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Abstract—Random K-out graphs are garnering interest in
designing distributed systems including secure sensor networks,
anonymous crypto-currency networks, and differentially-private
decentralized learning. In these security-critical applications, it
is important to model and analyze the resilience of the network
to node failures and adversarial captures. Motivated by this, we
analyze how the connectivity properties of random K-out graphs
vary with the network parameters K, the number of nodes (n),
and the number of nodes that get failed or compromised (γn).
In particular, we study the conditions for achieving connectivity
with high probability and for the existence of a giant component
with formal guarantees on the size of the largest connected
component in terms of the parameters n, K, and γn. Next, we
analyze the property of r-robustness which is a stronger property
than connectivity and leads to resilient consensus in the presence
of malicious nodes. We derive conditions on K and n under
which the random K-out graph achieves r-robustness with high
probability. We also provide extensive numerical simulations and
compare our results on random K-out graphs with known results
on Erdős-Rényi (ER) graphs.

Index Terms—Connectivity, giant component, robustness, r-
robustness, random graphs, random K-out graphs, security,
privacy

I. INTRODUCTION

A. Motivation and Background

In recent years, the rapid proliferation of affordable sensing
and computing devices has led to rapid growth in technologies
powered by the IoT (Internet of Things). A key challenge
in this space is to develop network models for generating a
securely connected ad-hoc network in a distributed fashion
while minimizing operational costs.

With its unique connectivity properties, a class of random
graph models known as the random K-out graphs has found
many applications in the design of ad-hoc networks. A random
K-out graph [3]–[5], denoted as H(n;K), is an undirected
graph with n nodes where each node forms an edge with K
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distinct nodes chosen uniformly at random. Random K-out
graphs are known to achieve connectivity easily, i.e., with far
fewer edges (O(n)) as compared to classical random graph
models including Erdős-Rényi (ER) graphs [3], [6], random
geometric graphs [7], and random key graphs [8], which all
require O(n log n) edges for connectivity. In particular, it
is known [4], [5] that random K-out graphs are connected
with high probability (whp) when K ≥ 2. This had led to
their deployment in several applications including random
key predistribution schemes for secure communication in
sensor networks [9]–[11], differentially-private distributed av-
eraging algorithms [12], anonymity preserving cryptocurrency
networks [13], and distributed secure mapping of network
addresses in next-generation internet architectures [14].

In the context of sensor networks, random K-out graphs
have been used [5], [11], [15] to analyze the performance of
the random pairwise key predistribution scheme and its het-
erogeneous variants [16], [17]. The random pairwise scheme
works as follows. Before deployment, each sensor chooses K
others uniformly at random. A unique pairwise key is given
to each node pair where at least one of them selects the other.
After deployment, two sensors can securely communicate if
they share a pairwise key. The topology of the sensor network
can thus be represented by a random K-out graph; each edge
of the random K-out represents a secure communication link
between two sensors. Consequently, random K-out graphs
have been analyzed to answer key questions on the values
of the parameters n and K needed to achieve certain desired
properties, including connectivity at the time of deployment
[4], [5], connectivity under link removals [11], [15], and
unassailability [18]. Despite many prior works on random
K-out graphs, very little is known about its connectivity
properties when some of its nodes are removed. This is an
increasingly relevant problem since many IoT networks are
deployed in remote and hostile environments where nodes may
be captured by an adversary, or fail due to harsh conditions.

Another application of random K-out graphs is in distributed
learning, where a key goal is to perform computations on user
data without compromising the privacy of the users. Random
K-out graphs have recently been used to construct the commu-
nication graph in a differentially-private federated averaging
scheme called the GOPA (GOssip Noise for Private Averaging)
protocol [12, Algorithm 1]. According to the GOPA protocol,
a random K-out graph is constructed on a set of nodes, of
which an unknown subset is dishonest. It was shown in [12,
Theorem 3] that the privacy-utility trade-offs achieved by the
GOPA protocol are tightly dependent on the subgraph on
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honest nodes being connected. When the subgraph on honest
nodes is not connected, it was shown that the performance
of GOPA is tied to the size of the connected components
of honest nodes. Since dishonest users can be modeled as
randomly deleted nodes, analyzing the connectivity and giant
component size of random K-out graphs under node deletions
is the key in understanding the performance of the GOPA
protocol.

B. Properties of Interest for Random K-out Graphs in Dis-
tributed Computing Applications

In the context of applications discussed in the previous
section, we can identify several key properties of random K-
out graphs that need to be well-understood for performance
evaluation and efficient design of the underlying systems. We
believe that the graph properties discussed here can also be
useful in facilitating new applications of random K-out graphs
in different fields, akin to our recent work [19] paving the way
to new applications by establishing connectivity guarantees in
the finite node regime.

A key metric in quantifying the utility of a network is
connectivity which is defined as the existence of a path of
edges between every node pair [20]. Connectivity ensures
that all agents in the network can communicate with one
another and no node is isolated from the network. In practice,
resource constraints limit the number of links that can be
established in the network. Thus, a key goal is to design a
resiliently connected network while keeping the number of
links to be established within operational constraints. Depend-
ing on the resource constraints and mission requirements of
the application at hand, it may suffice to ensure a weaker
notion of connectivity or in cases where agents may routinely
fail or compromise, we may even need a stronger notion of
connectivity.

In resource-constrained environments, preserving connectiv-
ity despite node failures may not be feasible and the goal in-
stead might be to ensure that there is a large enough, connected
sub-network of users, also known as a giant component. For
example, it may suffice to aggregate the temperature readings
of the majority of sensors deployed in a field to get an estimate
of the true temperature. Another example is the power grid
network where it is essential to ensure supply to the majority
of the users in the event of failures.

In addition to ensuring that the network remains resiliently
connected in the event of node failures, it is often desirable to
ensure that consensus can be achieved even in the presence
of adversarial agents. In [21], it was shown that network
connectivity is not sufficient to characterize consensus when
nodes use a certain class of local filtering rules. In particular, it
was shown that consensus can be reached in graphs that have
the property of being sufficiently robust. This is formally quan-
tified by the property of r-robustness, which was introduced
in [21]. A graph is said to be r-robust if, for every disjoint
subset pair that partitions the graph, at least one node in one
of these subsets is adjacent to at least r nodes in the other set.

The r-robustness property is especially useful in applica-
tions of consensus dynamics, where parameters of several

agents get aligned after a sufficiently long period of local
interactions. In another example, it was shown [22] that if the
network is (2F +1)-robust (for some non-negative integer F ),
then the nodes in the network can reach consensus even when
there are up to F malicious nodes in the neighborhood of every
correctly-behaving node. Thus, r-robustness is particularly
important for applications based on consensus dynamics in
adversarial environments. Moreover, r-robustness is known
[22] to be a stronger property than r-connectivity and thus
can provide guarantees on the connectivity of the graph when
up to r − 1 nodes in the graph are removed. In the random
graph literature, r-robustness has been studied for the ER
graph and the Barabási-Albert model in [23], but to the best
of our knowledge, there is no prior work on the r-robustness
of random K-out graphs except our recent work [2].

C. Main Contributions
With these motivations in mind, this paper aims to fill

the gaps in the literature on the connectivity and robustness
properties of random K-out graphs. We provide a compre-
hensive set of results on the connectivity and size of the
giant component of the random K-out graph when some of
its nodes are dishonest, have failed, or have been captured.
We further analyze the conditions required for ensuring r-
robustness of the random K-out graph. Our main contributions
are summarized below:

1) Let H(n;Kn, γn) denote the random graph obtained
after removing γn nodes, selected uniformly at random,
from the random K-out graph H(n;Kn). We provide
a set of conditions for Kn, n, and γn under which
H(n;Kn, γn) is connected with high probability (whp).
This is done for both cases where γn = Ω(n) and
γn = o(n), respectively. Our result for γn = Ω(n) (see
Theorem 3.1) significantly improves a prior result [24]
on the same problem and leads to a sharp zero-one law
for the connectivity of the random K-out graph under
node deletions. Our result for the case γn = o(n) (see
Theorem 3.2) expands the existing threshold of Kn ≥ 2
required for connectivity by showing that the graph is
connected whp for Kn ≥ 2 even when o(

√
n) nodes are

deleted.
2) We derive conditions on Kn, n, γn that lead to a giant

component in H(n;Kn, γn) whp and provide an upper
bound on the number of nodes not contained in the giant
component. This is also done for both cases γn = Ω(n)
and γn = o(n); see Theorem 3.3 and Theorem 3.4,
respectively. An important consequence of this result is
to establish Kn ≥ 2 as a sufficient condition to ensure
whp the existence of a giant component in the random
K-out graph despite the removal of o(n) nodes in the
network.

3) Using a novel proof technique, we show that K ≥ 2r
is sufficient to ensure that the random K-out graph
H(n;K) is r-robust whp (see Theorem 3.5). Since it is
already known that H(n;K) is not r-robust whp when
K < r, this result is tight up to at most a multiplicative
factor of two (and it is is much tighter than the condition
established in [2]).
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4) Combining our theoretical results with numerical simu-
lations, we also provide a comparison of random K-out
graphs with ER graphs. We determine that random K-out
graphs are much more robust in terms of r-robustness
property, and also attain connectivity and admit a giant
component with fewer edges compared to ER graphs.
Our results highlight the usefulness of random K-out
graphs as a topology design tool for efficient design of
secure, resilient and robust distributed networks.

