Asymptotically Exact Probability of k-Connectivity in Random Key Graphs Intersecting Erdős-Rényi Graphs

Jun Zhao, Osman Yağan*, and Virgil Gligor {junzhao,oyagan,gligor}@andrew.cmu.edu

Dept. of ECE and CyLab Carnegie Mellon University

Random Key Graphs??

 $\mathbb{G}(n; K, P)$

- Vertex set, $\mathcal{V} = \{v_1, \dots, v_n\}$
- Each vertex v_i is assigned a set S_i of K distinct **objects** selected uniformly at random from a pool of size P.
- S_1, \ldots, S_n are iid and uniform in $\{1, \ldots, P\}$ with $|S_i| = K$
- Edge set, $\mathcal{E} = \{v_i \sim v_j : S_i \cap S_j \neq \emptyset\}$

$$\mathbb{P}\left[v_i \sim v_j\right] = 1 - \frac{\binom{P-K}{K}}{\binom{P}{K}}$$

The starting point: Random key predistribution in wireless sensor networks

The Eschenauer-Gligor scheme:

- "Before network deployment, each sensor is **randomly** assigned a set of K **distinct** keys from a (very large) pool of P keys."
- Pairs of sensors that share a key can communicate **securely**.
- Random key graph models network connectivity when communication constraints are ignored; i.e., under *full visibility*.

Many other application areas

- Common-interest relationship network Zhao et al., 2013
- Modeling the *small world* effect Yağan and Makowski 2009
- Recommender systems using collaborative filtering Marbach 2008
- Clustering and classification analysis Godehardt & Jaworski '03
- Cryptanalysis of hash functions Blackburn et al., 2012

A.k.a. uniform random intersection graphs in some circles

Progress thus far

Q: Given (n, K, P), compute $\mathbb{P}\left[\mathbb{G}(n; K, P) \text{ has property } \mathcal{A}\right]$

- Zero-one law for absence of isolated nodes Yağan & Makowski (2008), Blackburn & Gerke (2008)
- Zero-one laws for connectivity Di Pietro et al (2006, 2008),
 Yağan & Makowski (2009, 2012), Blackburn & Gerke (2008),
 Rybarczyk (2009)
- Giant component and diameter Rybarczyk (2009)
- Triangle containment and clustering properties Yağan & Makowski (2009,2014)

Main approach: Scale K and P with n, and study $\lim_{n\to\infty} \mathbb{P}\left[\mathbb{G}(n;K_n,P_n) \text{ has property } \mathcal{A}\right]$

Now: Random key graphs with unreliable links

Q: What happens if we **delete** every edge of $\mathbb{G}(n; K, P)$ independently, with a given probability (1-p)?

- Let $\mathbb{H}(n;p)$ be an Erdős-Rényi (ER) graph on vertices $\mathcal{V} = \{v_1, \dots, v_n\}$. I.e., $\mathbb{P}[v_i \sim v_j] = p$ for all $i \neq j$.
- We shall study $\mathbb{G}_{on}(n; K, P, p) = \mathbb{G}(n; K, P) \cap \mathbb{H}(n; p)$

• In
$$\mathbb{G}_{on}(n; K, P, p)$$
, $\mathbb{P}\left[v_i \sim v_j\right] = p\left[1 - \frac{\binom{P-K}{K}}{\binom{P}{K}}\right]$

With K, P, and p scaled with n, what is

 $\lim_{n\to\infty} \mathbb{P}\left[\mathbb{G}_{on}(n;K_n,P_n,p_n) \text{ has property } \mathcal{A}\right]?$

Motivation for $\mathbb{G}_{on}(n; K, P, p)$

- Sensitivity of graph properties in RKG to edge failures.
- In WSNs, link unreliability can be attributed to harsh environmental conditions severely impairing transmissions.
- $\mathbb{H}(n;p)$ representing an **On-Off** communication model, $\mathbb{G}_{on}(n;K,P,p)$ models secure connectivity of a sensor network.
- Distributed publish-subscribe systems: $\mathbb{G}(n; K, P)$ models common-interest relationships, and $\mathbb{H}(n; p)$ may model "friendship" network.
- Many communication problems can be formulated as an intersection of multiple random graphs

$$\mathbb{G}_{on}(n; K, P, p)$$
 vs. $\mathbb{H}\left(n; p\left[1 - \frac{\binom{P-K}{K}}{\binom{P}{K}}\right]\right)$

• Random key graph is not equivalent to an ER graph;

$$\mathbb{G}(n; K, P) \neq_{st} \mathbb{H}(n; p)$$
 even with $1 - \frac{\binom{P-K}{K}}{\binom{P}{K}} = p$

- This is because, edge assignments are **not** independent in $\mathbb{G}(n; K, P)$; they are in fact positively correlated
 - $\diamond \mathbb{P}\left[v_i \sim v_j \mid v_i \sim v_k, v_j \sim v_k\right] \neq \mathbb{P}\left[v_i \sim v_j\right]$

$$\mathbb{G}_{on}(n; K, P, p) \neq_{st} \mathbb{H}\left(n; p\left[1 - \frac{\binom{P-K}{K}}{\binom{P}{K}}\right]\right)$$

Property of interest: k-connectivity

k-vertex-connected: Network remains connected despite the deletion of any k-1 nodes.

k-edge-connected: Defined similarly for the deletion of edges Min. node degree $\geq k$: All nodes have at least k neighbors

Additional benefits:

- \diamond Efficient Routing. k-connectivity implies that any two nodes are connected by k mutually independent paths.
- \diamond Achieving consensus. Let m:# of adversarial nodes. Consensus can be reached if the network is (2m+1)-connected
- \diamond Mobile sensor networks. If k-connected, can assign any k-1 sensors as mobile nodes.

