks the center ofݎ
that EZ, and by assumption for this section, an attacker can never 
attack two EZs at once. Thus, the expected number of PUs hit is 
the probability that an EZ has a PU, which is (1 − ݂). On the 
other hand, if ൫ݎா −   ., then an attack may not hit the PUݎ < ൯ݎ 
The defender algorithm makes it equally likely that the PU is at 
any point within this inner circle of radius ൫ݎா − ൯ݎ  . 
Therefore, the best achievable expected number of PUs hit is the 
probability that an EZ has a PU times the area within an attack 
radius divided by the area where a PU in that EZ could be, 

which is (1 − ݂) ×
 గ ೌమ

గ (ಶೋିబ )మ 

TABLE I.  SYSTEM VARIABLES AND THEIR DESCRIPTIONS 

Variable Description/Definition 

B fraction of area blocked by EZs  

f fraction of dummy PUs out of total PUs  

D Avg. density of real PUs, i.e. avg. number of real PUs per area 

  radius within which the attack can harm a PUݎ

  Minimum protection distance of the PUsݎ

 ா radius of EZݎ

 ௫ݎ
radius of EZ at f = 0. This is the largest EZ radius for a given 
B value and given d. 

ܲ 
Location Privacy Metric i.e. no. of PUs hit by an attack of 
radius rୟ 

 

∴ ,ݐℎ݅ ݏܷܲ ݈ܽ݁ݎ ݂ ݎܾ݁݉ݑ݊ ݀݁ݐܿ݁ݔܧ ܲ = 

 ൞
(1 − ݂) ×

 ೌమ

(ಶೋିబ )మ , ݎ ݂݅ ≤ ாݎ)  −  (ݎ  

(1 − ݂), ݎ ݂݅  ≥ ாݎ)  − (ݎ  

   (1) 

where radius of each EZ (r) can be calculated as:   

,ܤ)ாݎ  ݂, ݀) = ඨ



భష

 ×  
  (2) 

From the equations above, we prove the following theorems: 

1) Location privacy metric P increases with f when EZ radius 
ாݎ   > attack radius ݎ  + minimum protection distance ݎ 

2) Location privacy metric P decreases with f when EZ radius 
ாݎ  < attack radius ݎ + minimum protection distance ݎ 

3) Corollary 1: if there is a value of f at which exclusion zone 
radius ݎா  = attack radius ݎ + minimum protection distance ݎ, 
then P is greatest at this value of f  

4) Corollary 2: Location privacy metric P is smallest either 
when f=0 or when f is at maximum feasible value fmax  

Proof for Theorem 1: When ݎா  ≥ ݎ ) +  ,) or equivalentlyݎ  
ݎ ≤ ாݎ)  −  :), taking a partial derivative of P yieldsݎ  

߲ܲ
߲݂

=
ݎ

ଶݎ

ቆට1)ܤ − ݂)
ߨ݀ − ቇݎ

ଷ

 

=
ݎ

ଶݎ

ாݎ) −  )ଷݎ
 

Since radii are positive and ݎா ≥  , the partial derivativeݎ
డ

డ
 above is always positive. Therefore, location privacy 

degrades, i.e. P increases, with increasing f in this scenario. 
 

Proof for Theorem 2: When ݎா ≤ ݎ ) +  ,) or equivalentlyݎ  
ݎ ≥ ாݎ)  − (ݎ   , P is (1 − ݂) . The expression (1 − ݂) 
decreases linearly with increasing f. 

Therefore, theorems (1) and (2) collectively show that at a 
given B value, the best value of location privacy for the 
defender (i.e. lowest P) is obtained at either f = 0 (i.e. lowest 
value of f ) or f = fmax (i.e. highest value of f). For a given B 
value, to determine whether f = 0 or ݂௫  provides the best 
location privacy, we compute and compare P at these f values. 
 

From (1), at f = 0,  

 ܲ = ൞

 ೌమ

(ೌೣିబ )మ , ݎ ݂݅ ≤ ௫ݎ)  −  (ݎ  

1, ݎ ݂݅  ≥ ௫ݎ)  − (ݎ  

   (3) 

where ݎ௫ is defined as the value of ݎா  when ݂ = 0. 