Using our theoretical results and numerical simulations, we
also provide a comparison of the performance of random K-
out graphs with ER graphs. We determine that random K-out
graphs are much more robust in terms of r-robustness property,
and also attain connectivity and admit a giant component with
fewer edges compared to ER graphs. Our results highlight
the usefulness of random K-out graphs as a topology design
tool for efficient design of secure, resilient and robust ad-hoc
networks.

D. Organization of the Paper

The rest of this article is organized as follows. In Section
II, we introduce the notation used across this article and the
network model, the random K-out graph, and extend this
model to account for node deletions. In Section III, we present
the main results along with the simulation results and provide a
detailed discussion. In Section IV, we provide the proof of all
Theorems presented in Section III. Conclusions are provided
in Section V.

II. NOTATIONS AND DEFINITIONS

All random variables are defined on the same probability
space (Ω,F ,P) and probabilistic statements are given with
respect to the probability measure P. The complement of an
event A is denoted by Ac. The cardinality of a discrete set
A is denoted by |A|. The intersection of events A and B is
denoted byA ∩ B. We refer to any mapping K : N0 → N0

as a scaling if it satisfies the condition 2 ≤ Kn < n, n =
2, 3, . . .. All limits are understood with n going to infinity.
If the probability of an event tends to one as n → ∞, we
say that it occurs with high probability (whp). The statements
an = o(bn), an = ω(bn), an = O(bn), an = Θ(bn), and
an = Ω(bn), used when comparing the asymptotic behavior
of sequences {an}, {bn}, have their meaning in the standard
Landau notation. The asymptotic equivalence an ∼ bn is used
to denote the fact that limn→∞

an
bn

= 1. Finally, we let 〈d〉
denote the mean node degree of a graph.

Definition 2.1 (Random K-out Graph): The random K-out
graph is defined on the vertex set V := {v1, . . . , vn} as follows.
Let N := {1, 2, . . . , n} denote the set vertex labels. For each
i ∈ N , let Γn,i ⊆ N \ i denote the set of Kn labels, selected
uniformly at random, corresponding to the nodes selected by
vi. It is assumed that Γn,1, . . . ,Γn,n are mutually independent.
Distinct nodes vi and vj are adjacent, denoted by vi ∼ vj if at
least one of them picks the other. Namely,

vi ∼ vj if [j ∈ Γn,i] ∨ [i ∈ Γn,j ]. (1)

Fig. 1. An example for a 1-robust graph. We see that with the subset pair
S = {vA, vB} and Sc = {vC , vD, vE , vF }, both vA and vB in S have
only one neighbor in Sc, while vC and vF in Sc have only one neighbor in S,
meaning both S and Sc are 1-reachable (but not 2-reachable). Further, all other
subset pairs that partition the graph are also 1-reachable, leading to the graph
in Fig. 1 being 1-robust.

The set of neighbors of node i is denoted by Vi := {j ∈
N \ i : vi ∼ vj}, and the degree of node i is denoted as di =
|Vi|. The random graph defined on the vertex set V through the
adjacency condition (1) is called a random K-out graph [3], [5],
[25] and is denoted by H(n;Kn).

Definition 2.2 (Cut): [26, Definition 6.3] For a graph G
defined on the node set N , a cut is a non-empty subset S ⊂ N
of nodes isolated from the rest of the graph. Namely, S ⊂ N
is a cut if there is no edge between S and Sc = N \ S. If S
is a cut, then so is Sc.

Definition 2.3 (Connected Components): A pair of nodes in
a graph G are said to be connected if there exists a path of
edges connecting them. A connected component Ci of G is a
subgraph in which any two vertices are connected to each other,
and no vertex is connected to a node outside of Ci.

Definition 2.4 (Giant Component): For a graph G with
n nodes, a giant component exists if its largest connected
component has size Ω(n). In that case, the largest connected
component is referred to as the giant component of the graph.

Definition 2.5 (Connectivity): A graph G is connected if
there exists a path of edges between every pair of its vertices.

Definition 2.6 (r-connectivity): A graph is r-connected if it
remains connected after the removal of any set of r − 1 (or,
fewer) nodes or edges.

Definition 2.7 (r-reachable Set): [21, Definition 6] For a
graph G and a subset S of nodes S ⊂ N , we say S is r-
reachable if ∃i∈ S : |Vi \ S| ≥ r, where r ∈ Z+. In other
words, S is an r-reachable set if it contains a node that has at
least r neighbors outside S.

Definition 2.8 (r-robust Graph): [21, Definition 6] A graph
G is r-robust if for every pair of nonempty, disjoint subsets
of N that partition N , at least one of these subset pairs is r-
reachable, where r ∈ Z+.

It was shown in [22] that if a graph is r-robust, it is at
least r-connected. Thus, r-robustness is a stronger property
than r-connectivity. It is also easy to see that when r = 1, the
properties of r-robustness and r-connectivity are equivalent.

A main goal of this paper is to study the connectivity and
giant component size of random K-out graphs when some of
its nodes are failed, captured, or dishonest. To this end, we
consider the following model of random K-out graphs under
random removal of nodes. We first let γn denote the number
of removed nodes and assume, for simplicity, that they are
selected uniformly at random among all nodes in V . Further,
we let D ⊂ V, |D| = γn denote the set of deleted nodes. We
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then define H(n;Kn, γn) on the vertex set R = V \ D and
the corresponding set of labels NR, such that distinct vertices
vi and vj (both in R) are adjacent if they were adjacent in
H(n;Kn); i.e., if [j ∈ Γn,i] ∨ [i ∈ Γn,j ]. For each i ∈ NR,
the set of labels adjacent to node vi in H(n;Kn, γn) is denoted
by Γn−γn,i ⊆ NR \ i.

III. MAIN RESULTS

Our main results are presented in Theorems 3.1- 3.5 below.
Each Theorem addresses a design question as to how the
parameter Kn should be chosen to satisfy the desired property
on robustness, connectivity or the size of the giant component;
see Table I for a summary of the main results. The results
on connectivity and the size of the giant component are for
H(n;Kn, γn), i.e., the random K-out graph when γn nodes
are deleted, while the result on r-robustness is given for the
original graph H(n;Kn) (without any node deletion). We
provide the proofs of all results in Section IV.

A. Results on Connectivity

Let P (n,Kn, γn) = P [H(n;Kn, γn) is connected].
Theorem 3.1: Let γn = αn with α in (0, 1), and consider a

scaling K : N0 → N0 such that with c > 0 we have

Kn ∼ c · r1(α, n), where r1(α, n) =
log n

1− α− logα
(2)

is the threshold function. Then, we have

lim
n→∞

P (n,Kn, γn) =

{
1, if c > 1

0, if 0 < c < 1.
(3)

The proof of the one-law in (3), i.e., that
limn→∞ P (n,Kn, γn) = 1 if c > 1, is given in Section IV.
The zero-law of (3), i.e., that limn→∞ P (n,Kn, γn) = 0
if c < 1, was established previously in [24, Corollary 3.3].
There, a one-law was also provided: under (2), it was shown
that limn→∞ P (n,Kn, γn) if c > 1

1−α , leaving a gap between
the thresholds of the zero-law and the one-law. Theorem 3.1
presented here fills this gap by establishing a tighter one-law,
and constitutes a sharp zero-one law; e.g., when α = 0.5, the
one-law in [24] is given with c > 2, while we show that it
suffices to have c > 1.

Theorem 3.2: Consider a scaling K : N0 → N0.
a) If γn = o(

√
n), then we have

lim
n→∞

P (n,Kn, γn) = 1, if Kn ≥ 2 ∀n (4)

b) If γn = Ω(
√
n) and γn = o(n), and if for some sequence

wn, it holds that

Kn = r2(γn) + ωn, where r2(γn) =
log(γn)

log 2 + 1/2

is the threshold function, then we have

lim
n→∞

P (n,Kn, γn) = 1, if lim
n→∞

ωn =∞ (5)

We remind that random K-out graph is known [4], [5] to
be connected whp when Kn ≥ 2. Part (a) of Theorem 3.2

extends this result by showing that having Kn ≥ 2 is sufficient
for the random K-out graph to remain connected whp even
when o(

√
n) of its nodes (selected randomly) are deleted. We

believe that this result will further facilitate the application of
random K-out graphs in a wide range of applications where
connectivity despite node failures is crucial.

B. Results on the Size of the Giant Component

Let Cmax(n,Kn, γn) denote the set of nodes in the
largest connected component of H(n;Kn, γn) and let
PG(n,Kn, γn, λn) := P[|Cmax(n,Kn, γn)| > n − γn − λn].
Namely, PG(n,Kn, γn, λn) is the probability that less than λn
nodes are outside the largest component of H(n;Kn, γn).

Theorem 3.3: Let γn = o(n), λn = Ω(
√
n) and λn ≤

b(n− γn)/3c. Consider a scaling K : N0 → N0 and let

r3(γn, λn) = 1 +
log(1 + γn/λn)

log 2 + 1/2

be the threshold function. Then, we have

lim
n→∞

PG(n,Kn, γn, λn) = 1, if Kn > r3(γn, λn), ∀n.

We remark that if λn = βn with 0 < β < 1/3, then
r3(γn, λn) = 1 + o(1). This shows that when γn = o(n),
it suffices to have Kn ≥ 2 for H(n;Kn, γn) to have a
giant component containing (1 − β)n nodes for arbitrary
0 < β < 1/3. Put differently, by choosing Kn ≥ 2, we
ensure that even when γn = o(n) nodes are removed, the
rest of the network contains a connected component whose
fractional size is arbitrarily close to 1.

