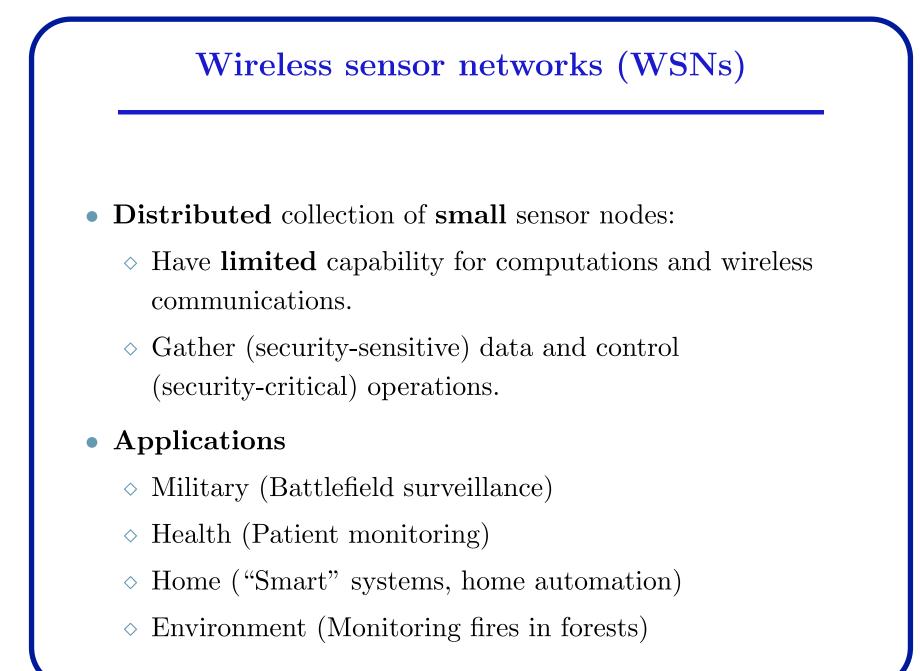
Random graph modeling of key predistribution schemes in wireless sensor networks

Osman Yağan

CyLab Carnegie Mellon University oyagan@andrew.cmu.edu

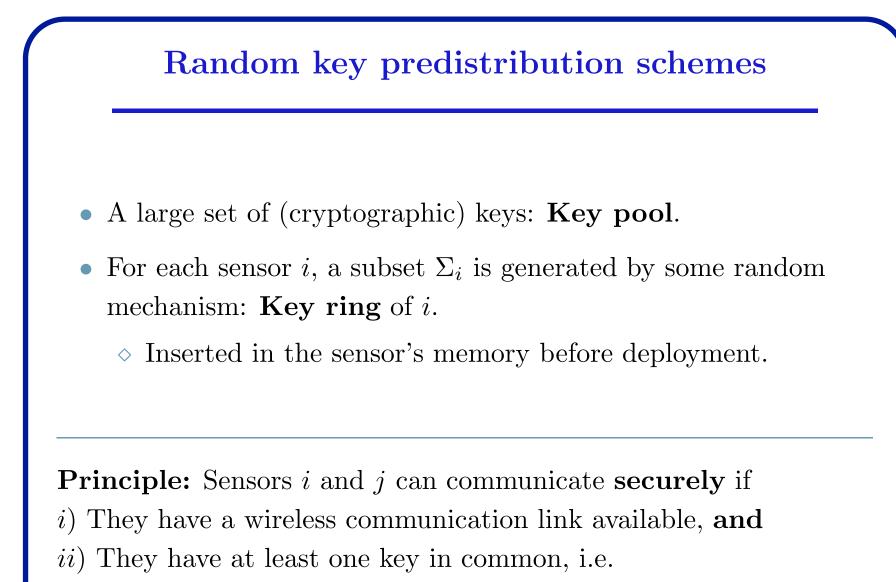
Joint work with Prof. Armand M. Makowski



