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a b s t r a c t

The pairwise key distribution scheme of Chan et al. is a randomized key predistribution
scheme which enables cryptographic protection in wireless sensor networks (WSNs).
Although this pairwise scheme has several advantages over other randomized key
predistribution schemes, including the original scheme of Eschenauer and Gligor, it has
been deemed non-scalable for the following two reasons: (i) There are implementation
difficulties when sensors need to be deployed in multiple stages; and (ii) the possibly large
number of keys stored at each sensor node is random and may vary from sensor to sensor.
Here, we explore these issues as follows: (i)We propose an implementation of the pairwise
scheme that supports the gradual deployment of sensor nodes in several consecutive
phases; (ii)We show how the scheme parameters should scale with themaximumnumber
n of sensor nodes in the network so that a.a.s. secure connectivity ismaintained throughout
every deployment phase of the network; (iii) We derive scaling conditions on the scheme
parameters for all the sensors in the network to have O(log n) many keys with very high
probability as n grows large. This dimensioning of the key rings can be made to support
a.a.s. secure connectivity at every step of deployment.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Security in WSNs

Wireless sensor networks (WSNs) are distributed collections of sensors with limited capabilities for computations
and wireless communications. Such networks are likely to be deployed in hostile environments where cryptographic
protectionwill be needed. Providing this cryptographic protection has been identified as a serious challenge to the successful
deployment ofWSNs.However, traditional key exchange anddistributionprotocols based on trusting third parties have been
found inadequate for large-scale WSNs; see the references [1–4] for discussions of some of the obstacles.

Random key predistribution schemes were recently introduced to address some of the difficulties. The idea of randomly
assigning secure keys to sensor nodes prior to network deployment was first proposed by Eschenauer and Gligor [1]. The
EG scheme, as we refer to it hereafter, has been extensively investigated [1,5–11], with most of the focus being on the full
visibility case where nodes are all within communication range of each other. Although the assumption of full visibility does
away with the wireless nature of the communicationmedium supportingWSNs, this simplification does make it possible to
understand how randomizing the key selections affects the establishment of a secure network in the best of circumstances.

Thework of Eschenauer and Gligor has spurred the development of other key distribution schemeswhich perform better
than the EG scheme in some respects, e.g., see [2,3,12,13]. Herewe consider the random pairwise key predistribution scheme
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proposed by Chan et al. [12]: Before deployment, each of the n sensor nodes is paired (offline) with K distinct nodes which
are randomly selected amongst all other n − 1 nodes. For each such pairing, a unique pairwise key is generated and stored
in the memory modules of each of the paired sensors along with the id of the other node—All keys are assumed to be of
the same length. A secure link can then be established between two communicating nodes if at least one of them has been
paired to the other (in which case they have at least one key in common). See Section 2 for implementation details. This
scheme has the following advantages over the EG scheme (and others): (i) Even if some nodes are captured, the secrecy
of the remaining nodes is perfectly preserved; and (ii) Both node-to-node authentication and quorum-based revocation are
enabled.

1.2. Earlier work on random pairwise key distribution schemes

Given these advantages, we have found it of interest to assess the performance of the pairwise scheme, and have begun
a formal investigation along these lines. Highlights of this earlier work include:
Connectivity under full visibility. Let H(n; K) denote the random graph on the vertex set {1, . . . , n} where distinct nodes i
and j are adjacent if they have a pairwise key in common; as in earlier work on the EG scheme this corresponds to modeling
the random pairwise distribution scheme under full visibility. In [14,15] we showed that the probability of H(n; K) being
connected approaches 1 (resp. 0) as n grows large if K ≥ 2 (resp. if K = 1), i.e., H(n; K) is asymptotically almost surely
(a.a.s.) connected whenever K ≥ 2. See Theorem 2.1 for details. �

Connectivity under partial visibility. In [16,17], the connectivity issue of the pairwise distribution scheme was revisited
under more realistic assumptions that account for the possibility that communication links between nodes may not be
available. This was done in the context of a simple communication model where the communication channels are mutually
independent, and are either on or off. The appropriate random graph structure can be viewed as the intersection of the
random graph H(n; K)with an Erdős–Rényi graph. In that framework we have established zero–one laws for two basic (and
related) graph properties, namely graph connectivity and the absence of isolated nodes, when the model parameters are
scaled with the number of users. The critical thresholds for both properties were identified and shown to coincide. �

