Carnegie Mellon University CyLab

Designing Secure and Reliable Wireless Sensor Networks

Osman Yağan Assistant Research Professor, ECE

Joint work with J. Zhao, V. Gligor, and F. Yavuz

Wireless Sensor Networks

- Distributed collection of sensors: low-cost, resource-constrained, and often deployed in a hostile environment
- Wireless communications
 - Monitored **and** modified by an adversary
 - Cryptographic protection is needed
 - Proposed method: Random key predistribution (since topology is often unknown before deployment)

Carnegie Mellon University CyLab

Random key predistribution

- 1. The Eschenauer–Gligor (EG) scheme [ACM CCS '02]
- For a network with *n* sensors:

CyLab

- A large pool of *P* cryptographic keys ٠
- For each sensor, sample *K* keys uniformly at random ٠
- Example values: $n = 10^{4}$, $P = 10^{5}$, and $K = 10^{2}$
- Two sensors can securely communicate over an existing wireless link if they have at least one common key

A simple extension of the EG scheme

- 2. The q-composite scheme [Chan–Perrig–Song IEEE S&P '03]
- \succ Same initial construction with the EG scheme;

CyLab

- For any two sensors, secure communication over an existing wireless link if they share at least **q** keys (**q>1**)
- Advantage: Improved resilience against node capture attacks when **few** sensors are captured \rightarrow Worse than EG if a large number sensors are captured.

An alternative method

- 3. The pairwise scheme [Chan–Perrig–Song IEEE S&P '03]
- Each sensor is paired (offline) with K distinct nodes which are randomly selected from amongst all other nodes.
- For each sensor and any sensor paired to it, a unique (pairwise) key is generated and assigned only to those two nodes.
- Advantage: Node-to-node authentication and quorum-based key revocation are possible without requiring a trusted third party.

With **K**=1, S_a={b}, S_b={c}, and S_c={b} where S_i is the set of nodes selected by node *i*:

The Main Question

Given the **RANDOMNESS** involved in

Distribution of cryptographic keys

Physical location of sensors, due to random deployment (& mobility)

How do we ensure that the network has **end-to-end connectivity** that is **reliable** against

i) Sensor failures due to adversarial attacks, battery depletion, product malfunctioning; and

ii) Link failures due to sensor mobility, environmental conditions, product malfunctioning?

A Reliability Metric: k-connectivity

- Connectivity
 - At least 1 path between any two nodes
- ➢ k-Connectivity
 - At least *k* mutually disjoint paths between any two nodes
 - Equivalent definition: **Remains connected despite the removal**
 - -of any (k-1) nodes or edges
 - Addtl. advantages: multi-path routing, achieving consensus, etc.

2-Connected

Our Goal

For a desired level of reliability specified by the parameter *k*,

- Determine the probability that the resulting network is k-connected as a function of all network parameters involved -- This will be done under
 - i) Three key predistribution schemes, and
 - ii) Two wireless communication models

Approach: Random Graph Modeling & Analysis

Random Graph Modeling

Random Graphs = Graphs generated by a random process

- ◆ Communication Graph: E.g., the disk model → An edge $i \sim j$ exists if $||x_i - x_j|| \le r$ → transmission range
- Cryptographic Graph: Induced by the key predistribution sch.
 An edge i ~ j exists if sensors i and j have q keys in common. (For EG and Pairwise q=1)
- ◆ System Model: Communication Graph ∩ Cryptographic Graph > $i \sim j$ if $||x_i - x_j|| \le r$ ∧ have q keys in common. > Links represent sensors that can securely communicate

Preliminary Wireless Comm. Models

- On/Off channel model
 - Each channel either on with prob. p_n or off with prob. (1–p_n)
 - Unreliable links due to barriers / environments / wireless nature
- Disk model
 - Only two sensors within some distance r_n can communicate
 - Transmission range r_n is directly related to sensor transmit power