Theorem 3.4: Let γn = αn with α in (0, 1), and λn ≤
b (1−α)n3 c. Consider a scaling K : N0 → N0 and let

r4(α, λn) = 1 +
log(1 + nα

λn
) + α+ log(1− α)

1−α
2 − log

(
1+α
2

)
be the threshold function. Then, we have

lim
n→∞

PG(n,Kn, α, λ) = 1, if Kn > r4(α, xn), ∀n.

It can be seen from this result that Kn needs to scale as
Kn ∼ log(αnλn ) for a random K-out graph to have a giant
component of size n− λn when αn of its nodes are removed
(or, if each node is independently removed with probability
0 < α < 1). We also remark that the threshold r4(α, λn)
is finite when λn = Ω(n). This shows that even when a
positive fraction of the nodes of the random K-out graph
are removed, a finite Kn is still sufficient to have a giant
component of size Ω(n) in the graph. This result can be
useful in applications where it is required to maintain a giant
component as efficiently (i.e., with as fewest edges) as possible
even when large scale node failures take place.

C. Result on Robustness

Theorem 3.5: Consider a scaling K : N0 → N0, for all
r ∈ Z+, we have

lim
n→∞

P [H(n;Kn) is r-robust] = 1, if Kn ≥ 2r
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Desired Minimum Kn needed to Theorem
Property achieve the property

Connectivity
γn = αn

(1 + ε) logn
1−α−logα

Thm. 3.1

Connectivity
γn = o(

√
n)

Kn ≥ 2 Thm. 3.2(a)

Connectivity
γn = w(

√
n), γn = o(n)

log(γn)
log 2+1/2

+ w(1) Thm. 3.2(b)

Giant Component,
λn = o(n), γn = o(n)

1 +
log(1+ γn

λn
)

log(2)+1/2
Thm. 3.3

Giant Component,
λn = βn, γn = o(n)

Kn ≥ 2 Thm. 3.3

Giant Component,
λn < b (1−α)n3

c, γn = αn
1 +

log(1+αn
λn

)+α+log(1−α)
1−α
2

−log( 1+α
2

)
Thm. 3.4

r-robustness Kn ≥ 2r Thm. 3.5
TABLE I

Summary of our main results providing a condition on Kn needed to achieve a
desired property in H(n;Kn, γn) (whp) where γn denotes the number of

deleted nodes. For the giant component, the desired property is defined as its
size to be at least n− λn. In the first row, the result is for any ε > 0. On the

fifth row, we have β in (0, 1/3) and on the sixth row, we have α in (0, 1).

It was previously established in [2] that H(n;Kn) is r-
robust whp if Kn >

2r(log(r)+log(log(r)+1)

log(2)+1/2−log(1+ log(2)+1/2
2 log(r)+5/2+log(2) )

. The

threshold on Theorem 3.5 is much smaller, hence constitutes
a sharper one-law for r-robustness.

D. Discussion

In Theorem 3.1, we improve the results given in [24], and
with this, we close the gap between the zero law and the one
law, and hence establish a sharp zero-one law for connectivity
when γn = Ω(n) nodes are deleted from H(n;Kn, γn). In
Theorem 3.2, we establish that the graph H(n;Kn, γn) with
γn = o(n) is connected whp when Kn ∼ log(γn); and when
γn = o(

√
n), Kn ≥ 2 is sufficient for connectivity. The latter

result is especially important, since Kn ≥ 2 is the previously
established threshold for connectivity [4]. We improve this
result by showing that the graph is still connected with Kn ≥ 2
even after o(

√
n) nodes (selected randomly) are deleted.

Since most distributed systems require connectivity in the
event of node failures, our results can be useful in many
applications of distributed systems, particularly when the re-
sources on each node is limited and it is critical to achieve
desired connectivity and robustness properties using as few
edges as possible. For example, in wireless sensor networks,
knowing the minimum conditions needed for connectivity or
giant component size under such failures is crucial as it enables
designing them with fewest edges possible per node [18], [27],
which reduces the communication overhead and potentially the
cost of the hardware on each node.

We also note that Theorems 3.3 - 3.4 constitute the first
results concerning the giant component size of random K-
out graphs under randomly deleted nodes. In particular, these
results help choose the value of Kn for any anticipated
level of node failure and for any given giant component

size required, enabling the designs of distributed systems to
compromise between efficiency, robustness, and the required
giant component size. Thus, we expect these results to be
useful in applications where connectivity is not a stringent
condition under node failures, and instead having a certain
giant component size is sufficient to continue the operation of
the system.

In Theorem 3.5, we establish that a random K-out graph is
r-robust whp when Kn ≥ 2r for any r ∈ Z+. This is a much
sharper one-law than the previous result given in [2] where
it was shown that Kn needs to scale as Kn ∼ r log(r) for
r-robustness. This tighter result was made possible through
several novel steps introduced here. While the proofs in prior
work [2], [28] also rely on finding upper bounds on the
probability of having at least one subset that is not r-reachable,
they tend to utilize standard upper bounds for the binomial
coefficients

(
n
k

)
≤
(
en
k

)k
and a union bound to establish

them. Instead, our proof uses extensively the Beta function
B(a, b) and its properties to obtain tighter upper bounds on
such probabilities, which then enables us to establish a much
sharper one-law for r-robustness of random K-out graphs. We
believe this result will pave the way for further applications
of random K-out graphs in distributed computing applications
such as the design of consensus networks in the presence of
adversaries.

It is also of interest to compare the threshold of r-robustness
and r-connectivity in random K-out graphs. For Erdős-Rényi
graphs, the threshold for r-connectivity and r-robustness have
been shown [28] to coincide with each other. For random K-
out graphs, we know from [4] that H(n;Kn) is r-connected
whp whenever Kn ≥ r, and it is not r-connected whp if
Kn < r. This leaves a factor of 2 difference between the
condition Kn ≥ 2r we established for r-robustness here and
the threshold of r-connectivity. Put differently, we know from
[4] and Theorem 3.5 that for any r = 2, 3, . . .

lim
n→∞

P [H(n;Kn) is r-robust] =

{
1, if Kn ≥ 2r

0, if Kn < r.
(6)

For r = 1, it is instead known that
limn→∞ P [H(n;Kn) is r-robust] = 1 if only if
Kn ≥ 2r = 2. Since the currently established conditions for
the zero-law and one-law of r-robustness are not the same
for random K-out graphs (unlike ER graphs where the two
thresholds coincide), there is a question as to whether our
threshold of 2r is the tightest possible for r-robustness. This
is currently an open problem and would be an interesting
direction for future work, e.g., by establishing a tighter
zero-law for r-robustness that coincides with the one-law of
Theorem 3.5.

To put all these results in perspective, we provide com-
parisons of our results with the results from an Erdős-Rényi
graph G(n, p), which is one of the most commonly used
random graph models. Firstly, in terms of r-robustness, it
was shown in [28] that ER graph G(n; p) is r-robust whp if
pn = log(n)+(r−1) log(log(n))+ω(1)

n , which translates to a mean
node degree of 〈d〉 ∼ log(n) + (r − 1) log(log(n)). Since the
mean node degree required for random K-out graphs scales
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Fig. 2. Comparison of maximum number of nodes outside the giant component
of a random K-out graph H(n;Kn, γn) and an ER graph with same mean
node degree when n = 5000, γn = 0.4n (Top); and when n = 50, 000 and
γn = 500 (Bottom). Each data-point is obtained through 1000 experiments.

as 〈d〉 ∼ 2r, we can conclude that for large n, random K-
out graphs can be ensured to be r-robust whp at a mean
node degree significantly smaller than the mean node degree
required for an ER graph. In terms of connectivity, an ER
graph becomes connected whp if p > log n/n [29], and this
translates to having a mean node degree of 〈d〉 ∼ log n.
Similarly, when o(

√
n) nodes are removed, the mean node

degree required for connectivity scales with 〈d〉 ∼ log n [6].
The 〈d〉 required for the random K-out graph to be connected
whp is much lower, with 〈d〉 = O(1) when o(

√
n) nodes are

removed, and 〈d〉 ∼ log(γn) when γn = Ω(
√
n) nodes are

removed.
Next, we compare the size of the giant component in random

K-out graphs and ER graphs under node removals in the
finite node regime. We examine the maximum number of
nodes outside the giant component out of 1000 experiments
of a random K-out graph H(n;Kn, γn) and an ER graph
G(n, p) with the same mean node degree when γn nodes are
removed from both graphs. To ensure that both graphs have
the same mean node degree, p in the ER graph is selected as
p = 2Kn/n. The results are given in Fig. 2 for n = 5000,
γn = 0.4n on (Top), and n = 50, 000, γn = 500 on (Bottom).
As can be seen, the random K-out graph tends to have fewer
nodes outside of the giant component than the ER graph and
this difference is more pronounced when γn is smaller.

In conclusion, we see that when both graphs have the same
mean node degree, random K-out graphs are more robust
than ER graphs in terms of connectivity and giant component
size under random node removal, and also in terms of the
r-robustness property. This reinforces the efficiency of the K-

out construction in many distributed computing applications
where connectivity in the event of node failures or adversarial
capture of nodes is crucial. Similarly, the fact that random K-
out graphs tend to achieve r-robustness with fewer edges per
node than ER graphs (for any r = 1, 2, . . .), makes it more
suitable in applications based on distributed consensus.