1.3. Contributions

In spite of the aforementioned advantages over the original EG scheme and other randomized key predistribution
schemes, the pairwise key distribution scheme of Chan et al. has been deemed non-scalable for the following two main
reasons: (i) There are implementation difficulties when sensors need to be deployed inmultiple stages; and (ii) The possibly
large number of keys at a sensor node is random and may vary from sensor to sensor. These issues are addressed here to
some extent, with the various contributions summarized below. A preliminary version of this work was presented with
partial proofs in the conference paper [18] under a different title.
Connectivity under gradual deployment. In the present paper, we continue our study of connectivity properties for the
scheme of Chan et al., still under full visibility, but from a different perspective: In many settings, e.g., environmental
monitoring andmilitary theaters, sensor nodes are expected to be deployed gradually over time in response to the demands
of a dynamically changing situation: Data collected in an initial phase might suggest monitoring other regions, and this
calls for the deployment of additional sensors. Yet, the pairwise key distribution is an offline pairing mechanism which
simultaneously involves all n nodes. Thus, once the maximal number n of nodes to be deployed is set, there is no way to add
more nodes to the network and still recursively expand the pairwise distribution scheme (as is possible for the EG scheme).
However, as explained in Section 2.2, the gradual deployment of a large number of sensor nodes is nevertheless feasible
from a practical viewpoint. In that context we are interested in understanding how the parameter K needs to scale with n
large in order to ensure that connectivity ismaintained a.a.s. throughout gradual deployment.

The main contributions along these lines take the following form: With 0 < γ < 1, let Hγ (n; K) denote the subgraph of
H(n; K) restricted to the nodes 1, . . . , ⌊γ n⌋. We first present scaling laws for the absence of isolated nodes in Hγ (n; K) in
the form of a full zero–one law, and use these results to formulate conditions under which Hγ (n; K) is a.a.s. not connected.
Next, we consider a gradual deployment scenario with ℓ consecutive phases: With 0 < γ1 < γ2 < · · · < γℓ < 1, we
assume that ⌊γkn⌋ − ⌊γk−1n⌋ new nodes are deployed in the kth phase with k = 1, . . . , ℓ. We give conditions on n, K and
γ1 so that Hγk(n; K) is a.a.s. connected for each k = 1, 2, . . . , ℓ. This corresponds to the network being connected in each of
the ℓ phases of the gradual deployment. �

Needed key ring sizes. The key rings for the pairwise scheme have variable size between K and K + (n− 1), in sharp contrast
with the EG scheme (and its variants) where the key rings have all the same fixed size. This naturally brings up the question
as to how many keys need to be kept in the memory module of a sensor in order to achieve certain desired properties,
e.g., secure connectivity. Since sensor nodes are expected to have very limited memory, it is crucial for a key distribution
scheme to have low memory requirements in order to be competitive [13,19]. With this in mind we first give minimal
conditions on a scaling Kn such that the size of any key ring hovers around its mean 2Kn (in some precise probabilistic sense
asnbecomes large). Next,we sharpen this result by showing that themaximum key ring size is on the orderO(log n)with very
high probability provided Kn = O(log n). It turns out that taking Kn = O(log n) is sufficient to achieve secure connectivity
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under the pairwise scheme when the network is deployed in a single phase; see Theorem 2.1 for a much stronger result. In
the gradual deployment scenario, we also show that the sensor network can maintain a.a.s. connectivity throughout all the
phases of its deployment with O(log n) keys stored in each sensor’s memory. Such a key ring size can be realized with very
high probability by selecting Kn = Θ(log n), and is comparable to that of the EG scheme (in realistic WSN scenarios [6]).
This points to the possibility of turning the pairwise scheme into a competitive random key distribution scheme. �

As with the results in [15], the assumption of full visibility may yield a dimensioning of the pairwise scheme which is
too optimistic. This is due to the fact that the unreliable nature of wireless links has not been incorporated in the model.
However, the results given in this paper already yield a number of interesting observations: The zero–one laws obtained
here differ significantly from the corresponding results in the single deployment case [15], and are not implied by them.
Thus, the gradual deployment may have a significant impact on the dimensioning of the pairwise distribution algorithm.
Yet, the required number of keys to achieve secure connectivity being O(log n), it is still feasible to use the pairwise scheme
under gradual deployment; note that, the required key ring size in EG scheme is also O(log n) under full visibility [6].

1.4. Miscellaneous

The rest of the paper is organized as follows: In Section 2 we introduce a framework to model the random pairwise
distribution scheme; this section also describes an implementation of the scheme which supports gradual network deploy-
ment. Section 3 presents results concerning connectivity and the absence of isolated nodes under gradual deployment; the
proofs are available in Sections 6 and 7. Results on key ring sizes are stated in Section 4 and established in Section 8. Limited
simulation experiments are discussed in Section 5.

A word on the notation used throughout the paper: All limiting statements, including asymptotic equivalences, are
understood with n going to infinity. The random variables (rvs) under consideration are all defined on the same probability
triple (Ω, F , P). Probabilistic statements are made with respect to this probability measure P, and we denote the
corresponding expectation operator by E. Also, we use the notation =st to indicate distributional equality. The indicator
function of an event E is denoted by 1 [E]. For any discrete set S we write |S| for its cardinality.