From (2), ݎ௫ = ට


గௗ
  

 

When f is at its maximum ݂௫, the number of dummy PUs 
is maximized, which means the EZ radius is set to its minimum 
feasible value, i.e. ݎா = ݎ .  By (1), if (ݎா  −  ) = 0 thenݎ  

ܲ = (1 − ݂௫).  From (2), ݂௫ = ቀ1 −
ௗగబ

మ


ቁ. 



 
 

 ∴ ݂  ݐܣ = ݂௫ , ܲ =
ௗగబ

మ


  (4) 

The next step is to determine when ݂ = ݂௫  yields better P 
than ݂ = 0.  First, ݂ = 0 is never better when ݂ = 0 yields ܲ =
1 , i.e. when ݎ  ≥ ൫ݎ௫  − ൯ݎ   . This is apparent from (4), 
which shows that when ݂ = ݂௫, P is the minimum area that 
can be blocked divided by the area that is actually blocked, and 
this ratio can never exceed 1.  

Thus, ݂ = 0 is better if and only if rୟ < ൫r୫ୟ୶  −   r൯  and 

 ೌమ

(ೌೣ ି బ )మ <
ௗగబ

మ


. The latter simplifies to ݎ < ݎ − ݎ

ଶට 
ௗగ


=

బ

ೌೣ 
௫ݎ) − ݎ ), with (2).  Sinceݎ  cannot exceed ݎ௫ , we 

know ݎ − ݎ
ଶට 

ௗగ


< ൫r୫ୟ୶  −   r൯ so ݎ < ݎ − ݎ

ଶට 
ௗగ


 is the 

sufficient condition. Therefore, in all cases where ݎ > ݎ −

ݎ
ଶට 

ௗగ


, introducing as many dummy PUs as possible (i.e. ݂ =

݂௫  ) provides the best location privacy.  When ݎ < ݎ −

ݎ
ଶට 

ௗగ


, enlarging EZs as much as possible around real PUs (i.e. 

݂ = 0) provides the best location privacy.  

TABLE II.  SUMMARY OF OPTIMAL STRATEGIES 

Scenario Optimal Strategy 

ݎ ≤ ݎ − ݎ
ଶඨ 

ߨ݀
ܤ

 

enlarging EZs as much as possible 
around real PUs (i.e. ݂ = 0) 

ܲ =
 rୟ

ଶ

ቆට ܤ
݀ߨ  − r ቇ

ଶ 

ݎ ≥ ݎ − ݎ
ଶඨ 

ߨ݀
ܤ

 

introducing as many dummy PUs as 
possible (i.e. ݂ = ݂௫ ) 

P =
dπr

ଶ

B
 

 In practice, we expect that ݎ > ݎ  in many cases, 
especially for jamming attacks, as it is likely that a jammer can 
cause harmful interference at a much larger distance than a 
typical SU. Because d, B, and ݎ are all positive quantities, ݎ −

ݎ
ଶට 

ௗగ


 is always less than ݎ, which means that the strategy of 

maximizing the number of dummy PUs is always optimal when 
ݎ >  .ݎ

 

B. Diminishing Returns in Location Privacy  

As there is a tradeoff, increasing the fraction of area covered 
by EZs (ܤ) improves location privacy when the best defender 
strategy is used. This section explores whether there are 
diminishing returns, i.e. whether incremental gains in location 
privacy decrease as B increases.  

From Section IV(a), location privacy P when using the best 
defender strategy is as follows.  This equation shows the Pareto 
optimal relationship between P and B. 