System Models to be Considered

Scheme/Comm. Model	Graph	
EG scheme	Random key graph)
<i>q</i> -composite scheme	<i>q</i> -composite key graph	Cryptographic Graphs
Pairwise scheme	Random K-out graph	J
on/off channel model	Erdős-Rényi graph	Communication Graphs
disk model	Random geometric graph	

WSN	Graph
WSN ^{EG} on/off	random key graph ∩ Erdős-Rényi graph
WSN ^{EG} disk	random key graph ∩ random geometric graph
WSN ^{q-composite} on/off	q -composite random key graph \cap Erdős-Rényi graph
WSN ^{<i>q</i>-composite} disk	q -composite random key graph \cap random geometric graph
WSN ^{pairwise} on/off	random K-out graph ∩ Erdős-Rényi graph
WSN ^{pairwise} disk	random K-out graph ∩ random geometric graph

A Representative Result

- EG scheme : Random Key Graph
 - n sensors, each equipped with K_n keys selected uniformly at random from a pool of P_n keys.
 - An edge between two nodes (sensors) if and only if they share at least 1 key
 - Notation: $G_{\mathsf{RKG}}(n, K_n, P_n)$
- > On-off channel model : Erdős–Rényi graph
 - n nodes
 - An edge between two nodes appear independently with prob. p_n
 - Notation: $G_{\text{ER}}(n, p_n)$
- System Model:

$$\mathsf{WSN}_{\mathsf{on/off}}^{\mathsf{EG}} = G_{\mathsf{RKG}}(n, K_n, P_n) \bigcap G_{\mathsf{ER}}(n, p_n)$$

Zhao, Yagan, Gligor: IT 2014

Theorem 1. For WSN^{EG}_{on/off} modeled by $G_{\text{RKG}}(n, K_n, P_n) \cap G_{\text{ER}}(n, p_n)$ with $P_n \ge 3K_n$ for all *n* sufficiently large, let sequence α_n for all *n* be defined through

$$\alpha_n = n p_n \frac{K_n^2}{P_n} - \ln n - (k-1) \ln \ln n,$$

If $P_n = \Omega(n)$, then as $n \to \infty$,

$$P\left[\text{WSN}_{\text{on/off}}^{\text{EG}} \text{ is } k\text{-connected}\right] \rightarrow \begin{cases} e^{-\frac{a^{-\alpha}}{(k-1)!}}, \text{ if } \lim_{n \to \infty} \alpha_n = \alpha \in (-\infty, \infty), \\ 0, & \text{ if } \lim_{n \to \infty} \alpha_n = -\infty, \\ 1, & \text{ if } \lim_{n \to \infty} \alpha_n = +\infty. \end{cases} \leftarrow \text{A zero-law}$$

A precise characterization of k-connectivity in wireless sensor networks under the EG scheme Carnegie Mellon University CyLab

Probability that WSN is 2-connected with n = 2,000, P = 10,000

Contributions thus far

Model	Results for <i>k</i> -connectivity
EG scheme ∩ on/off channels	Zero-one law + Asymp. probability (ISIT 2013, IT, others in submission)
q-composite scheme ∩ on/off channels	Zero-one law + Asymp. probability (ISIT 2014 – best paper award finalist)
Pairwise scheme ∩ on/off channels	Zero-One law (ISIT 2014, IT, ICC 2015)
EG scheme ∩ disk model	Zero-One law (Allerton 2014)
q-composite scheme ∩ disk model disk model	Zero-One law (In submission)

Applications beyond wireless sensor networks

- ➢ Random key graphs ∩ random geometric graphs and Random K-out graphs ∩ random geometric graphs
 - Frequency hopping in wireless networks (keys can be used as an input to pseudo-random number generators, whose output give frequency-hopping sequence)
- Random key graphs
 - Trust networks
 - Cryptanalysis of hash functions
 - Recommender systems using collaborative filtering
- ➤ Random key graphs ∩ Erdős-Rényi graphs
 - Common–interest relations in online social networks

Thanks... Questions??

For references: <u>www.ece.cmu.edu/~oyagan</u>

Carnegie Mellon University CyLab