2. The model

2.1. Implementing pairwise key distribution schemes

The randompairwise key predistribution scheme is parametrized by two positive integers n and K such that K < n. There
are n nodes which are labeled i = 1, . . . , n with unique ids Id1, . . . , Idn. Write N := {1, . . . , n} and set N−i := N − {i}
for each i = 1, . . . , n. With node i we associate a subset Γn,i(K) of K distinct nodes selected uniformly and at random from
N−i—Each of the K nodes in Γn,i(K) is said to be paired to node i. Thus, for any subset A ⊆ N−i, we require

P

Γn,i(K) = A


=



n − 1
K

−1

if |A| = K

0 otherwise.

In other words, the selection of Γn,i(K) is done uniformly amongst all subsets of N−i which are of size exactly K . The rvs
Γn,1(K), . . . , Γn,n(K) are assumed to be mutually independent so that

P

Γn,i(K) = Ai, i = 1, . . . , n


=

n
i=1

P

Γn,i(K) = Ai


for arbitrary A1, . . . , An subsets of N−1, . . . , N−n, respectively.

On the basis of this offline random pairing, we now construct the key rings Σn,1(K), . . . , Σn,n(K), one for each node, as
follows: Assumed available is a collection of nK distinct cryptographic keys {ωi|ℓ, i = 1, . . . , n; ℓ = 1, . . . , K}—These keys
are drawn from a very large pool of keys; in practice the pool size is assumed to be much larger than nK , and can be safely
taken to be infinite for the purpose of our discussion. It also assumed throughout that the keys used here are all of the same
length.

Now, fix i = 1, . . . , n and let ℓn,i : Γn,i(K) → {1, . . . , K} denote a labeling of Γn,i(K). For each node j in Γn,i(K) paired
to i, the cryptographic key ωi|ℓn,i(j) is associated with j. For instance, if the random set Γn,i(K) is realized as {j1, . . . , jK } with
1 ≤ j1 < · · · < jK ≤ n, then an obvious labeling consists of ℓn,i(jk) = k for each k = 1, . . . , K with key ωi|k associated with
node jk. Of course other labelings are possible, e.g., according to decreasing labels or according to a random permutation.
The pairwise key ω⋆

n,ij = [Idi|Idj|ωi|ℓn,i(j)] is constructed and inserted in the memory modules of both nodes i and j. Inherent
to this construction is the fact that the key ω⋆

n,ij is assigned exclusively to the pair of nodes i and j, hence the terminology
pairwise distribution scheme. The key ring Σn,i(K) of node i is the set

Σn,i(K) :=

ω⋆

n,ij, j ∈ Γn,i(K)


∪


ω⋆

n,ji,
j ∈ N−i

i ∈ Γn,j(K)


(1)



4 O. Yağan, A.M. Makowski / Performance Evaluation ( ) –

as we take into account the possibility that node i may have been paired to some other node j. As mentioned earlier, if two
nodes, say i and j, are within wireless range of each other, then they can establish a secure link if at least one of the events
i ∈ Γn,j(K) or j ∈ Γn,i(K) takes place. Note that both events can take place, in which case the memory modules of node i and
j each contain the distinct keys ω⋆

n,ij and ω⋆
n,ji. By construction this scheme supports node-to-node authentication.

2.2. Gradual deployment

Initially n distinct node identities were generated, one for each of the n nodes, and the key rings

Σn,1(K), . . . , Σn,n(K)

were constructed offline as indicated above—here n stands for the maximum possible network size and should be selected
large enough. This key selection procedure does not require the physical presence of the sensor entities and can be
implemented completely at the software level. We now describe how this offline pairwise key distribution scheme can
accommodate gradual network deployment in consecutive stages.

In the initial phase of deployment, with 0 < γ1 < 1, let ⌊γ1n⌋ sensors be produced and given the labels 1, . . . , ⌊γ1n⌋.
The key rings

Σn,1(K), . . . , Σn,⌊γ1n⌋(K)

are then inserted into the memory modules of the sensors 1, . . . , ⌊γ1n⌋, respectively. Imagine now that more sensors are
needed, say ⌊γ2n⌋ − ⌊γ1n⌋ sensors with 0 < γ1 < γ2 ≤ 1. Then, ⌊γ2n⌋ − ⌊γ1n⌋ additional sensors would be produced, this
second batch of sensors would be assigned labels ⌊γ1n⌋ + 1, . . . , ⌊γ2n⌋, and the key rings

Σn,⌊γ1n⌋+1(K), . . . , Σn,⌊γ2n⌋(K)

would be inserted into their memorymodules. Once this is done, these ⌊γ2n⌋−⌊γ1n⌋ new sensors are added to the network
(which now comprises ⌊γ2n⌋ deployed sensors). This step may be repeated a number of times: For some finite integer ℓ,
consider positive scalars 0 < γ1 < · · · < γℓ ≤ 1 (with γ0 = 0 by convention). We can then deploy the sensor network in ℓ
consecutive phases, with the kth phase adding ⌊γkn⌋ − ⌊γk−1n⌋ new nodes to the network for each k = 1, . . . , ℓ.