MAIN RESULTS

Theorem 1 Assume that $P_n = \Omega(n)$, $\frac{K_n}{P_n} = o(1)$, and define the sequence α_n through

$$p_n \cdot \left[1 - \frac{\binom{P_n - K_n}{K_n}}{\binom{P_n}{K_n}} \right] = \frac{\ln n + (k-1) \ln \ln n + \alpha_n}{n}, \quad n = 1, 2, \dots$$
(1)

If $\lim_{n\to\infty} \alpha_n = \alpha^* \in (-\infty, +\infty)$, then

- i) $\lim_{n\to\infty} \mathbb{P}\left[\mathbb{G}_{on}(n;K_n,P_n,p_n) \text{ has min. vertex degree} \geq k\right] = e^{-\frac{e^{-\alpha^*}}{(k-1)!}}$
- ii) $\lim_{n\to\infty} \mathbb{P}\left[\mathbb{G}_{on}(n;K_n,P_n,p_n) \text{ is } k\text{-edge-connected}\right] = e^{-\frac{e^{-\alpha^*}}{(k-1)!}}$
- iii) $\lim_{n\to\infty} \mathbb{P}\left[\mathbb{G}_{on}(n; K_n, P_n, p_n) \text{ is } k\text{-vertex-connected}\right] = e^{-\frac{e^{-\alpha^*}}{(k-1)!}}$

Analogous to corresponding results for ER graphs!

Poisson Convergence

 $\phi_h(n; K_n, P_n, p_n)$: number of nodes in \mathbb{G}_{on} with degree $h = 0, 1, \dots$

Theorem 2 Assume that $P_n = \Omega(n)$, $\frac{K_n}{P_n} = o(1)$, and let α_n be defined through (1). If $\lim_{n\to\infty} \alpha_n = \alpha^* \in (-\infty, +\infty)$, then

$$\lim_{n \to \infty} \mathbb{P}[\phi_{k-1}(n; K_n, P_n, p_n) = \ell] = \frac{e^{-\lambda} \lambda^{\ell}}{\ell!}, \quad \ell = 0, 1, 2, \dots,$$

where

$$\lambda = e^{-\alpha^{\star}}/(k-1)!$$

In other words, $\phi_{k-1}(n; K_n, P_n, p_n)$ tends to a Poisson distribution with parameter λ .

Previous state-of-the-art for \mathbb{G}_{on}

- Zero-one law for 1-connectivity: Yağan, IT 2012
- Zero-one law for k-connectivity: Zhao et al., IT 2015

Theorem 3 (Zhao, Yağan, Gligor 2015) Assume that $P_n = \Omega(n)$, and define the sequence α_n through (1). We have

$$\lim_{n \to \infty} \mathbb{P}\left[\mathbb{G}_{on}(n; K_n, P_n, p_n) \text{ is } k\text{-connected}\right] = \begin{cases} 0 & \text{if } \lim_{n \to \infty} \alpha_n = -\infty \\ 1 & \text{if } \lim_{n \to \infty} \alpha_n = +\infty. \end{cases}$$

Theorem 3 holds for k-edge-connectivity, k-vertex-connectivity, and min. node degree $\geq k$

Zero-one laws vs. Exact Probability?

- The story is not complete with zero-one laws.
 - \diamond What if $\lim_{n\to\infty} \alpha_n = \alpha^* \in (-\infty,\infty)$?

- May be you want to be 10-connected for sure, but are also interested in the odds of surviving a 15-node failure.
- Given the trade-offs involved, it is desirable to obtain the probability of k-connectivity for any α^* value.

Corollaries of Theorem 1

- With $p_n = 1, n = 2, 3, ..., \mathbb{G}_{on}(n; K_n, P_n, p_n) =_{st} \mathbb{G}(n; K_n, P_n)$
 - \diamond Theorem 1 gives asymptotically exact probability of k-connectivity in random key graph.
- With k=1,
 - \diamond Theorem 1 gives asymptotically exact probability of 1-connectivity in \mathbb{G}_{on}

Graph	Property	Results	Work
$\mathbb{G}_{on}(n;K_n,P_n,p_n)$	k -connectivity & Min. node degree $\geq k$	exact probability	this paper
		zero-one law	Zhao et al. 2013
	1-connectivity & Absence of isolated vertices	exact probability	this paper
		zero–one law	Yağan 2012
$\mathbb{G}(n; K_n, P_n)$	k -connectivity & Min. node degree $\geq k$	exact probability	this paper
		zero-one law	Rybarczyk 2011
	1-connectivity & Absence of isolated vertices	exact probability	Rybarczyk 2011
		zero–one law	Di Pietro, Y&M

Connections to the Network Reliability Problem

- Start with a fixed, deterministic graph \mathcal{H} .
- Obtain $\mathbb{G}(\mathcal{H};p)$ by deleting each edge of \mathcal{H} independently with probability 1-p.
- Network reliability problem: Find the probability that $\mathbb{G}(\mathcal{H};p)$ is connected as a function of p.
- For arbitrary graphs \mathcal{H} the problem is #P-complete
 - \diamond No polynomial algorithm exists, unless P = NP.

With k = 1, our results constitute an **asymptotic solution** of the network reliability problem for random key graphs.

What about finite n?

 $\mathbb{P}\left[\mathbb{G}_{on}(n; K, P, p) \text{ is 1-vertex-connected}\right] \text{ versus } K,$ with n=2,000, P=10,000 and p=0.2,0.5,0.8

Thanks!

Visit www.ece.cmu.edu/~oyagan for references..