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Random Key Graphs??

G(n;K,P )

• Vertex set, V = {v1, . . . , vn}

• Each vertex vi is assigned a set Si of K distinct objects

selected uniformly at random from a pool of size P .

• S1, . . . , Sn are iid and uniform in {1, . . . , P} with |Si| = K

• Edge set, E = {vi ∼ vj : Si ∩ Sj ̸= ∅}

P [vi ∼ vj ] = 1−
(P−K

K )
(PK)



ITA 2015, February 2nd 3

The starting point: Random key predistribution
in wireless sensor networks

The Eschenauer-Gligor scheme:

• “Before network deployment, each sensor is randomly assigned

a set of K distinct keys from a (very large) pool of P keys. ”

• Pairs of sensors that share a key can communicate securely.

• Random key graph models network connectivity when

communication constraints are ignored; i.e., under full visibility.
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Many other application areas

• Common-interest relationship network - Zhao et al., 2013

• Modeling the small world effect - Yağan and Makowski 2009

• Recommender systems using collaborative filtering - Marbach

2008

• Clustering and classification analysis - Godehardt & Jaworski

’03

• Cryptanalysis of hash functions - Blackburn et al., 2012

A.k.a. uniform random intersection graphs in some circles
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Progress thus far

Q: Given (n,K, P ), compute P [G(n;K,P ) has property A ]

• Zero-one law for absence of isolated nodes – Yağan &

Makowski (2008), Blackburn & Gerke (2008)

• Zero-one laws for connectivity – Di Pietro et al (2006, 2008),

Yağan & Makowski (2009, 2012), Blackburn & Gerke (2008),

Rybarczyk (2009)

• Giant component and diameter – Rybarczyk (2009)

• Triangle containment and clustering properties – Yağan &

Makowski (2009,2014)

Main approach: Scale K and P with n, and study

limn→∞ P [G(n;Kn, Pn) has property A]
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Now: Random key graphs with unreliable links

Q: What happens if we delete every edge of G(n;K,P )

independently, with a given probability (1− p)?

• Let H(n; p) be an Erdős-Rényi (ER) graph on vertices

V = {v1, . . . , vn}. I.e., P [vi ∼ vj ] = p for all i ̸= j.

• We shall study Gon(n;K,P, p) = G(n;K,P ) ∩H(n; p)

• In Gon(n;K,P, p), P [vi ∼ vj ] = p

[

1−
(P−K

K )
(PK)

]

With K,P , and p scaled with n, what is

lim
n→∞

P [Gon(n;Kn, Pn, pn) has property A]?
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Motivation for Gon(n;K,P, p)

• Sensitivity of graph properties in RKG to edge failures.

• In WSNs, link unreliability can be attributed to harsh

environmental conditions severely impairing transmissions.

• H(n; p) representing an On-Off communication model,

Gon(n;K,P, p) models secure connectivity of a sensor network.

• Distributed publish-subscribe systems: G(n;K,P ) models

common-interest relationships, and H(n; p) may model

“friendship” network.

• Many communication problems can be formulated as an

intersection of multiple random graphs
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Gon(n;K,P, p) vs. H

(

n; p

[

1−
(P−K

K )
(PK)

])

• Random key graph is not equivalent to an ER graph;

G(n;K,P ) ̸=st H(n; p) even with 1−

(

P−K
K

)

(

P
K

) = p

• This is because, edge assignments are not independent in

G(n;K,P ); they are in fact positively correlated

⋄ P [vi ∼ vj | vi ∼ vk, vj ∼ vk] ̸= P [vi ∼ vj ]

Gon(n;K,P, p) ̸=st H

(

n; p

[

1−

(

P−K
K

)

(

P
K

)

])
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Property of interest: k-connectivity

k-vertex-connected: Network remains connected despite the

deletion of any k − 1 nodes.

k-edge-connected: Defined similarly for the deletion of edges

Min. node degree ≥ k: All nodes have at least k neighbors

Additional benefits:

⋄ Efficient Routing. k-connectivity implies that any two nodes

are connected by k mutually independent paths.