E. Simulation Results

Since our results are asymptotic in nature, i.e., they have
been established in the limit n→∞, an important question is
whether they can also be useful in practical settings where
the number n of nodes is finite. We check the usefulness
to validate Theorems 3.1 - 3.4 under practical settings, To
answer this, we examine the probability of connectivity and
the number of nodes outside the giant component for the
graph H(n;Kn, γn) (random K-out graph with deleted nodes)
through computer simulations in two different setups1.

In the first setup, we consider the case where the number of
deleted nodes, γn = αn, with α in (0, 1). We generate instan-
tiations of the random graph H(n;Kn, γn) with n = 5000,
varying Kn in the interval [1, 25] and consider several α
values in the interval [0.1, 0.8]. Then, we record the empirical
probability of connectivity of the graph H(n;Kn, γn) and
λn from 1000 independent experiments for each (Kn, α)
pair. The results of this experiment are shown in Fig. 3
and Fig. 4. Fig. 3 (Top) depicts the empirical probability of
connectivity of H(n;Kn, γn). The vertical lines stand for the
critical threshold of connectivity obtained from Theorem 3.1.
In each curve, P (n,Kn, γn) exhibits a threshold behaviour
as Kn increases, and the transition from P (n,Kn, γn) = 0
to P (n,Kn, γn) = 1 takes place around Kn = logn

1−α−logα ,
the threshold established in (2), reinforcing the usefulness of
Theorem 3.1 under practical settings.

In Fig. 4, the maximum number of nodes outside the giant
component in 1000 experiments is plotted for each parameter
pair. For comparison, we also plot the upper bound on n−γn−
|Cmax| obtained from Theorem 3.4 by taking the maximum
γn value that gives a threshold less than or equal to the Kn

value tested in the simulation. As can be seen, for any Kn

and γn value, the experimental maximum number of nodes
outside the giant component is smaller than the upper bound
obtained from Theorem 3.4, validating the usefulness of this
result in the finite node regime.

The goal of the second experimental setup is to examine
the case where the number of deleted nodes is γn = o(n).
As before, we generate instantiations of the random graph
H(n;Kn, γn), with n = 50, 000, varying Kn in [2, 5], and
varying λn in [10, 2000]. For each (Kn, γn) pair, the maximum
number of nodes outside the giant component in 1000 experi-
ments is recorded; if no node is outside the giant component,
then it is understood that the graph is connected. In Fig. 3
(Bottom), the maximum number of nodes outside the giant
component observed in 1000 experiments is depicted as a
function of Kn. The plots for γn = 10 and γn = 100 are

1Determining whether a graph is r-robust is a co-NP-complete problem
[28] making it not feasible to check the usefulness of Theorem 3.5 through
computer simulations.
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Fig. 3. (Top) Empirical probability that H(n;Kn, γn) is connected for n =
5000 calculated from 1000 experiments. The vertical lines are the theoretical
thresholds given by Theorem 3.1. (Bottom) Maximum number of nodes outside
the giant component of H(n;Kn, γn) for n = 50, 000 in 1000 experiments.

considered to represent the case γn = o(
√
n) in Theorem

3.2(a). We see that there is at most one node outside the giant
component for γn = 10 and γn = 100, even when Kn = 2.
This shows that the asymptotic behavior given in Theorem
3.2(a), i.e., that random K-out graph remains connected if
o(
√
n nodes are deleted, already appears when n = 50, 000.

The plots for γn = 1000 and γn = 2000 are used to check
the case γn = w(

√
n) and γn = o(n) in Theorem 3.2(b). The

thresholds on Kn for these γn values, obtained using Theorem
3.2(b) are r2(1000) = 6.79 and r2(2000) = 7.37, rounded to
two digits after decimal (the ω(1) term in Theorem 3.2(b) is
ignored due to n having a finite value in the simulations).
It is clear from the plot that when Kn ≥ 4, the graph with
γn = 1000 is connected, while Kn ≥ 5 suffices to ensure
connectivity when γn = 2000. Thus, selecting Kn above the
theoretical thresholds given in 3.2(b) is seen to ensure the
connectivity of the graph in the finite node regime as well,
supporting the usefulness of Theorem 3.2(b) in practical cases.

Finally, in Fig. 5, the maximum number of nodes outside the
giant component in 1000 experiments is plotted as a function
of Kn. For comparison, we also plot the upper bound on n−
|Cmax| obtained from Theorem 3.4. In particular, for each
Theorem, the maximum γn value that gives a threshold less
than or equal to the Kn value tested in the simulation is found.
Then, the lowest of these maximum γn values is used as the
theoretical n−|Cmax| value. As can be seen, for any Kn and
γn value, the experimental maximum number of nodes outside
the giant component is smaller than the upper bounds obtained
from Theorem 3.4, reinforcing the usefulness of our results in

Fig. 4. Maximum number of nodes outside the giant component of
H(n;Kn, γn) for n = 5000 and γn = 0.1n, γn = 0.2n cases (Top); and for
n = 5000 and γn = 0.4n, γn = 0.6n cases (Bottom), obtained through 1000
experiments along with respective plot of theoretical n− γn − |Cmax|.

Fig. 5. Maximum number of nodes outside the giant component of
H(n;Kn, γn) for n = 50, 000 and γn = 10 cases (Top); and for for
n = 50, 000 and γn = 250 cases (Bottom), obtained through 1000
experiments along with the plot of theoretical n− γn − |Cmax|.
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the finite node regime.

IV. PROOFS OF MAIN RESULTS

In this section, we provide the proof of all Theorems
presented in Section III.

A. Preliminary Steps for Proving Theorems 3.1 - 3.4

Since the preliminary steps related to the proofs of 3.1 -
3.4 are the same, in this Section we present these steps. First,
recall from Section II that the metrics connectivity and the size
of the giant component under node removals are defined for
the graph H(n;Kn, γn), where the set D of nodes is removed
from the graph H(n;Kn); also recall that R = V\D. Let NR
denote the set of labels of the vertex set of H(n;Kn, γn) and
let En(Kn, γn;S) denote the event that S ⊂ NR is a cut in
H(n;Kn, γn) as per Definition 2.2. The event En(Kn, γn;S)
occurs if no nodes in S pick neighbors in Sc, and no nodes in
S pick neighbors in Sc. Note that nodes in S or Sc can still
pick neighbors in the set ND. Thus, we have

En(Kn, γn;S) =
⋂
i∈S

⋂
j∈Sc

({i 6∈ Γn−γn,j} ∩ {j /∈ Γn−γn,i}) .

Let Z(λn;Kn, γn) denote the event that H(n;Kn, γn) has
no cut S ⊂ NR with size λn ≤ |S| ≤ n − γn − λn where
x : N0 → N0 is a sequence such that λn ≤ (n− γn)/2 ∀n. In
other words, Z(λn;Kn, γn) is the event that there are no cuts
in H(n;Kn, γn) whose size falls in the range [λn, n−γn−λn].

Lemma 4.1: [17, Lemma 4.3] For any sequence x : N0 →
N0 such that λn ≤ b(n− γn)/3c for all n, we have

Z(λn;Kn, γn)⇒ |Cmax(n,Kn, γn)| > n− γn − λn. (7)

Lemma 4.1 states that if the event Z(λn;Kn, γn) holds, then
the size of the largest connected component of H(n;Kn, γn)
is greater than n− γn − λn; i.e., there are less than λn nodes
outside of the giant component of H(n;Kn, γn). Also note
that H(n;Kn, γn) is connected if Z(λn;Kn, γn) takes place
with λn = 1, since a graph is connected if no node is outside
the giant component. In order to establish the Theorems 3.1-
3.4., we need to show that limn→∞ P[Z(λn;Kn, γn)c] = 0
with λn, Kn and γn values as stated in each Theorem. From
the definition of Z(λn;Kn, γn), we have

Z(λn;Kn, γn) =
⋂

S∈Pn: λn≤|S|≤bn−γn2 c

(En(Kn, γn;S))
c
,

where Pn is the collection of all non-empty subsets of NR.
Complementing both sides and using the union bound, we get

P [(Z(λn;Kn, γn))
c
] ≤

∑
S∈Pn:λn≤|S|≤bn−γ2 c

P[En(Kn, γn;S)]

=

bn−γ2 c∑
r=λn

∑
S∈Pn,r

P[En(Kn, γn;S)], (8)

where Pn,r denotes the collection of all subsets of NR
with exactly r elements. For each r = 1, . . . , b(n− γn)/2c,
we can simplify the notation by denoting En,r(Kn, γn) =

En(Kn, γn; {1, . . . , r}). From the exchangeability of the node
labels and associated random variables, we have

P[En(Kn, γn;S)] = P[En,r(Kn, γn)], S ∈ Pn,r.

|Pn,r| =
(
n−γn
r

)
, since there are

(
n−γn
r

)
subsets of NR with

r elements. Thus, we have∑
S∈Pn,r

P[En(Kn, γn;S)] =

(
n− γn
r

)
P[En,r(Kn, γn)].