ܲ =  

ە
ۖ
۔

ۖ
ۓ ݎ 

ଶ

௫ݎ) − )ଶݎ   ݅. ݁. ݂ ݐܽ  = 0, ݎ ݂݅ ≤ ݎ − ݎ
ଶඨ 

ߨ݀
ܤ

 

ݎߨ݀
ଶ

ܤ
   ݅. ݁. ݂ ݐܽ  = ݂௫ , ݎ ݂݅݅ ≥ ݎ − ݎ

ଶඨ 
ߨ݀
ܤ

 

There are diminishing returns at a given value of B if the 
second derivative of the Pareto optimal curve of achievable P 
vs. B is positive.  As shown in Section IV(a), if ݎ ≥  , thenݎ 
݂ = ݂௫ is always optimal.  For values of B where ݂ = ݂௫ 
is optimal, the first- and second-order partial derivatives with 
respect to B (i.e. ܲ’  and ܲ’’ ) are as follows. Thus, while 
increasing blocked area B does improve privacy, there are 
indeed diminishing returns if ݎ ≥  .ݎ 

߲ܲ
ܤ߲

=
߲

ܤ߲
ቆ 

ݎߨ݀
ଶ

ܤ
ቇ = − ቆ 

ݎߨ݀
ଶ

ଶܤ ቇ < 0 

߲ଶܲ
ଶܤ߲ =

߲ଶ

ଶܤ߲ ቆ 
ݎߨ݀

ଶ

ܤ
ቇ =

ݎߨ2݀
ଶ

ଷܤ > 0  

If ݎ  < ݂ , thenݎ  = 0 is optimal for values of B below a 
critical point which we call ܤ. This is determined by ݎ = ݎ −

ݎ
ଶට 

ௗగ


, which simplifies to ܤ =

ௗ గ బ
ర

(బିೌ )మ . For values of B 

below ܤ, the first- and second-order partial derivatives are as 
follows: 
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Because second-order derivatives are positive, there are 
diminishing returns for values of B less than ܤ and greater than 
= ܤ . To determine whether this is the case whenܤ  , weܤ 
calculate the ratio of ܤ′ just below ܤ to ܤ′ just above ܤ. 
ܲᇱ ݆ܤ ݓ݈ܾ݁ ݐݏݑ

ܲᇱ ݆ܤ ݁ݒܾܽ ݐݏݑ
=

ܲᇱ ܽܤ ݐ ݂ ℎ݁݊ݓ  = ݈ܽ݉݅ݐ ݏ݅ ݔ݂ܽ݉
ܲᇱ ܽܤ ݐ ݂ ℎ݁݊ݓ  = ݈ܽ݉݅ݐ ݏ݅ 0

= 

ିቆ 
(ೝబషೝೌ)ర

ഏೝబ
ల ቇ

ିቆ
(ೝబషೝೌ)ర

ഏ ೌೝబ
ఱ ቇ

=
ೌ

బ
  (5) 

Since the critical point only exists when ݎ  <  , the aboveݎ 
ratio is less than 1. Because P’ is negative both below and above 
 , we can conclude that the slope decreases at the critical pointܤ
 . Therefore, there are diminishing returns everywhere on theܤ
Pareto optimal curve. 

V. SIMULATIONS 

In Section IV, we derived the number of dummy PUs that 
optimize location privacy P for any given B and produced the 
resulting Pareto optimal curve under the assumption that PUs 
are far enough apart that an attack could at most only hit one 
PU at a time. In this section, we relax that assumption. Because 



 
 

this makes analysis intractable, we use a stochastic Monte Carlo 
simulation to show that the same general conclusions hold even 
when EZs can overlap.  As in Section IV, we assume isotropic 
path loss and uniformly distributed PU locations. 

In Section IV, we found that the best defender strategy 

depends on whether ݎ > ݎ − ݎ
ଶට 

ௗగ


, which is the case for all 

B if and only if ݎ ≥  . We must therefore compare analysisݎ
and simulation results when attack radius ݎ  is both greater than 
and less than minimum protection distance ݎ.  In Section V(a), 
we provide detailed simulation results for a scenario where ݎ =
ݎ 2 , and in Section V(b) we provide similar results for a 
scenario where ݎ = ݎ 6. .  We consider a broader range of 
input variables in Section V(c), and show how they affect the 
Pareto optimal curves.  Section V(d) shows how the Pareto 
optimal results obtained with our approach compare with a 
previously proposed approach [16]. 