2.3. Earlier results for the single phase case

The pairwise distribution scheme naturally gives rise to the following class of well-structured random graphs: With
n = 2, 3, . . . and a positive integer K such that K < n, we say that the distinct nodes i and j are adjacent, written i ∼ j, if
and only if they have at least one key in common in their key rings, namely

i ∼ j iff Σn,i(K) ∩ Σn,j(K) ≠ ∅. (2)

Let H(n; K) denote the undirected random graph on the vertex set {1, . . . , n} induced by the adjacency notion (2). The
following zero–one law for connectivity is established in [14,15] and is given here for easy reference.

Theorem 2.1. For each positive integer K , it holds that

lim
n→∞

P [H(n; K) is connected] =


0 if K = 1
1 if K ≥ 2. (3)

Moreover, for any K ≥ 2, we have

P [H(n; K) is connected] ≥ 1 −
155
n3

,
n ≥ 16,

K = 2, . . . , n − 1. (4)

The random graph H(n; K) is also known in the literature on random graphs as the K -out-n random graph. The first part
of Theorem 2.1 can be derived from an earlier result on vertex connectivity obtained by Fenner and Frieze [20, Theorem 2.1,
p. 348].

Some of the conclusions given earlier (at the end of Section 1.3) relied on the following monotonicity: Fix n = 1, 2, . . . .
An easy coupling argument shows that for positive integers K and K ′ such that K < K ′ < n, we have

P [H(n; K) is connected] ≤ P

H(n; K ′) is connected


(5)

as expected.

3. On gradual deployment

With the network deployed gradually over time as described in Section 2.2, we seek to understand how the parameter K
needs to be scaledwith large n to ensure that connectivity ismaintained a.a.s. throughout gradual deployment. The following
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terminology will be useful in what follows: A scaling is any mapping K : N0 → N0 such that

Kn < n, n = 2, 3, . . . .

Consider positive integers n = 2, 3, . . . and K with K < n. With γ in the interval (0, 1), letHγ (n; K) denote the subgraph
of H(n; K) restricted to the set of nodes {1, . . . , ⌊γ n⌋}. The fact that H(n; K) is connected does not imply that Hγ (n; K) is
automatically connected. Indeed, with distinct nodes i, j = 1, . . . , ⌊γ n⌋, the path that exists in H(n; K) between nodes i
and j (as a result of the assumed connectivity of H(n; K)) may comprise edges that are not in Hγ (n; K). We write

Pγ (n; K) := P


Hγ (n; K) is connected

.

We shall also use the notation

P⋆
γ (n; K) := P


Hγ (n; K) contains no isolated nodes


.

3.1. Basic zero–one laws

The next result constitutes an analog of Theorem 2.1 in this new setting, and shows that gradual deployment has a
significant impact on the dimensioning of the pairwise scheme.

Theorem 3.1. With γ in the unit interval (0, 1) and c > 0, consider a scaling K : N0 → N0 such that

Kn ∼
c
γ

log n. (6)

Then, we have limn→∞ Pγ (n; Kn) = 1 whenever c > 1.

The random graphs H(n; K) and Hγ (n; K) have very different neighborhood structures. Indeed, any node in H(n; K) has
degree at least K , so that no node is ever isolated in H(n; K). However, there is a positive probability that isolated nodes
exist in Hγ (n; K). In fact, we have the following zero–one law.

Theorem 3.2. Fix γ in the unit interval (0, 1). For any scaling K : N0 → N0 such that (6) holds for some c > 0, we have

lim
n→∞

P⋆
γ (n; Kn) =


0 if c < r(γ )
1 if r(γ ) < c (7)

where the threshold r(γ ) is given by

r(γ ) :=


1 −

log(1 − γ )

γ

−1

. (8)

It is easy to check that r(γ ) is a decreasing function of γ on the interval [0, 1]with limγ↓0 r(γ ) =
1
2 and limγ↑1 r(γ ) = 0.

Since a connected graph has no isolated nodes, Theorem 3.2 yields limn→∞ Pγ (n; Kn) = 0 if the scaling K : N0 → N0
satisfies (6) with c < r(γ ). The following corollary is immediate from Theorem 3.1.

Corollary 3.3. Fix γ in the unit interval (0, 1). For any scaling K : N0 → N0 such that (6) holds for some c > 0, we have

lim
n→∞

Pγ (n; Kn) =


0 if c < r(γ )
1 if 1 < c (9)

with r(γ ) given by (8).

Corollary 3.3 does not provide a full zero–one law for the connectivity ofHγ (n; Kn) as there is a gap between the threshold
r(γ ) of the zero-law and the threshold 1 of the one-law. Admittedly the gap between the thresholds of the zero-law and the
one-law is quite small with 1

2 < 1 − r(γ ) < 1. However, the simulation results in Section 5 strongly suggest the existence
of a full zero–one law for Pγ (n; Kn) with a threshold close to r(γ ). As a result, we conjecture that the analog of Theorem 3.2
also holds for graph connectivity. This is not too far-fetched since for many classes of random graphs, the absence of isolated
nodes and graph connectivity are known to be asymptotically equivalent properties, e.g., Erdős–Rényi graphs [21], geometric
random graphs [22] and random key graphs [7,9], among others.