Substituting this into (8), we obtain

P [(Z(λn;Kn, γn))
c
] ≤
bn−γ2 c∑
r=λn

(
n− γn
r

)
P[En,r(Kn, γn)] (9)

Remember that En,r(Kn, γn) is the event that the n−γn−r
nodes in S and r nodes in Sc do not pick each other, but they
can pick nodes from the set ND. Thus, we have:

P[En,r(Kn, γn)] =

((
γn+r−1
Kn

)(
n−1
Kn

) )r ((n−r−1
Kn

)(
n−1
Kn

) )n−γn−r
(10)

≤
(
γn + r

n

)rKn (n− r
n

)Kn(n−γn−r)
Abbreviating P [Z(1;Kn, γn)c] as PZ , we get from (9) that

PZ ≤
bn−γn2 c∑
r=λn

(
n− γn
r

)(
γn + r

n

)rKn(n− r
n

)Kn(n−γn−r)
(11)

Using the upper bound on binomials (14) again, we have

PZ ≤
bn−γn2 c∑
r=λn

(
n− γn
r

)r (
n− γn

n− γn − r

)n−γn−r
·
(
γn + r

n

)rKn (n− r
n

)Kn(n−γn−r)
(12)

In order to establish the Theorems, we need to show that
(12) goes to zero in the limit of large n for λn, γn and Kn

values as specified in each Theorem.
Since they will be referred to frequently throughout the

proofs, we also include here the following standard bounds.

1± x ≤ e±x (13)

(
n

m

)
≤
( n
m

)m( n

n−m

)n−m
, ∀m = 1, . . . , n (14)

B. A Proof of Theorem 3.1

Recall that in Theorem 3.1, we have γn = αn with 0 <
α < 1 and that we need λn = 1 for connectivity. Using (13)
in (12), we have

PZ ≤
bn−αn2 c∑
r=1

(
n− αn
r

)r
er
(
α+

r

n

)rKn
e
−rKn(n−αn−r)

n
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We will show that the right side of the above expression goes
to zero as n goes to infinity. Let

An,r,α :=

(
n− αn
r

)r
er
(
α+

r

n

)rKn
e
−rKn(n−αn−r)

n .

We write

PZ ≤
bn/ lognc∑
r=1

An,r,α +

bn−αn2 c∑
r=bn/ lognc

An,r,α := S1 + S2,

and show that both S1 and S2 go to zero as n→∞. We start
with the first summation S1.

S1 ≤
bn/ lognc∑
r=1

(
(1− α)en · eKn log(α+ 1

logn )−Kn(1−α− 1
logn )

)r
Next, assume as in the statement of Theorem 3.1 that

Kn =
cn log n

1− α− logα
, n = 1, 2, . . . (15)

for some sequence c : N0 → R+ such that limn→∞ cn = c
with c > 1. Also define

an := (1− α)en · eKn log(α+ 1
logn )−Kn(1−α− 1

logn )

= (1− α)en · e−
cn logn

1−α−logα (1−α− 1
logn−log(α+

1
logn ))

= (1− α)en1−cn · e
cn

1−α−logα (1−logn·log(1+ 1
α logn ))

= O(1)n1−cn

where we substituted Kn via (15) and used the fact that log n ·
log(1 + 1

α logn ) = 1
α + o(1). Taking the limit as n→∞ and

recalling that limn→∞ cn = c > 1, we see that limn→∞ an =
0. Hence, for large n, we have

S1 ≤
bn/ lognc∑
r=1

(an)
r ≤

∞∑
r=1

(an)
r

=
an

1− an
(16)

where the geometric sum converges by virtue of limn→∞ an =
0. Using this, it is clear that limn→∞ S1 = 0.

Now, consider the second summation S2.

S2 ≤
b(n−αn)/2c∑
r=bn/ lognc

(
(n− αn)e

n/ log n

)r (αn+ n−αn
2

n

)rKn
· e
−rKn
n (n−αn−n−αn2 )

≤
b(n−αn)/2c∑
r=bn/ lognc

(
(1− α)e log n · eKn log( 1+α

2 )−Kn 1−α
2

)r
Next, we define

bn := (1− α)e log n · e−Kn( 1−α
2 −log(

1+α
2 )) (17)

= (1− α)e log n · e−
cn logn

1−α−logα ( 1−α
2 −log(

1+α
2 )) (18)

where we substituted for Kn via (15). Taking the limit as
n→∞ we see that limn→∞ bn = 0 upon noting that 1−α

2 −
log( 1+α

2 ) > 0 and limn→∞ cn = c > 1. With arguments
similar to those used in the case of S1, we can show that
when n is large, S2 ≤ bn/(1− bn), leading to S2 converging
to zero as n gets large. With PZ ≤ S1 +S2, and both S1 and
S2 converging to zero when n is large, we establish the fact

that PZ converges to zero as n goes to infinity. This result
also yields the desired conclusion limn→∞ P (n,Kn, γn) = 1
in Theorem 3.1 since PZ = 1− P (n,Kn, γn).

C. A Proof of Theorem 3.2

We will first start with part (a) of Theorem 3.2.
Part a) Recall that in part (a), γn = o(

√
n) and we need

λn = 1 for connectivity. Using this and (13) in (12), we get

PZ ≤
bn−γn2 c∑
r=1

(
n− γn
r

)r (
n− γn

n− γn − r

)n−γn−r
·
(
γn + r

n

)rKn (n− r
n

)Kn(n−γn−r)

≤
bn−γn2 c∑
r=1

(
n− γn
r

)r (
1 +

rγn
n(n− γn − r)

)n−γn−r
·
(
γn + r

n

)rKn (n− r
n

)(Kn−1)(n−γn−r)

≤
bn−γn2 c∑
r=1

(
1 +

γn
r

)r (γn + r

n

)r(Kn−1)
· e
−r(Kn−1)(n−γn−r)

n

We will show that the right side of the above expression goes
to zero as n goes to infinity. Let

An,r,γn :=
(

1 +
γn
r

)r (γn + r

n

)r(Kn−1)
e
−r(Kn−1)(n−γn−r)

n

We write

PZ ≤
b√nc∑
r=1

An,r,γn +

bn−γn2 c∑
r=d√ne

An,r,γn := S1 + S2,

and show that both S1 and S2 go to zero as n→∞. We start
with the first summation S1.

S1 ≤
b√nc∑
r=1

(
1 +

γn
r

)r (γn + r

n

)r(Kn−1)
e
−r(Kn−1)(n−γn−r)

n

≤
b√nc∑
r=1

(
e
log(1+γn)+(Kn−1)

[
log
(
γn+

√
n

n

)
−n−γn−

√
n

n

])r
Next, assume as in the statement of Theorem 3.2(a) that
Kn ≥ 2, ∀n. Also define

an := e
log(1+γn)+(Kn−1)

[
log
(
γn+

√
n

n

)
−n−γn−

√
n

n

]

≤ elog(1+γn)+log
(
1+ γn√

n

)
−log(

√
n)e−

n−γn−
√
n

n

= O(1)elog(1+γn)−log(
√
n)

Taking the limit as n → ∞ and recalling that γn = o(
√
n),

we see that limn→∞ an = 0. Hence, for large n, we have

S1 ≤
b√nc∑
r=1

(an)
r ≤

∞∑
r=1

(an)
r

=
an

1− an
(19)
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where the geometric sum converges by virtue of limn→∞ an =
0. Using this once again, it is clear from the last expression
that limn→∞ S1 = 0.

Now, consider the second summation S2.

S2 ≤
bn−γn2 c∑
r=d√ne

(
e
rγn√
n
+(Kn−1)[log(n+γn

2n )−n−γn2n ]
)r

Again assume as in the statement of Theorem 3.2(a) that
Kn ≥ 2. Next, we define=

bn := e
rγn√
n
+(Kn−1)[log(n+γn

2n )−n−γn2n ]

≤ e
rγn√
n
+log( 1

2 )+log( n
n+γn

)− 1
2+

γn
2n

= O(1)e− log(
√
n)

Taking the limit as n → ∞ and recalling that γn = o(
√
n),

we see that limn→∞ bn = 0. Hence, for large n, we have

S2 ≤
bn−γn2 c∑
r=d√ne

(bn)
r ≤

∞∑
r=d√ne

(bn)
r

=
(bn)

√
n

1− bn
(20)

where the geometric sum converges by virtue of limn→∞ bn =
0. Using this once again, it is clear from the last expression
that limn→∞ S2 = 0. With PZ ≤ S1 + S2, and both S1 and
S2 converging to zero when n is large, we establish the fact
that PZ converges to zero as n goes to infinity. This result
also yields the desired conclusion limn→∞ P (n,Kn, γn) = 1
in Theorem 3.2(a) since PZ = 1− P (n,Kn, γn).