A. When Attack Radius ݎ > Min. Protection Distance ݎ  
As in Section IV(a), we determine the fraction of dummy 

PUs f and the EZ radius ݎா  that yield the best location privacy 
P for a given fraction of area covered by EZs B.   A stochastic 
Monte Carlo simulation is performed over an area of 1000 x 
1000 units. 10 real PUs are stochastically generated for each run 
with uniform probability over all locations. The minimum 
protection distance (ݎ) is 5 units, and the attack radius (ݎ)  is 
10 units, resulting in a ݎ/ݎ  ratio of 2. Analytical results 
showed that when this ratio exceeds 1, adding the maximum 
number of dummies (i.e. ݂ = ݂௫) is the best strategy. 

Figure 1 shows the location privacy P achieved by both 
simulation and analysis when varying f.  Different curves are 
shown for different values of ܤ∗, which is the area of a disk 
surrounding a PU multiplied by number of PUs. If all EZs are 
circular because none are formed by overlapping disks, as was 
assumed in our analytic results, then ܤ∗ =  If some EZs are  .ܤ
non-circular, as can occasionally happen in simulation, then ܤ∗ 
is slightly larger than B. Each curve spans from ݂ = 0, where 
there are no dummy PUs, to ݂ = ݂௫ , where the number of 
dummy PUs is as great as possible for the given value of ܤ∗. 
The error bars represent 95% confidence intervals. In the 
analytical results in Figure 1b, the curves for ܤ∗ = 0.001 and  
∗ܤ = 0.005 overlap completely because for that portion of the 
graph ݎ  ≥ ாݎ)  − (ݎ    and, ܲ = (1 − ݂) , from (1). 
Therefore, location privacy is a function of ݂ only. For the same 
reason, on this graph, curves for ܤ∗ = 0.01  and ܤ∗ = 0.05 
partially overlap with curves for ܤ∗ = 0.001 and ܤ∗ = 0.005 
at higher values of f . 

Figure 1 shows that analysis and simulation do not yield 
identical results, meaning that non-circular EZs have some 
impact, but the basic conclusions from the analysis of Section 
IV are also true for the simulation results.  In both cases, the 
location privacy metric P increases with ݂  when EZ radius 
exceeds something close to attack radius + minimum protection 
distance, and decreases with ݂ when this is not the case.  As 
long as this is the case, best strategy for the defender is always 

 

 
Figure 1:  Privacy P as a function of fraction f of dummy PUs for different 
values of B*.  Min protection distance ݎ  =  5. Attack radius ݎ = 10.  Figure 
1a shows results of simulation.  Figure 1b shows results of analysis. 
 

either f=0 or ݂ = ݂௫.  For these values of attack radius and 
minimum protection distance, ݂ = ݂௫  is always best. P 
achieved is similar for both graphs, but P is slightly higher in 
simulation, especially for large values of ܤ∗. This is because in 
the simulation an attacker can sometimes attack multiple PUs at 
once, whereas the assumptions make this impossible in the 
analysis. 

Obviously, the more area one blocks, the more privacy can 
be achieved.  Figure 2 shows the relationship between ܤ and 
location privacy P for both of the approaches that have the 
potential to be optimal:  ݂ = 0 and ݂ =  ݂௫.   As expected for 
cases where ݎ    > ݂ , the defender should always chooseݎ  =

݂௫  because P is greater for all values of ܤ. Thus, the ݂ =
݂௫ curve is the Pareto optimal result.   The shape of the Pareto 

optimal curve has a steep slope at low values of ܤ and flatter 
slope at higher values of ܤ . In other words, there are 
diminishing returns with increasing ܤ.  Numerical results are 
quite similar for both analysis and simulation, although P is 
slightly higher with simulation. 



 
 

 
Figure 2:  Privacy P as a function of B comparing f=0 and = ݂௫ . Min. 
protection distance ݎ  =  5. Attack radius ݎ  =  10. Figure 2a shows results 
of simulation.  Figure 2b shows results of analysis. 

B. When Attack Radius ݎ <  Min. Protection Distance ݎ 

In this section, we address the same issues as in Section 
V(a) under the same assumptions, except with an attack radius 
ݎ  of 3 units, which is smaller than the minimum protection 
distance ݎ of 5 units. Again, our conclusions from simulation 
results mirror those from analytical results, so relaxing the 
assumption that PUs are not too close together has little effect.  