3.2. Continuous connectivity throughout consecutive phases

Finally, we turn to gradual network deployment in several phases as discussed in Section 2.2. Given the scalars 0 <
γ1 < · · · < γℓ ≤ 1, we give conditions on how to scale K as a function of n such that Hγk(n; K) is a.a.s. connected for each
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k = 1, 2, . . . , ℓ. With γ in (0, 1], we introduce the event

Cn,γ (K) :=


Hγ (n; K) is connected

.

Theorem 3.4. With 0 < γ1 < γ2 < · · · < γℓ ≤ 1, consider a scaling K : N0 → N0 such that

Kn ∼
c
γ1

log n (10)

for some c > 1. Then, we have

lim
n→∞

P

Cn,γ1(Kn) ∩ · · · ∩ Cn,γℓ

(Kn)


= 1. (11)

The event Cγ1,n(Kn)∩· · ·∩Cγℓ,n(Kn) corresponds to the network being connected in each of the ℓ phases of deployment—in
other words, on that event the sensors do form a connected network at each phase of the gradual deployment. Theorem 3.4
shows that the condition (10) (with c > 1) is enough to ensure that the network remains a.a.s. connected as more sensors
are deployed over time.

Proof. With the notation in the statement of Theorem 3.4, it is plain that (11) will hold, provided

lim
n→∞

P

Cn,γk(Kn)


= 1, k = 1, . . . , ℓ. (12)

For each k = 1, 2, . . . , ℓ, we note that
c
γ1

log n =
ck
γk

log n with ck := c
γk

γ1

for all n = 1, 2, . . . . But c > 1 implies ck > 1 since γ1 < · · · < γℓ. As a result, Hγk(n; Kn) is a.a.s. connected by virtue of
Theorem 3.1 applied to Hγk(n; K), and (12) indeed holds. �

4. On key ring sizes

According to Theorem 2.1, very small values of K suffice for a.a.s. connectivity of the random graph H(n; K). However
the mere fact that H(n; K) becomes connected even with very small values of K does not imply that the number of keys
needed to achieve connectivity is necessarily small—this is because the pairwise scheme generates key rings whose sizes
are variable over a wide range. In this section, we explore how this variability in key ring sizes behaves as the number of
nodes becomes large.

4.1. A concentration result

Fix n = 2, 3, . . . and a positive integer K with K < n. For each i = 1, 2, . . . , n, the key ring Σn,i(K) assigned to node i
has size

|Σn,i(K)| = |Γn,i(K)| +

n
j=1, j≠i

1

i ∈ Γn,j(K)


= K +

n
j=1, j≠i

1

i ∈ Γn,j(K)


(13)

since |Γn,i(K)| = K by construction. This follows from the definition (1) and shows that the size of any key ring is random
with a range from K to K + (n − 1). Yet, it is nevertheless the case that

E

|Σn,i(K)|


= K + (n − 1)

K
n − 1

= 2K (14)

since

P

i ∈ Γn,j(K)


=


n−2
K−1




n−1
K

 =
K

n − 1
, j ∈ N−i. (15)

This suggests that perhaps the size of key rings assumes values much larger than the mean with small probability.
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a b

Fig. 1. (a) The upper bound on the probability that Σn,1(Kn) ≥ 3Kn as given by Lemma 4.1 (with c = 1). (b) The upper bound on the probability that
Mn(Kn) ≥ 3Kn as given by Theorem 4.2 (when c = 1). We have taken Kn ∼ λ log n with n = 500 and vary λ between λ⋆ and 3λ⋆ .

Our first result shows that the size of key rings indeed tends to concentrate around their common expected value; this
is a consequence of standard concentration bounds for binomial rvs. To state the result, set

a(τ ) := (1 + τ) · log (1 + τ) − τ , τ > −1, (16)

and

b(τ ) :=


2 if 0 < τ < 1
1 if 1 ≤ τ .

(17)

Lemma 4.1. Consider positive integers n = 2, 3, . . . and K with K < n. For any c > 0, we have

P
 |Σn,1(K)| − 2K

 > cK


≤ b(c) · e−Ka(c) (18)

with a(c) > 0 and b(c) given by (16) and (17), respectively.

Lemma 4.1, which is established in Section 8.2, has several consequences: If the parameter K is scaled according to some
scaling K : N0 → N0 such that limn→∞ Kn = ∞, then as an easy consequence of Lemma 4.1 we have

|Σn,1(Kn)|

2Kn

P
→n 1

as soon as limn→∞ Kn = ∞. Thus, when Kn becomes large with n, although the key ring size |Σn,1(Kn)| could in principle
fluctuate from Kn to Kn + (n − 1), it has a propensity to hover about its mean 2Kn.