Part b) We now continue with the proof of Theorem 3.2(b).
Recall that we had γn = Ω(

√
n) and γn = o(n). Using this

and (13) in (12), we get

PZ ≤
bn−γn2 c∑
r=1

(
n− γn
r

)r (
n− γn

n− γn − r

)n−γn−r
·
(
γn + r

n

)rKn
e
−rKn(n−γn−r)

n

≤
bn−γn2 c∑
r=1

e(1−γn/n)r
(
γn + r

r

)r (
γn + r

n

)r(Kn−1)
· e
−rKn(n−γn−r)

n

≤
bn−γn2 c∑
r=1

exp

(
r

[
(Kn − 1)

(
log

(
γn + r

n

)
+
r

n

+
γn
n
− 1
)

+ log (1 + γn) +
n− γn

2n

])
(21)

Next, assume as in the statement of Theorem 3.2(b) that

Kn =
log(γn + 1)

log 2 + 1/2
+ w(1), n = 1, 2, . . . (22)

Since Kn − 1 > 0, ∀n = 1, 2, . . ., and noting that r ≤⌊
n−γn

2

⌋
in (21), we have

(Kn − 1)

(
log

(
γn + r

n

)
+
r

n
+
γn
n
− 1

)
≤

(Kn − 1)

(
log

(
γn + n−γn

2

n

)
+

n−γn
2

n
+
γn
n
− 1

)
(23)

Using this, we get

PZ ≤
bn−γn2 c∑
r=1

exp

(
r

[
(Kn − 1)

(
log

(
n+ γn

2n

)
−n− γn

2n

)
+ log (1 + γn) +

n− γn
2n

]) (24)

Next, define

an := e(Kn−1)(log(
n+γn

2n )−n−γn2n )+log(1+γn)+
n−γn

2n (25)

Recall that γn = o(n), so we have limn→∞ γn/n = 0. Using
this, and substituting Kn via (22), we get

lim
n→∞

an = lim
n→∞

[
e(

log(γn+1)
log 2+1/2

+w(1))·(−log2− 1
2 )+log(1+γn)+

1
2

]
= lim
n→∞

[
e−w(1)·(log2+1/2)−log(1+γn)+log(1+γn)+

1
2

]
= lim
n→∞

[
o(1)e−w(1)·(log2+1/2)

]
= 0 (26)

Hence, for large n, we have

PZ ≤
bn−γn2 c∑
r=1

(an)
r ≤

∞∑
r=1

(an)
r

=
an

1− an
(27)

where the geometric sum converges by virtue of limn→∞ an =
0. Using this, it is clear from the last expression that
limn→∞ PZ = 0. This result also yields the desired con-
clusion limn→∞ P (n,Kn, γn) = 1 in Theorem 3.2(b) since
PZ = 1−P (n,Kn, γn). This result, combined with the proof
of part a, concludes the proof of Theorem 3.2.

D. A Proof of Theorem 3.3

Recall that in Theorem 3.3, we have γn = o(n) and λn =
Ω(
√
n). Using (13) in (12), we have

PZ ≤
bn−γn2 c∑
r=λn

(
n− γn
r

)r (
n− γn

n− γn − r

)n−γn−r
·
(
γn + r

n

)rKn (n− r
n

)Kn(n−γn−r)

≤
bn−γn2 c∑
r=λn

(
n− γn
r

)r (
1 +

rγn
n(n− γn − r)

)n−γn−r
·
(
γn + r

n

)rKn (n− r
n

)(Kn−1)(n−γn−r)

≤
bn−γn2 c∑
r=λn

(
n− γn
r

)r
e
rγn
n

(
γn + r

n

)r
·
(
γn + r

n

)r(Kn−1)
e
−r(Kn−1)(n−γn−r)

n

≤
bn−γn2 c∑
r=λn

(
1 +

γn
r

)r (γn + r

n

)r(Kn−1)
· e
−r(Kn−1)(n−γn−r)

n
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Next, assume as in the statement of Theorem 3.3 that

Kn > 1 +
log(1 + γn/λn)

log 2 + 1/2
(28)

Since Kn > 1, we have

PZ ≤
bn−γn2 c∑
r=λn

(
1 +

γn
λn

)r (
n+ γn

2n

)r(Kn−1)
· e
−r(Kn−1)(n−γn)

2n

We will show that the right side of the above expression goes
to zero as n goes to infinity. Let

an := elog(1+
γn
λn

)+(Kn−1)[log(n+γn
2n )−n−γn2n ]

Recall that γn = o(n), so we have limn→∞ γn/n = 0. Using
this, and substituting for Kn via (28), we get

an < elog(1+
γn
λn

)+( log(1+γn/λn)
− log(1/2)−1/2 )[log(n+γn

2n )−n−γn2n ] (29)

Taking the limit n→∞, we have

lim
n→∞

an < lim
n→∞

elog(1+
γn
λn

)−log(1+γn/λn) = e0 = 1 (30)

Hence, for large n, we have

PZ ≤
bn−γn2 c∑
r=λn

(an)
r ≤

∞∑
r=λn

(an)
r

=
(an)λn

1− an
(31)

where the geometric sum converges by virtue of limn→∞ an <
1 and limn→∞ λn = w(1). Using this, it is clear from
the last expression that limn→∞ PZ = 0. This result also
yields the desired conclusion limn→∞ PG(n,Kn, γn, λn) = 1
in Theorem 3.3 since PZ = 1 − PG(n,Kn, γn, λn). This
concludes the proof of Theorem 3.3.

E. A Proof of Theorem 3.4

Recall that in Theorem 3.4, we have γn = αn with α in
(0, 1), and λn <

(1−α)n
2 . Using γn = αn in (12), we get

PZ ≤
bn−αn2 c∑
r=λn

(
n− αn
r

)r (
n− αn

n− αn− r

)n−αn−r
·
(
αn+ r

n

)rKn (n− r
n

)Kn(n−αn−r)

≤
bn−αn2 c∑
r=λn

(1− α)
r
eαr

(
1 +

αn

r

)r
·
(
αn+ r

n

)r(Kn−1)
e−r(Kn−1)

(n−αn−r)
n

(32)

Next, assume as in the statement of Theorem 3.4 that

Kn > 1 +
log(1 + αn

λn
) + α+ log(1− α)

1−α
2 + log 2− log(1 + α)

, n = 1, 2, . . .

Since Kn > 1, we have

PZ ≤
bn−αn2 c∑
r=λn

(1− α)
r
eαr

(
1 +

αn

λn

)r (
1 + α

2

)r(Kn−1)
· e−r(Kn−1)(

1−α
2 )

Also define

an := eα+log(1−α)+log(1+αn
λn

)+(Kn−1)[log( 1+α
2 )−( 1−α

2 )]

< eα+log(1−α)+log(1+αn
λn

)−(α+log(1−α)+log(1+αn
λn

)) = 1

where we substituted Kn via (33). Taking the limit as n→∞,
we see that limn→∞ an < 1. Hence, for large n, we have

PZ ≤
bn−αn2 c∑
r=λn

(an)
r ≤

∞∑
r=λn

(an)
r

=
(an)λn

1− an
(33)

where the geometric sum converges by virtue of limn→∞ an <
1 and limn→∞ λn = w(1). Using this, it is clear from
the last expression that limn→∞ PZ = 0. This result also
yields the desired conclusion limn→∞ PG(n,Kn, γn, λn) = 1
in Theorem 3.4 since PZ = 1 − PG(n,Kn, γn, λn). This
concludes the proof of Theorem 3.4.

F. Preliminaries Needed in the Proof of Theorem 3.5

We start with a few definitions and properties that will
be useful throughout the rest of the proof. First, let B(a, b)
denote the beta function, Bx(a, b) denote the incomplete beta
function, and Ix(a, b) denote the regularized incomplete beta
function, where a and b are non-negative integers. These
functions are defined as follows [30]:

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt =
(a− 1)!(b− 1)!

(a+ b− 1)!

Bx(a, b) =

∫ x

0

ta−1(1− t)b−1dt, 0 ≤ x ≤ 1

Ix(a, b) =
Bx(a, b)

B(a, b)
, 0 ≤ x ≤ 1 (34)

Using these definitions, it can easily be shown that

I1/2(r, r) = 1/2, r > 0 (35)

Proof: B(r, r) =

∫ 1

0

tr−1(1− t)r−1dt

= 2

∫ 1
2

0

tr−1(1− t)r−1dt = 2B1/2(r, r)

where we divided the integral into two parts since the func-
tion (t − t2)r−1 is symmetric around 1/2. Using the fact
that B1/2(r, r) = I1/2(r, r)B(r, r), we can conclude that
I1/2(r, r) = 1/2.

The cumulative distribution function F (a;n, p) of a Bino-
mial random variable X ∼ B(n, p) can be expressed using
the regularized incomplete beta function as:

F (a;n, p) = P[X ≤ a] = I1−p(n− a, a+ 1)

= (n− a)

(
n

a

)∫ 1−p

0

tn−a−1(1− t)adt (36)
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Lemma 4.2: [30, Eq. 8.17.4]: For a, b > 0, 0 ≤ x ≤ 1,

Ix(a, b) = 1− I1−x(b, a) (37)

Lemma 4.3: [30, Eq. 8.17.20]: For a, b > 0, 0 ≤ x ≤ 1,

Ix(a+ 1, b) = Ix(a, b)− xa(1− x)b

aB(a, b)
(38)

Lemma 4.4: The equation Iα(r, r) = cα has only one
solution when r > 0, r ∈ Z+, 0 < α ≤ 1/2 and 0 < c ≤ 1.