Much like Figure 1, Figure 3 shows how location privacy 
P varies with the fraction f of dummy PUs for different values 
of ܤ∗ . Again, we see that numerical results are similar for 
analysis and simulation.  Again, we see that in both graphs P 
increases with f when EZ radius exceeds something close to 
attack radius + minimum protection distance, and decreases 
with f when this is not the case, so ݂ = 0 or ݂ = ݂௫ has to be 
best for the defender strategy.  This time, as expected based on 
the results of Section IV for the smaller attack radius, ݂ = ݂௫ 
is not always best. This is clearer with Figure 4, which like 
Figure 2, shows how location privacy P varies with B when ݂ =
0 and ݂ = ݂௫ .  In both simulation and analysis, the ݂ = 0 and 
 

݂ = ݂௫ curves cross when B is close to the critical value, so 
݂ = 0 is best for the defender when B is above the critical value, 
and ݂ = ݂௫   is best otherwise. 

C. Effect Of Varying Parameters  

Decisions regarding how much spectrum to sacrifice in order to 
improve location privacy, i.e. about the appropriate value of B, 
would depend in large part on the Pareto optimal curve that 
shows the tradeoff between B and location privacy P.  In this 
section, we show how that curve depends on important factors.  
More specifically, Figure 5 shows the Pareto optimal curves at 
different PU densities, and Figure 6 shows the Pareto optimal 
curves at different attack radii.  In both figures, all input 
parameters are the same as in Section V(a) except the variables 
which are explicitly varied in the figure shown, i.e. PU density 
or attack radius. 
We observe that the shape of the Pareto optimal curve remains 
similar, regardless of PU density and attack radius. These 
results are the same with both analysis and simulation results. 
In all cases, location privacy improves rapidly if the

 

 
Figure 3:  Privacy P as a function of fraction f of dummy PUs for different 
values of B*.  Min protection distance ݎ  =  5. Attack radius ݎ  =  3.  Figure 
3a shows results of simulation.  Figure 3b shows results of analysis. 

 



 
 

 

 
Figure 4:  Privacy P as a function of B comparing ݂ = 0 and ݂ = ݂௫.  Min 
protection distance ݎ  =  5. Attack radius ݎ  =  3. Figure 4a shows results of 
simulation.  Figure 4b shows results of analysis. 
 
 

fraction of area covered by EZs B is increased a small amount 
beyond the minimum necessary. However, there are 
diminishing returns after that.  Thus, for example, a tremendous 
improvement in location privacy is possible by blocking 0.5% 
of the area, and relatively modest improvements are possible by 
increasing the area blocked from 0.5% to 5%. 
 

D. Comparison With State-of-Art Methods 

This section compares the effectiveness of the defender 
strategy developed in this paper with two previously proposed 
approaches: k-anonymity and k-clustering [16]. Both 
approaches seek location privacy by including more PUs in an 
EZ while keeping EZs circular and as small as possible, rather 
than by expanding EZs or creating dummy PUs as in our 
approach.  In k-anonymity, EZ boundaries are the smallest 
circles that contain k PUs each. In k-clustering, k EZs contain 
all PUs such that the total area of the k EZs is as small as 
possible. See Section II for more on these algorithms. 

As described in Section III(b), an attacker uses the EZ 
boundaries and its knowledge of defender strategy to determine 
the probability that a PU is at any given location. The attacker 
then determines the location where the expected number of PUs 
within one attack radius is maximized. The difference is in how 
the attacker determines those probabilities. If an EZ has a radius 
equal to the minimum protection radius, then there is one PU at 
the center of the EZ. Thus, the expected number of PUs is 1 at 
that point and 0 elsewhere. With k-anonymity and k-clustering, 
for EZs that have larger radii, the EZ must contain multiple PUs. 
Since these EZs are as small as possible, the ring of points 
exactly one minimum protection distance away from the EZ 
circular boundary contains two or more PUs.  There may or may 
not be additional PUs inside the ring.  Our heuristic attacker 
algorithm assumes that there are exactly two PUs on the ring, 
and that all points inside this ring in all EZs have a constant 
probability of containing a PU, no matter how large the EZ is. 
This constant probability is chosen so that expected PU density 
over the entire region will equal actual density d.   In reality, the 
probability that a PU will be located at a point inside an EZ 
depends on the size of that EZ, so this attacker algorithm is 
suboptimal. Results for these defender algorithms would be 