⋄ Achieving consensus. Let m : # of adversarial nodes.

Consensus can be reached if the network is (2m+ 1)-connected

⋄ Mobile sensor networks. If k-connected, can assign any k − 1

sensors as mobile nodes.
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MAIN RESULTS
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Theorem 1 Assume that Pn = Ω(n), Kn

Pn
= o(1), and define the

sequence αn through

pn ·

[

1−

(

Pn−Kn

Kn

)

(

Pn

Kn

)

]

=
lnn+ (k − 1) ln lnn+ αn

n
, n = 1, 2, . . .

(1)

If limn→∞ αn = α⋆ ∈ (−∞,+∞), then

i) limn→∞ P [Gon(n;Kn, Pn, pn) has min. vertex degree ≥ k] =

e−
e
−α

⋆

(k−1)!

ii) limn→∞ P [Gon(n;Kn, Pn, pn) is k-edge-connected] = e−
e
−α

⋆

(k−1)!

iii) limn→∞ P [Gon(n;Kn, Pn, pn) is k-vertex-connected] = e−
e
−α

⋆

(k−1)!

Analogous to corresponding results for ER graphs!



ITA 2015, February 2nd 12

Poisson Convergence

φh(n;Kn, Pn, pn) : number of nodes in Gon with degree h = 0, 1, . . .

Theorem 2 Assume that Pn = Ω(n), Kn

Pn
= o(1), and let αn be

defined through (1). If limn→∞ αn = α⋆ ∈ (−∞,+∞), then

lim
n→∞

P[φk−1(n;Kn, Pn, pn) = ℓ] =
e−λλℓ

ℓ!
, ℓ = 0, 1, 2, . . . ,

where

λ = e−α⋆

/(k − 1)!

In other words, φk−1(n;Kn, Pn, pn) tends to a Poisson distribution

with parameter λ.
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Previous state-of-the-art for Gon

• Zero-one law for 1-connectivity: Yağan, IT 2012

• Zero-one law for k-connectivity: Zhao et al., IT 2015

Theorem 3 (Zhao,Yağan, Gligor 2015) Assume that

Pn = Ω(n), and define the sequence αn through (1). We have

lim
n→∞

P [Gon(n;Kn, Pn, pn) is k-connected] =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if lim
n→∞

αn = −∞

1 if lim
n→∞

αn = +∞.

Theorem 3 holds for k-edge-connectivity, k-vertex-connectivity, and

min. node degree ≥ k
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Zero-one laws vs. Exact Probability?

• The story is not complete with zero-one laws.

⋄ What if limn→∞ αn = α⋆ ∈ (−∞,∞)?
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• May be you want to be 10-connected for sure, but are also

interested in the odds of surviving a 15-node failure.

• Given the trade-offs involved, it is desirable to obtain the

probability of k-connectivity for any α⋆ value.
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Corollaries of Theorem 1

• With pn = 1, n = 2, 3, . . ., Gon(n;Kn, Pn, pn) =st G(n;Kn, Pn)

⋄ Theorem 1 gives asymptotically exact probability of

k-connectivity in random key graph.

• With k = 1,

⋄ Theorem 1 gives asymptotically exact probability of

1-connectivity in Gon
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Connections to the Network Reliability Problem

• Start with a fixed, deterministic graph H.

• Obtain G(H; p) by deleting each edge of H independently with

probability 1− p.

• Network reliability problem: Find the probability that

G(H; p) is connected as a function of p.

• For arbitrary graphs H the problem is #P -complete

⋄ No polynomial algorithm exists, unless P = NP .

With k = 1, our results constitute an asymptotic solution of the

network reliability problem for random key graphs.
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What about finite n?

P [Gon(n;K,P, p) is 1-vertex-connected] versus K,

with n = 2, 000, P = 10, 000 and p = 0.2, 0.5, 0.8
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Thanks!

Visit www.ece.cmu.edu/~oyagan for references..