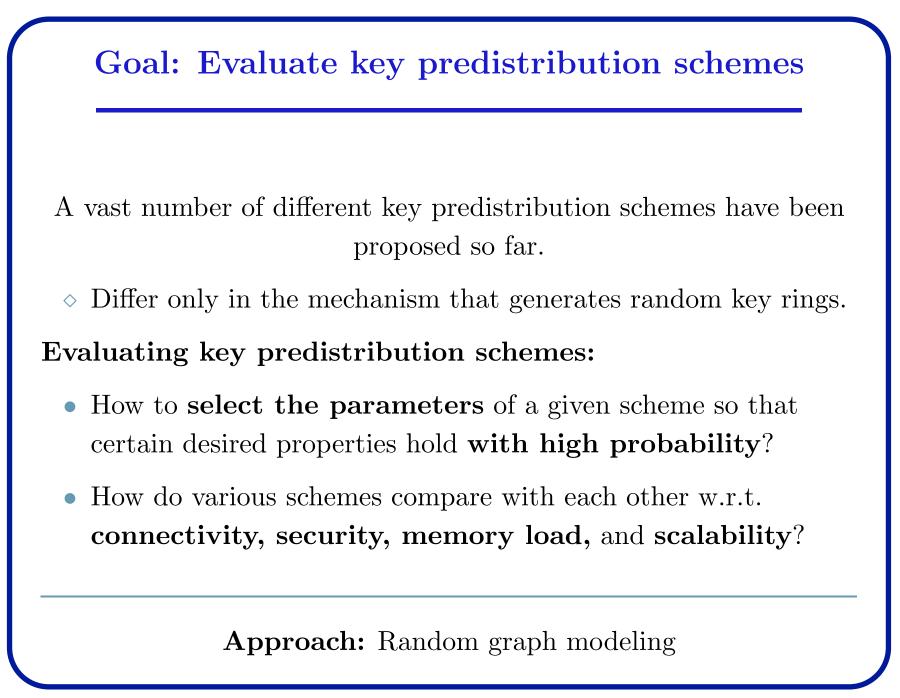
WSNs and security

- WSNs are usually deployed in **hostile** environments
 - ◊ Communications are monitored, and nodes are subject to capture and surreptitious use by an adversary.
- **Cryptographic protection** is needed to ensure secure communications.
- Scalable solutions with very low storage, management, and computational load are required.

Random key predistribution schemes!



$$\Sigma_i \cap \Sigma_j \neq \emptyset.$$



Random graph modeling

Random graphs: Natural models for random key predistribution schemes for wireless sensor networks:

 \diamond sensor \rightarrow node, secure link \rightarrow ?

♦ **Communication graph:** Eg., the disk model.

 $i \sim j$ iff $\|\boldsymbol{x_i} - \boldsymbol{x_j}\| < \rho$

♦ **Key graph:** Induced by the key predistribution scheme. $i \sim j$ iff $\Sigma_i \cap \Sigma_j \neq \emptyset$

Intersecting random graphs

System model: Communication graph \bigcap Key graph:

- $i \sim j$ if $\Sigma_i \cap \Sigma_j \neq \emptyset$ and $\|\boldsymbol{x_i} \boldsymbol{x_j}\| < \rho$
- Many concerns regarding WSNs can be mapped into problems for this system model.

A simple case of interest – Full visibility

- Sensors are all within communication range of each other.
- System model = **Key graph**.
- Allows to focus on the randomized key predistribution.
- Key graph may have applications in other fields.

My dissertation

- The Eschenauer-Gligor (EG) scheme
 - ◊ Connectivity under full visibility [ISIT 2008-2009, CISS 2010, IT 2012]
 - \diamond Connectivity under an on-off channel model $[\mathbf{IT}\ \mathbf{2012}]$
 - ◊ Triangle existence and small-world properties [Allerton 2009, GraphHoc 2009, IT 2013]
- The pairwise scheme of Chan, Perrig and Song
 - ◊ Connectivity under full visibility [ISIT 2012, **IT 2012**]
 - ◇ Connectivity under an on-off channel model [ICC, IT 2013]
 - ◊ Scalability (gradual deployment) [WiOpt 2011, Perf Eval 2013]
 - ◊ Security [PIMRC 2011, TISSEC 2013]

The punch line

	EG Scheme	Pairwise Scheme
Connectivity	$ \Sigma = O(\log n)$	$ \Sigma _{n,\mathrm{Avg}} = O(1)$
(Full Visibility)		$ \Sigma _{n,\mathrm{Max}} = O(\sqrt{\log n})$
Connectivity	$ \Sigma = O(\frac{\log n}{p_n})$	$ \Sigma _{n,\mathrm{Avg}} = O(\frac{\log n}{p_n})$
(On-Off Channel, p_n)		$ \Sigma _{n,\mathrm{Max}} = O(\frac{\log n}{p_n})$
Gradual Deployment		$ \Sigma _{n,\mathrm{Avg}} = O(\log n)$
		$ \Sigma _{n,\mathrm{Max}} = O(\log n)$
Unassailability	$ \Sigma = O(\sqrt{n \log n})$	$ \Sigma _{n,\mathrm{Avg}} = O(1)$
		$ \Sigma _{n,\mathrm{Max}} = O(\sqrt{\log n})$
Unsplittability	$ \Sigma = O(\sqrt{n \log n})$	$ \Sigma _{n,\mathrm{Avg}} = O(w_n)$
		$ \Sigma _{n,\mathrm{Max}} = O(\sqrt{w_n \log n})$
Perfect Resiliency	×	
Node Authentication	×	

 $|\Sigma|$: # of keys required w_n : Any function satisfying $\lim_{n\to\infty} w_n = \infty$.