Proof: First, α = 0 is a solution to this equation since when
α = 0, both Iα(r, r) and cα are zero. Also, when c = 1,
α = 1/2 is a solution of the equation since I1/2(r, r) = 1/2.
The derivative of both terms with respect to α is:

∂(Iα(r, r))

∂α
=
αr−1(1− α)r−1

B(r, r)
,

∂(cα)

∂α
= c (39)

It can be seen that the derivative of cα is a constant, and
(α(1−α))r−1

B(r,r) = 0 when α = 0 and (α(1−α))r−1

B(r,r) is monotone
increasing in the range 0 < α ≤ 1/2. For the case where
c = 1; α = 0 and α = 1/2 is a solution to the equation, hence
for some 0 < α∗∗ < 1/2 that satisfies (α∗∗(1−α∗))r−1

B(r,r) = 1,

it must hold that ∂(Iα(r,r))
∂α < ∂(α)

∂α = 1 when 0 < α < α∗∗,
and ∂(Iα(r,r))

∂α > ∂(α)
∂α = 1 when α∗∗ < α ≤ 1/2. This is

because if such α∗∗ such that 0 < α∗∗ < 1/2 does not exist,
α = 1/2 can’t be a solution to the equation Iα(r, r) = cα.
Now, considering the case for arbitrary 0 < c ≤ 1, since
αr(1−α)r
B(r,r) = 0 is monotone increasing, there can only be one

0 < α∗ < 1/2 such that (α∗)r(1−α∗)r
B(r,r) = c. This means that

cα is increasing faster than Iα(r, r) in the region 0 < α <
α∗, hence there can’t be a solution to Iα(r, r) = cα in this
region. Further, Iα(r, r) is increasing faster than cα in the
region α∗ < α ≤ 1/2, hence there can be at most one solution
to the equation Iα(r, r) = cα in the region 0 < α ≤ 1/2.
Now, consider the fact that Iα∗(r, r) < cα∗, and I1/2(r, r) =
1/2 ≥ c/2 when α = 1/2. Combining this with the fact
that both functions are continuous, there must be at least one
solution to the equation Iα(r, r) = cα for 0 < c ≤ 1 in the
range α∗ < α ≤ 1/2. Combining this with previous statement
(that there can be at most one solution in this range), it can
be concluded that there is only one solution to the equation
Iα(r, r) = cα in the range 0 < α ≤ 1/2 where 0 < c < 1.

G. Proof of Theorem 3.5

To prove Theorem 3.5, we need to show that for any r ∈
Z+, the random K-out graph H(n;Kn) is r-robust whp if
Kn ≥ 2r. To do this, similar to the proof given in [28] for
Erdős-Rényi graphs, we will first find an upper bound on the
probability of a subset of given size being not r-reachable, and
then use this result to show that the probability of not being
r-robust goes to zero when n → ∞ and Kn ≥ 2r. Different
from the prior work which relied on the commonly used upper
bounds for the binomial coefficients

(
n
k

)
≤
(
en
k

)k
and the

union bound [2], [28] to bound the probability of a subset
of given size being not r-reachable, our proof uses the Beta
function B(a, b) and its properties described in the previous
Section to achieve tighter bounds. This in turn enables us to

establish a tighter threshold for the r-robustness of random
K-out graphs than what was previously possible; e.g., see [2].

First, let En(Kn, r;S) denote the event that S ⊂ V is an
r-reachable set as per Definition 2.7. The event En(Kn, r;S)
occurs if there exists at least one node in S that is adjacent to
at least r nodes in Sc, the subset comprised of nodes outside
the subset S. Thus, we have

En(Kn, r;S) =
⋃
i∈NS


∑
j∈NR

1 {vi ∼ vj}

 ≥ r


with NS , NSc denoting the set of labels of the vertices in S
and Sc, respectively, and 1{} denoting the indicator function.
We are also interested in the complement of this event, denoted
as (En(Kn, r;S))

c, which occurs if all nodes in S are adjacent
to less than r nodes in Sc. This can be written as

(Ecn(Kn, r;S)) =
⋂
i∈NS


 ∑
j∈NSc

1 {vi ∼ vj}

 < r

 .

Note that at least one subset in every disjoint subset pairs
that partition V needs to be r-reachable per the definition
of r-robustness, hence one of the events En(Kn, r;S) or
En(Kn, r;Sc) need to hold with high probability for every
subset S of V . Now, let Z(Kn, r) denote the event that none
of the subsets in all subset pairs S and Sc such that S ⊂ V
are r-reachable. Thus, we have

Z(Kn, r) =
⋃

S∈Pn: |S|≤bn2 c

[(En(Kn, r;S))c ∧ (En(Kn, r;S
c))c] ,

where Pn is the collection of all non-empty subsets of V and
since for each S we check the r-reachability of both S and
Sc, the condition |S| ≤ bn2 c is used to prevent counting each
subset twice. Using union bound, we get

PZ ≤
∑

|S|≤bn2 c

P[(En(Kn, r;S))
c ∧ (En(Kn, r;S

c))
c
]

=

bn2 c∑
m=1

∑
Sm∈Pn,m

P[(En(Kn, r;Sm))
c ∧ (En(Kn, r;S

c
m))

c
],

(40)

where Pn,m denotes the collection of all subsets of V with
exactly m elements, and let Sm ∈ Pn,m is a subset of the
vertex set V with size m, i.e. Sm ⊂ V and |Sm| = m.
Further, P [Z(Kn, r)] is abbreviated as PZ := P [Z(Kn, r)],
and Scm = V \Sm. From the exchangeability of the node labels
and associated random variables, we have∑

Sm∈Pn,m

P[(En(Kn, r;Sm))
c ∧ (En(Kn, r;S

c
m))

c
]

=

(
n

m

)
P[(En(Kn, r;Sm))

c ∧ (En(Kn, r;S
c
m))

c
]. (41)

since |Pn,m| =
(
n
m

)
, as there are

(
n
m

)
subsets of V with m

elements. Substituting this into (40), we obtain

PZ ≤
bn2 c∑
m=1

(
n

m

)
P[(En(Kn, r;Sm))

c ∧ (En(Kn, r;S
c
m))

c
]
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Before evaluating this expression, we will start with evalu-
ating P[(En(Kn, r;Sm))

c
], the probability that the set Sm is

not r-robust. Let PSm denote the probability that each node in
Sm chooses, and forms an edge with less than r nodes in Scm
during the construction of the random K-out graph. Since this
does not take the selections of the nodes in Scm into account,
P[(En(Kn, r;Sm))

c
] ≤ PSm . Further, let v ∈ Sm be a node

in the set Sm.
Lemma 4.5: The probability that the node v ∈ Sm chooses

less than r nodes in the set Scm, denoted as Pv , can be
upper bounded by the cumulative distribution function F (r−
1;Kn, p) of a binomial random variable with Kn trials and
success probability p = n−m−r+1

n−r .
Proof: For node v, after making one selection, the number of

nodes available to choose from decreases so the probability of
choosing a node in Scm changes at each selection. For example,
the probability of choosing a node in Scm in the first selection
is n−m

n−1 and the probability of choosing a node in Scm in the
second selection is n−m−1

n−2 if a node in Scm was selected in
the first selection and it is n−m

n−2 otherwise. Based on this, the
probability of selecting a node in Scm at the ith selection out
of Kn selections can be expressed as n−m−j

n−i , 1 ≤ i ≤ Kn,
0 ≤ j < i where j denotes the number of nodes already
chosen from the set Scm before the ith selection. Since we are
considering the case of choosing less than r nodes in Scm, we
have that j < r, and with this constraint the lowest possible
value of n−m−j

n−i occurs when j = r− 1 and i = r, and hence
it is n−m−r+1

n−r . This gives a lower bound on the probability
of selecting a node in Scm in one of the Kn selections and
at the same time is an upper bound on the probability of not
selecting a node in Scm in one of the Kn selections, and hence
it is an upper bound for choosing less than r nodes.

Next, using this upper bound, we plug in n = Kn and
p = n−m−r+1

n−r to (36), then we have

Pv ≤ Im−1
n−r

(Kn − r + 1, r) (42)

= (Kn − r + 1)

(
Kn

r − 1

)∫ m−1
n−r

0

tKn−r(1− t)r−1dt

Since there are m nodes in the set Sm and the choices of
each node are independent, PSm = (Pv)

m. Hence,

PSm ≤ (Im−1
n−r

(Kn − r + 1, r))m (43)

Similarly,

P[(En(Kn, r;S
c
m))

c
] ≤ PScm

≤
(
In−m−r+1

n−r
(Kn − r + 1, r)

)n−m
(44)

Since the event in which each node in Sm forms less than
r edges with a node in Scm and the event each node in Scm
forms less than r edges with a node in Sm are independent
events (since the selections of each node are independent),
the probability of their intersection is their multiplication
PSmPScm . Hence,

P[(En(Kn, r;Sm))
c ∧ (En(Kn, r;S

c
m))

c
] ≤ PSmPScm (45)

Let Pm :=
(
n
m

)
PSmPScm . Then, we have

PZ ≤
bn2 c∑
m=1

(
n

m

)
PSmPScm =

bn2 c∑
m=1

Pm (46)

To find Pm, we first need to find the probability of a node
in Sm being adjacent to less than r nodes (less than or equal
to r − 1 nodes) in Scm, denoted as PSm and the probability
of a node in Rm being adjacent to less than r nodes in Sm,
denoted as PScm . We will divide the summation into three parts
as follows:

PZ =

bn/2c∑
m=1

Pm =

blog(n)c∑
m=1

Pm +

bα∗(n−r)c∑
m=dlog(n)e

Pm

+

bn/2c∑
m=dα∗(n−r)e

Pm = P1 + P2 + P3 (47)

where α∗ is the solution to the equation Iα(r, r) = n−r
ne ·α in

the range 0 < α < 1
2 . (The purpose of defining α∗ this way

will be given later in the proof.)
Start with the first summation P1 and use (14) along with(
n
m

)
≤
(
en
m

)m
, then we have:

Pm ≤
(
n

m

)
(PSm)m (PScm)n−m ≤

(
n

m

)
(PSm)m

≤

(
en

mB(Kn − r + 1, r)

∫ m−1
n−r

0

tKn−r(1− t)r−1dt

)m

≤

 en
(
m−1
n−r

)Kn−r+1

mB(Kn − r + 1, r)(Kn − r + 1)


m

≤

(
e(1 + r/m)

B(Kn − r + 1, r)(Kn − r + 1)

(
m− 1

n− r

)Kn−r)m

≤

 e(1 + r)
(

log(n)−1
n−r

)Kn−r
B(Kn − r + 1, r)(Kn − r + 1)


m

:= (an)m

For Kn > r, since B(Kn − r + 1, r) and r are finite values,

we have lim
n→∞

an = 0 by virtue of lim
n→∞

(
log(n)−1
n−r

)Kn−r
= 0.