It also follows from Lemma 4.1 that in the large n limit, the number of keys |Σn,1(Kn)| stored at a node will be between
(2 − c)Kn and (2 + c)Kn with high probability for any c > 0. For the sake of concreteness consider the case c = 1 (so that
b(1) = 1): Since we always have |Σn,1(Kn)| ≥ Kn (e.g., see (13)), the inequality (18) reduces to

P

|Σn,1(Kn)| > 3Kn


≤ e−a(1)Kn (19)

for all n = 2, 3, . . . . To see how fastP

|Σn,1(Kn)| > 3Kn


decays to zero, consider Fig. 1(a)where the upper bound appearing

at (19) is shown as a function of Kn—note that P

|Σn,1(Kn)| > 3Kn


is already negligible (i.e., ‘‘vanishes’’ for all practical

purposes) for Kn ≥ 15.

4.2. Maximal key ring sizes when scaling K

In order to address worst case situations, we consider the maximal key ring size defined by

Mn(K) := max
i=1,...,n

|Σn,i(K)|. (20)

Since every key appears in exactly two different key rings, the relation
n

i=1

|Σn,i(K)| = 2nK

holds by construction, whence Mn(K) ≥ 2K . A result analogous to (19) also holds for the maximal key ring size when
attention is restricted to the subclass of logarithmic scalings.
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Theorem 4.2. Consider a scaling K : N0 → N0 such that

Kn ∼ λ log n (21)

for some λ > 0. Then, for any c > 0, the bound

P [ Mn(Kn) > (2 + c)Kn ] ≤ n−(h(λ;c)+o(1)) (22)

holds for all n = 1, 2, . . . with

h(λ; c) := −1 + λa(c), c > 0. (23)

Moreover, there exists c(λ) > 0 such that c → h(λ; c) changes sign exactly once on R+ at c(λ) with

h(λ; c) > 0, c(λ) < c. (24)

Theorem 4.2 is established in Section 8.3. From the discussion given there it is easy to check that the mapping λ → c(λ)
is strictly decreasing on (0, ∞) with 1 < c(λ) (resp. c(λ) < 1) if and only if λ < λ⋆ (resp. λ⋆ < λ) where the parameter
value λ⋆ is given by

λ⋆
:= (2 log 2 − 1)−1

≃ 2.6. (25)

Theorem 4.2 shows that under the condition (21) (with some λ > 0) on the scaling, with high probability in the large n
limit, the maximum key ring sizeMn(Kn) will not exceed (2+ c)Kn whenever c(λ) < c. For instance, for c = 1 the maximal
key ring size is now seen to be less than 3Kn with high probability provided λ has been selected so that c(λ) < 1 (in which
case h(λ; 1) > 0)—in view of earlier comments, this happens if and only if λ > λ⋆

≃ 2.6.
To get a better sense as to how fast P [Mn(Kn) > 3Kn] decays to zero, we have plotted the upper bound appearing at (22)

for c = 1, n = 500 and K = λ log n as λ varies (or equivalently, as K varies). The basic upper bound (69) in the proof of
Theorem 4.2 shows that if Kn = λ log n, then the upper bound appearing at (22) coincides with n−h(λ;c).1 In this setting,
Fig. 1(b) depicts n−h(λ;1) (implicitly as a function of K ) as λ varies between λ⋆ and 3λ⋆. This time the upper bound becomes
negligible for K > 30.

We can combine these results with earlier results concerning the secure connectivity of the pairwise scheme when
the network is deployed gradually over time—it should be clear from Theorem 3.4 why scalings of the form (21) are
of particular interest here. Combining Theorems 3.1 and 4.2 allows us to reach the following useful conclusions: With
0 < γ1 < γ2 < · · · < γℓ ≤ 1, consider a scaling K : N0 → N0 such that Kn = Θ(log n) with

Kn ≥ max


λ⋆,
1
γ1


· log n

for all n sufficiently large. The following statements then hold true: (i) The maximum number of keys kept in the memory
module of each sensor will be a.a.s. less than 3Kn; (ii) The network deployed gradually in ℓ steps (as in Section 2) will be a.a.s.
connected in each of the ℓ phases of deployment. Thus, key rings of sizeΘ(log n) are sufficient to ensure secure connectivity
under the pairwise scheme (even when the network is gradually deployed).

4.3. Maximal key ring sizes with fixed K

We close with a concentration result for the maximal key ring size when the parameter K is not scaled with n; in light of
Theorem 2.1, this situation may be of interest when the network is deployed in a single phase: A simple coupling argument
shows that for each n = 1, 2, . . . and positive integers K and K ′, we have2 Mn(K) ≤st Mn(K ′) whenever K < K ′ < n, i.e.,

P [ Mn(K) > t ] ≤ P

Mn(K ′) > t


, t ≥ 0. (26)

Invoking Theorem 4.2 with c > 0 and λ > 0, we conclude from (26) that

P [ Mn(K) > (2 + c)⌈λ log n⌉ ] ≤ n−(h(λ;c)+o(1)) (27)

for all n sufficiently large as soon as K < ⌈λ log n⌉ < n. Thus, whenever we have c(λ) < c , the maximal key ring sizeMn(K)
will be on the order O(log n) with very high probability when n is large. The next result shows that sharper bounds are in
fact available.