Today, we focus on the connectivity results for the Eschenauer-Gligor scheme

- 1. "A zero-one law for connectivity in random key graphs"
 - O. Yağan and A. M. Makowski, *IEEE Trans. Inf. Theory* 58(5): 2983-2999, May 2012.

- 2. "Performance of the Eschenauer-Gligor key distribution scheme under an ON-OFF channel"
 - ◇ O. Yağan, IEEE Trans. Inf. Theory **58**(6):3821-3835, June 2012.

Eschenauer-Gligor (EG) scheme

Before network deployment, each node **randomly** selects a set of K **distinct** keys from a (very large) pool of P keys.

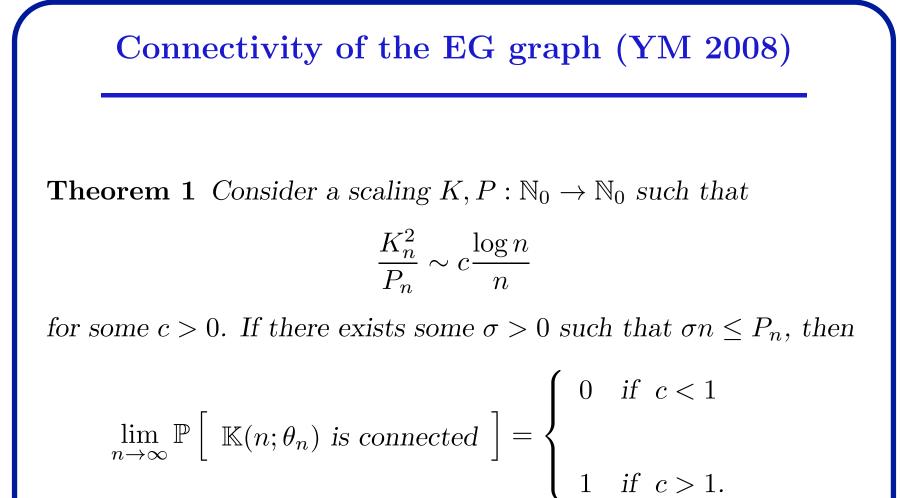
- n(# of nodes), P(key pool size), K(size of each key ring).
- $\Sigma_1, \ldots, \Sigma_n$ iid and uniform in \mathcal{P}_K .

 \mathcal{P}_K : Collection of all subsets of $\{1, \ldots, P\}$ with size K.

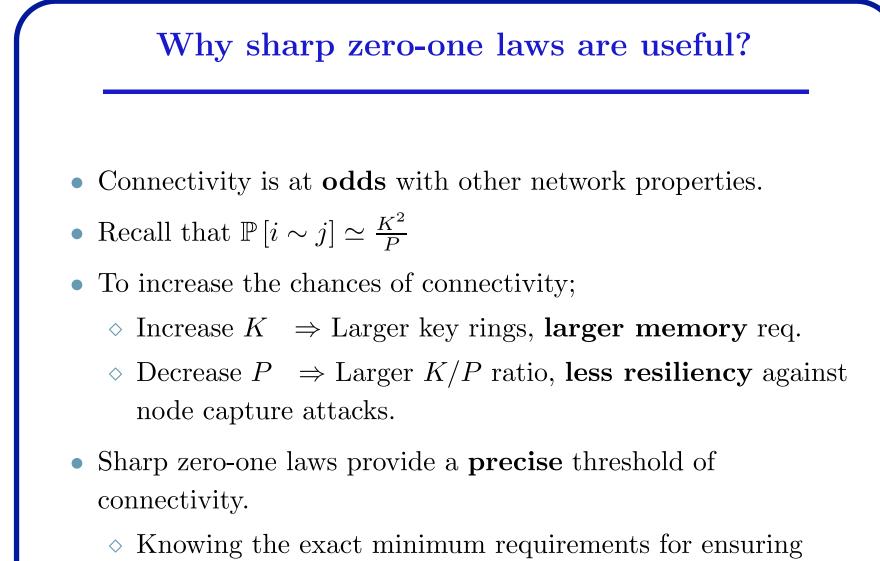
EG graph $\mathbb{K}(n;\theta)$: Arises under the full visibility assumption. $\theta \equiv (K,P), V = \{1, \ldots, n\}, E = \{i \sim j : \Sigma_i \cap \Sigma_j \neq \emptyset\}$

$$\mathbb{P}\left[i \sim j\right] = 1 - \frac{\binom{P-K}{K}}{\binom{P}{K}} := 1 - q(\theta) \simeq \frac{K^2}{P}$$