 

 
Figure 5:  Privacy P as a function of B when using the optimal defender strategy.  
Min protection distance ࢘  =  . Attack radius ݎ  =  10.  Figure 5a shows 
results of simulation.  Figure 5b shows results of analysis. 
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Figure 6:  Privacy P as a function of B when using the optimal defender strategy.  
Min. protection distance ݎ  =  5. Density of real PUs ݀ = ܧ1 − 5. Figure 6a 
shows results of simulation.  Figure 6b shows results of analysis. 
 
 
worse with an optimal attacker algorithm. 
 

Figure 7 shows P vs. B for the defender strategy derived in 
this paper, k-clustering and k-anonymity. For the latter two, the 
results are obtained by varying k from 1 to 10. We use the same 
assumptions here as in Section V(a). For all B values, our 
approach provides far more location privacy than k-anonymity 
or k-clustering, or equivalently, our approach provides the same 
location privacy while blocking far less area within EZs. This 
is because k-anonymity and k-clustering require more PUs per 
EZ, and this can produce EZs that cover a very large area.  At 
the same time, trying to keep EZs small while including 
multiple PUs means PUs are more likely to be near the edge of 
an EZ, which is helpful to attackers.  Thus, at least for this 
measure of location privacy, creating dummy PUs is a more 
effective strategy. 

 
Figure 7. Privacy P as a function of B when using the optimal defender 
strategy compared with results of k-clustering and k-anonymity. Attack radius 
ݎ  =  10. Min. protection distance ݎ  =  5. Density of real PUs ݀ = ܧ1 − 5. 
 

VI. CONCLUSIONS AND POLICY IMPLICATIONS  

There are societal costs and opportunity costs to blocking 
unused spectrum from use. However, for some devices, there is 
a strong need for location privacy and operational location 
privacy may be a matter of national security. Thus, without an 
effective way of protecting location privacy for those devices 
that need it, it may not be possible to free up some valuable 
spectrum.   

We have explored a novel and effective approach for 
protecting location privacy by generating dummy primary users 
(PUs). For scenarios where attack radius ݎ  is greater than 
minimum protection distance ݎ , we find that for a given 
amount of area blocked for exclusion zones (EZs), the most 
effective defender strategy is to keep EZs as small as possible 
and generate as many dummy PUs as possible.  Where attacks 
are done through jamming, we would expect ݎ  >  , as it isݎ 
unreasonable to expect that a typical secondary user (SU) that 
is just under ݎ from a PU would cause harmful interference, 
but a jammer in this location would not.  Even if ݎ  <  , asݎ 
might occur if the attack is kinetic, then the best defender 
strategy is to generate as many dummy PUs as possible if the 
fraction of area to be blocked B is below a critical threshold.  
For higher B, the better strategy for a defender is to generate no 
dummy PUs and to expand the size of EZs. 

 

When our defender strategy is employed with optimal 
parameters, it greatly outperforms some previously proposed 
approaches [16] in the scenarios considered. More specifically, 
our approach can achieve a greater location privacy for a given 
fraction of blocked area, or equivalently, a smaller fraction of 
blocked area for a given location privacy.  

Our results show that this approach is highly effective at 
protecting location privacy, and may give both those who want 
to free spectrum and those who want better location privacy 
most of what they seek. Although there is an unavoidable 
tradeoff between maximizing amount of spectrum available for 
SUs and optimizing location privacy for PUs, even a very small 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.01 0.02 0.03 0.04 0.05

Lo
ca

tio
n 

Pr
iv

ac
y 

M
et

ric
 P

Fraction of Area Covered By EZs B

Simulation
rₐ / r₀ = 0.6
rₐ / r₀ = 1
rₐ / r₀ = 4
rₐ / r₀ = 6



 
 

increase in amount of area blocked from SUs can greatly 
improve location privacy for PUs, as long as best defender 
strategy is employed. However, as more and more area is 
blocked, there are diminishing returns, i.e. there is less 
improvement in location privacy for each square meter of area 
blocked. 
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