1 The term o(1) in (22) accounts for the fact that λ log nmay not be an integer.
2 The notation ≤st stands for less or equal in the strong stochastic ordering.
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a b

Fig. 2. (a) Probability that Hγ (n; K) contains no isolated nodes for n = 1000 obtained through 200 experiments. Vertical dashed lines stand for the critical
thresholds asserted by Theorem3.2. The theoretical findings are in perfect agreementwith the simulation results. (b) Probability thatHγ (n; K) is connected
for n = 1000 obtained through 200 experiments. The curves are almost indistinguishable from the corresponding ones of Fig. 2(a); this supports the claim
that the absence of isolated nodes and connectivity are asymptotically equivalent properties.

Theorem 4.3. For each positive integer K and c > 0 we have

P

Mn(K) > K + c ·

log n
log log n


≤ n1−c+o(1). (28)

Theorem 4.3 is established in Section 8.4 and states that for large n, the maximal key ring size is on the order O(
log n

log log n )

with very high probability whenever K is a fixed integer. Indeed we note from (28) that

lim
n→∞

P

Mn(K) > K + c ·

log n
log log n


= 0, c > 1.

The leading exponents of n appearing in the bounds at (27) and (28) can be easily compared, with −h(λ; c) < 1 − c if and
only if c < λa(c). This could be used to explore the relative rate at which the relevant probabilities are driven to zero.

5. Limited simulation experiments

Before moving on to the proofs of the results presented in Sections 3 and 4, we pause to present experimental results in
support of the theoretical findings discussed earlier.

5.1. Gradual deployment

In each set of experiments, we fix n and γ . Then, we generate random graphs Hγ (n; K) for each K = 1, . . . , Kmax where
the maximal value Kmax is selected large enough. In each case, we check whether the generated graph has isolated nodes
and is connected. We repeat the process 200 times for each pair of values γ and K in order to estimate the probabilities of
the events of interest. For various values of γ , Fig. 2(a) depicts the estimated probability P⋆

γ (n; K) that Hγ (n; K) contains no
isolated nodes as a function of K . Here, n is taken to be 1000. The plots in Fig. 2(a) clearly confirm the claims of Theorem 3.2:
In each case P⋆

γ (n; K) exhibits a threshold behavior as K increases, and the transitions from P⋆
γ (n; K) = 0 to P⋆

γ (n; K) = 1
take place around Kn(γ ) = r(γ )

log n
γ

as dictated by Theorem 3.2; the critical value Kn(γ ) is shown by a vertical dashed line
in each plot.

Similarly, Fig. 2(b) shows the estimated probability Pγ (n; K) as a function of K for various values of γ with n = 1000. For
each specified γ , we see that the variation of Pγ (n; K)withK is almost indistinguishable from that of P⋆

γ (n; K) supporting the
claim that Pγ (n; K) exhibits a full zero–one law similar to that of Theorem 3.2 with a threshold behaving like r(γ ). We can
also conclude by monotonicity that Pγ (n; K) = 1 whenever (6) holds with c > 1; this verifies Theorem 3.1. Furthermore, it
is evident from Fig. 2(b) that for given K and n, Pγ (n; K) increases as γ increases supporting Theorem 3.4.

5.2. Key ring sizes

Next, we present simulation results that illustrate Lemma 4.1 and Theorem 4.2: For fixed values of n and K we have
constructed key rings according to the mechanism presented in Section 2. For each pair of parameters n and K , the
experiments have been repeated 1000 times yielding 1000 × n key rings for each parameter pair. The results are depicted



10 O. Yağan, A.M. Makowski / Performance Evaluation ( ) –

a b

Fig. 3. Key ring sizes observed in 1000 experiments for (a) n = 200, K = 15, and for (b) n = 500, K = 20. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

a b

Fig. 4. Key ring sizes observed in 1000 experiments for (a) n = 1000, K = 24, and for (b) n = 2000, K = 26. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

in Figs. 3(a)–4(b) which show the key ring sizes according to their frequency of occurrence. The histograms filled with color
(blue) correspond to the key ring Σn,1(K), while the histograms that have colorless bins stand for the maximal key ring size
Mn(K), i.e., only the largest key ring amongst n nodes in an experiment.

It is immediate from Figs. 3(a)–4(b) that |Σn,1(K)| tends to concentrate around 2K , in agreement with the claim of
Lemma 4.1. As would be expected, this concentration becomes more evident as n gets large. It is also clear that, in almost all
cases the maximum size of a key ring (over the n nodes) is less than 3K , validating the claim of Theorem 4.2. In particular,
the largest key rings observed are 49, 64, 74, 80 for the cases (n = 200, K = 15), (n = 500, K = 20), (n = 1000, K = 24)
and (n = 2000, K = 26), respectively.