Connectivity Results Under Full Visibility



Blackburn & Gerke (2008): Theorem 1 with $P_n = o(n)$. Rybarcyzk (2009): Theorem 1 without any constraint on P_n .



connectivity, one can dimension the scheme without suffering performance losses in other properties. Connectivity Results Under non-full visibility

- Assume that communication channels are mutually independent, and each channel is either **on** or **off**.
- With p in (0, 1), consider i.i.d. {0, 1}-valued rvs with success probability p.
 - ♦ The channel between nodes *i* and *j* is available with probability *p* and unavailable with the complementary probability 1 - p.
 - ♦ Also known as **ON-OFF Fading Channel**.
- Can be modeled by an Erdős-Rényi (ER) graph $\mathbb{G}(n;p)$.

The overall system model is the *intersection* $\mathbb{K}(n;\theta) \cap \mathbb{G}(n;p)$.

Connectivity of EG scheme under on-off channel

Model:
$$\mathbb{K} \cap \mathbb{G}(n; \theta, p) \Rightarrow \mathbb{P}[i \sim j] = p(1 - q(\theta)).$$

Theorem 2 (Yağan, IT 2012) Consider scalings $K, P : \mathbb{N}_0 \to \mathbb{N}_0$ and $p : \mathbb{N}_0 \to (0, 1)$ such that

$$p_n(1-q(\theta_n)) \sim c \frac{\log n}{n}, \quad n = 1, 2, \dots$$

for some c > 0. If $\lim_{n\to\infty} p_n \log n = p^*$ exists and there exists some $\sigma > 0$ such that

$$\sigma n \le P_n$$

then we have

$$\lim_{n \to \infty} \mathbb{P} \left[\mathbb{K} \cap \mathbb{G}(n; \theta_n, p_n) \text{ is connected } \right] = \begin{cases} 0 & \text{if } c < 1 \\ 1 & \text{if } c > 1. \end{cases}$$

- Nodes are distributed over a bounded region ${\mathcal D}$ of the plane
- **Disk model:** Nodes *i* and *j* located at x_i and x_j , respectively, in \mathcal{D} are able to communicate if

$$\|\boldsymbol{x_i} - \boldsymbol{x_j}\| < \rho \tag{1}$$

- ρ : transmission range of sensors
- Random geometric graph, $\mathbb{H}(n; \rho)$: Induced under (1) when nodes are independently and uniformly distributed over \mathcal{D}

• If
$$\mathcal{D}$$
 is **unit torus**, then $\mathbb{P}[i \sim j] = \pi \rho^2$

The overall system model is the *intersection* $\mathbb{K}(n;\theta) \cap \mathbb{H}(n;\rho)$.

A natural conjecture

Conjecture 1 (Yağan, IT 2012) Consider scalings $K, P : \mathbb{N}_0 \to \mathbb{N}_0$ and $\rho : \mathbb{N}_0 \to (0, 1/\sqrt{\pi})$ such that

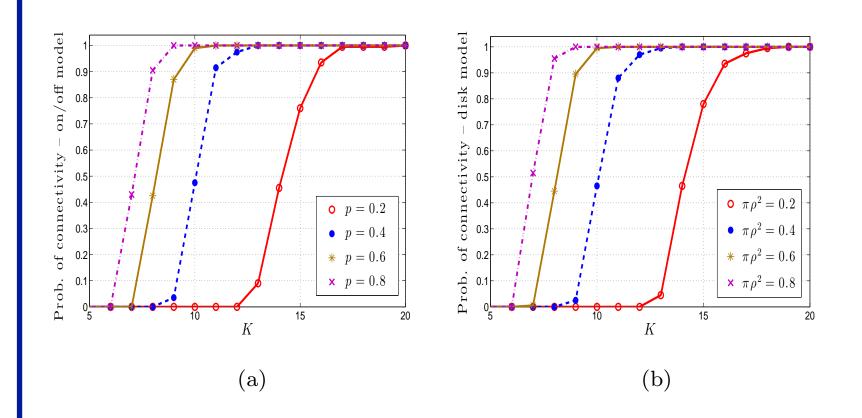
$$\pi \rho_n^2 \cdot (1 - q(\theta_n)) \sim c \frac{\log n}{n}, \quad n = 1, 2, \dots$$

for some c > 0. Then we have

$$\lim_{n \to \infty} \mathbb{P} \left[\mathbb{K} \cap \mathbb{H}(n; \theta_n, \rho_n) \text{ is connected } \right] = \begin{cases} 0 & \text{if } c < 1 \\ 1 & \text{if } c > 1. \end{cases}$$