Using this, we can express the summation as:

P1 =

blog(n)c∑
m=1

(an)m ≤ an ·
1− (an)log(n)

1− an
(48)

where the geometric sum converges by virtue of limn→∞ an =
0, leading to P1 converging to zero for large n.

Now, similarly consider the second summation P2. Using(
n
m

)
≤
(
en
m

)m
, we have

Pm ≤
(
n

m

)
(PSm)m (PScm)n−m ≤

(
n

m

)
(PSm)m

≤
(en
m
Im−1
n−r

(Kn − r + 1, r)
)m

= (am)m (49)
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where am := en
m · Im−1

n−r
(Kn − r + 1, r). Assume that Kn >

2r− 1. It can be shown that Im+r
n

(Kn − r+ 1) < Im+r
n

(r, r)
as a consequence of the property (38). Hence, we have

am <
en

m
· Im−1

n−r
(r, r) ≤ en

m
· I m

n−r
(r, r) (50)

Assume that α = α∗ is the solution of the equation
Iα(r, r) = n−r

ne · α in the range 0 < α < 1
2 . From Lemma

4.4, we know that this equation has only one solution in this
range, and Iα(r, r) ≤ α∗(n−r)

ne for 0 < α ≤ α∗. Plugging in
α = m

n−r , we have I m
n−r

(r, r) ≤ α∗m
ne , which leads to am < 1

when m ≤ bα∗(n− r)c. Denoting a := maxm(am), we have

P2 =

bα∗(n−r)c∑
m=dlog(n)e

(am)m ≤
∞∑

m=dlog(n)e

(a)m ≤ alog(n)

1− a
(51)

where the geometric sum converges by virtue of limn→∞ a <
1, leading to P2 converging to zero as n gets large.

Now, similarly consider the third summation P3.

P3 ≤
bn2 c∑

m=dα∗(n−r)e

(
n

m

)
(PSm)m (PScm)n−m

≤
bn2 c∑

m=dα∗n−re

[( n
m
Im−1
n−r

(Kn − r + 1, r)
)m
n

·
(

n

n−m
In−m−r+1

n−r
(Kn − r + 1, r)

)1−mn
]n

Define

am :=
( n
m
Im−1
n−r

(Kn − r + 1, r)
)m
n

·
(

n

n−m
In−m−r+1

n−r
(Kn − r + 1, r)

)1−mn

Again assuming that Kn > 2r − 1 and using the

property (38), we have that am <
(
n
mIm−1

n−r
(r, r)

)m
n ·(

n
n−mIn−m−r+1

n−r
(r, r)

)1−mn
. Since both lower and upper lim-

its of summation are a multiple of n, we can write m = αn,
for some α in the range [α∗, 1/2]. Also using the property
(37), we have

am <

(
Im−1
n−r

(r,r)

α

)α
·
(

1−Im−1
n−r

(r,r)

1−α

)1−α

Again from Lemma 4.4, we know that Iα(r, r) = cα has
only one solution for all α values in the range 0 < α ≤ 1/2
when 0 < c ≤ 1, hence we can substitute Iα(r, r) = c∗α for
some c∗ in the range 0 < c∗ ≤ 1 that satisfies c∗ = Iα(r,r)

α .

Hence, to show bα :=

(
Im−1
n−r

(r,r)

α

)α
·
(

1−Im−1
n−r

(r,r)

1−α

)1−α

≤

1, we can as well show bc∗,α := (c∗)α
(

1−c∗α
1−α

)1−α
≤ 1,

where c∗ = Iα(r,r)
α , α∗ < α ≤ 1/2. Since c = 1

e when
α = α∗ and c = 1 when α = 1/2, c∗ will be in the range
[ 1e , 1] when α∗ < α < 1/2, hence we can as well consider all

the range 1
e < c < 1 and show the bc,α := cα

(
1−cα
1−α

)1−α
≤ 1

where α∗ < α ≤ 1/2, 1
e < c ≤ 1. This is because this range

1
e < c ≤ 1 already includes c∗ value that solves c∗ = Iα(r,r)

α .
To show that bc,α ≤ 1, when 1

e ≤ c ≤ 1, α∗ ≤ α ≤ 1/2, we
need to check the boundary points and the stationary points
of this surface. Starting with the derivative with respect to c,
we have:

∂(bc,α)

∂c
=
α

c

(
c− cα
1− cα

)α(
1− c
1− α

)
(52)

In the range 0 < α < 1/2, ∂(bc,α)
∂c > 0 when 1

e ≤ c < 1;
and ∂(bc,α)

∂c = 0 when c = 1, hence c = 1 gives the stationary
points with respect to derivative over c. Now consider the
derivative with respect to α.

∂(bc,α)

∂α
= cα

(
1− cα
1− α

)1−α [
1− c

1− cα
+ log

(
1− 1− c

1− cα

)]
Since when x ≥ 0, x + log(1 − x) = 0 holds only

when x = 0; ∂
∂α = 0 holds in the range 0 < α < 1/2,

1
e ≤ c < 1 only when c = 1. Further, since c = 1 gives
the stationary points, we need to plug in c = 1 to bc,α

and find its maximum. We have b1,α = 1α
(

1−α
1−α

)1−α
= 1.

Also, considering the boundary points of bc,α, we can see
that b1,α∗ = 1, b1,1/2 = 1, b 1

e ,1/2
=
(
1
e

)1/2 (
2− 1

e

)1/2
< 1

and b 1
e ,α
∗ =

(
1
e

)α∗ ( 1−α∗/e
1−α∗

)1−α∗
< 1 since 1

e < 1 and(
1−α∗/e
1−α∗

)
< 1. Since bc,α ≤ 1 at both stationary points and

the boundary points, we can conclude that bc,α ≤ 1, ∀ 1
e ≤

c < 1, α∗ ≤ α ≤ 1/2. This conclusion also leads to
bα ≤ 1, ∀ α∗ ≤ α ≤ 1/2 and am < 1. Hence, we have:

P3 ≤
bn2 c∑

m=dα∗(n−r)e

(am)n ≤ n

2
(max
m

(am))n (53)

where the sum converges by virtue of maxm(am) < 1 since
lim
n→∞

n(a)n = 0 when 0 < a < 1, leading to P3 converging to
zero as n gets large. Since P1, P2 and P3 all converge to zero
as n gets large, PZ = P1 +P2 +P3 also converges to zero as
n gets large. This concludes the proof of Theorem 3.5.

V. CONCLUSION

In this paper, we provide a comprehensive set of results on
the r-robustness of the random K-out graph H(n;Kn), and
the connectivity and giant component size of H(n;Kn, γn),
i.e., random K-out graph with (randomly selected) γn nodes
deleted. In addition to providing proofs of our results, we in-
clude computer simulations to validate our results in the finite
node regime. To demonstrate the usefulness of the random
K-out graphs, we compare our results on the random K-out
graphs with results from ER graphs under similar settings,
and determine that random K-out graphs attain r-robustness,
connectivity or the occurrence of a giant component of a given
size at a significantly lower mean node degree value compared
to ER graphs. These results reinforce the usefulness of random
K-out graphs in applications that require a certain degree
of robustness or tolerance to nodes failing, being captured,
or being dishonest; such as federated learning, consensus
dynamics, distributed averaging and wireless sensor networks.
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[11] O. Yağan and A. M. Makowski, “Modeling the pairwise key predistri-
bution scheme in the presence of unreliable links,” IEEE Transactions
on Information Theory, vol. 59, no. 3, pp. 1740–1760, March 2013.

[12] C. Sabater, A. Bellet, and J. Ramon, “Distributed differentially private
averaging with improved utility and robustness to malicious parties,”
2020.

[13] G. Fanti, S. B. Venkatakrishnan, S. Bakshi, B. Denby, S. Bhargava,
A. Miller, and P. Viswanath, “Dandelion++: Lightweight cryptocurrency
networking with formal anonymity guarantees,” Proc. ACM Meas. Anal.
Comput. Syst., vol. 2, no. 2, pp. 29:1–29:35, Jun. 2018.

[14] S. Sridhara, F. Wirz, J. de Ruiter, C. Schutijser, M. Legner, and
A. Perrig, “Global distributed secure mapping of network addresses,”
in Proceedings of the ACM SIGCOMM Workshop on Technologies,
Applications, and Uses of a Responsible Internet (TAURIN), 2021.
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[17] M. Sood and O. Yağan, “On the size of the giant component in
inhomogeneous random k-out graphs,” in 2020 59th IEEE Conference
on Decision and Control (CDC), 2020, pp. 5592–5597.
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