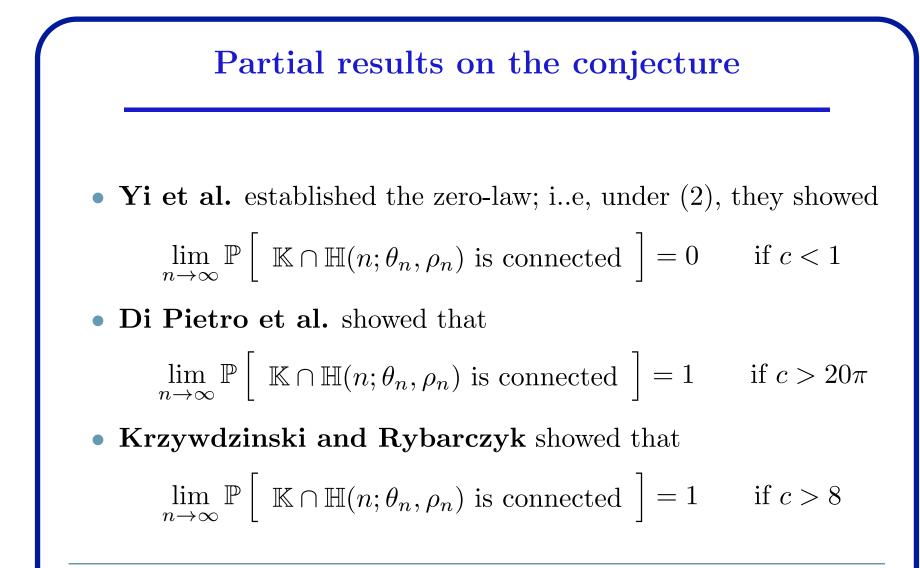
Conjecture: Theorem 2 holds when **On-Off** communication model is replaced by the **Disk** model.

(2)



a) Probability of connectivity under the **on-off** channel model. b) Probability of connectivity under the **disk model** with $\pi \rho^2 = p$.

Figures are almost indistinguishable!



No result exists for the connectivity when $1 < c \le 8 \Rightarrow$ An important **gap** given the **trade-offs** vs. security and memory

A related conjecture by Gupta & Kumar

Model: Random geometric graph with randomly deleted links. $\mathbb{G} \cap \mathbb{H}(n; p, \rho) \Rightarrow \mathbb{P}[i \sim j] = p(\pi \rho^2).$

Conjecture 2 (Gupta & Kumar, 1998) Consider scalings $p: \mathbb{N}_0 \to (0, 1)$ and $\rho: \mathbb{N}_0 \to (0, 1/\sqrt{\pi})$ such that

$$p_n \cdot \pi \rho_n^2 \sim c \frac{\log n}{n}, \quad n = 1, 2, \dots$$

for some c > 0. Then, we have

$$\lim_{n \to \infty} \mathbb{P} \left[\mathbb{G} \cap \mathbb{H}(n; p_n, \rho_n) \text{ is connected } \right] = \begin{cases} 0 & \text{if } c < 1 \\ 1 & \text{if } c > 1. \end{cases}$$

Not resolved! Open since 15 years!

A summary of connectivity results for intersection of random graphs

- ER graph \cap Random Geometric Graph
 - $\diamond\,$ Conjecture by Gupta & Kumar, 1998: **Open** for $1 < c \leq 8$
- EG graph \cap Random Geometric Graph
 - $\diamond\,$ Conjecture by Yağan, 2012: **Open** for $1 < c \leq 8$
- EG Graph \cap ER Graph
 - ♦ A sharp zero-one law is **available**, Yağan, **IT** 2012.
- Random K-out Graph \cap ER Graph (Not covered today)
 - ◊ A sharp zero-one law is **available**, Yağan & Makowski, **IT**.

Theorem 2 is the first * complete zero-one law established for the connectivity of the *intersection* of random graphs.

Thanks!

Visit www.andrew.cmu.edu/~oyagan for references..