6. A proof of Theorem 3.1

Consider γ in the interval (0, 1), and fix n = 2, 3, . . . and a positive integer K ≥ 2. Throughout the discussion, in order
to avoid degenerate situations, we take n sufficiently large so that the conditions

2(K + 1) < n, K + 1 ≤ n − ⌊γ n⌋ and 2 < γ n (29)

are all enforced; this has no bearing on the final result since we eventually let n go to infinity under a scaling which satis-
fies (6).

For any non-empty subset R contained in {1, . . . , ⌊γ n⌋}, we say that R is isolated in Hγ (n; K) if there are no edges (in
Hγ (n; K)) between the nodes in R and the nodes in its complement Rc|γ

:= {1, . . . , ⌊γ n⌋} − R. This is characterized by the
event Bn,γ (K ; R) given by

Bn,γ (K ; R) :=

i ∉ Γn,j(K), j ∉ Γn,i(K), i ∈ R, j ∈ Rc|γ  .
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The discussion starts with the following basic observation (already used in deriving the one-law for connectivity in
Erdős–Rényi graphs, e.g., see [23, Section 3.4.2, p. 42]): If Hγ (n; K) is not connected, then there must exist a non-empty
subset R of nodes contained in {1, . . . , ⌊γ n⌋}, and isolated in Hγ (n; K). This is captured by the inclusion

Cn,γ (K)c ⊆ ∪R∈Nn,γ Bn,γ (K ; R) (30)

with Nn,γ denoting the collection of all non-empty subsets of {1, . . . , ⌊γ n⌋}. This union needs only be taken over all non-
empty subsets R of {1, . . . , ⌊γ n⌋} with 1 ≤ |R| ≤ ⌊

⌊γ n⌋
2 ⌋, and for future use it is useful to note that ⌊

⌊γ n⌋
2 ⌋ = ⌊

γ n
2 ⌋. A

standard union bound argument immediately gives

P

Cn,γ (K)c


≤


R∈Nn,γ : 1≤|R|≤⌊

γ n
2 ⌋

P

Bn,γ (K ; R)



=

⌊
γ n
2 ⌋

r=1

 
R∈Nn,γ ,r

P

Bn,γ (K ; R)

 (31)

where Nn,γ ,r denotes the collection of all subsets of {1, . . . , ⌊γ n⌋} with exactly r elements.
For each r = 1, . . . , ⌊γ n⌋, when R = {1, . . . , r} we simplify the notation by writing Bn,γ ,r(K) := Bn,γ (K ; R). Under the

enforced assumptions, we have

P

Bn,γ (K ; R)


= P


Bn,γ ,r(K)


, R ∈ Nn.γ ,r

by exchangeability, and the expression
R∈Nγ ,r

P

Bn,γ (K ; R)


=


⌊γ n⌋
r


P

Bn,γ ,r(K)


follows since |Nn,γ ,r | =


⌊γ n⌋
r


. Substituting into (31) yields the bounds

P

Cn,γ (K)c


≤

⌊
γ n
2 ⌋

r=1


⌊γ n⌋
r


P

Bn,γ ,r(K)


. (32)

Under the enforced assumptions, we get

P

Bn,γ ,r(K)


=




n−⌊γ n⌋+r−1
K




n−1
K


r 


n−r−1

K




n−1
K


⌊γ n⌋−r

. (33)

To see why this last relation holds, recall that for the set {1, . . . , r} to be isolated in Hγ (n; K) we need that (i) each of the
nodes r + 1, . . . , ⌊γ n⌋ are adjacent only to nodes outside the set of nodes {1, . . . , r}; and (ii) none of the nodes 1, . . . , r are
adjacent with any of the nodes r + 1, . . . , ⌊γ n⌋—this last requirement does not preclude adjacency with any of the nodes
⌊γ n⌋ + 1, . . . , n. Substituting (33) into (32), we conclude that

P

Cn,γ (K)c


≤

⌊
γ n
2 ⌋

r=1


⌊γ n⌋
r




n−⌊γ n⌋+r−1
K




n−1
K


r

·




n−r−1
K




n−1
K


⌊γ n⌋−r

(34)

with conditions (29) ensuring that the binomial coefficients are all well defined.
The remainder of the proof consists in bounding each of the terms in (34) with the help of several standard bounds. First

we recall the well-known bound
⌊γ n⌋
r


≤


⌊γ n⌋e

r

r

, r = 1, . . . , ⌊γ n⌋. (35)

Next, for 0 ≤ K ≤ x ≤ y, we note that x
K

 y
K

 =

K−1
ℓ=0


x − ℓ

y − ℓ


≤


x
y

K

since x−ℓ
y−ℓ

decreases as ℓ increases from ℓ = 0 to ℓ = K − 1.
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Now pick r = 1, . . . , ⌊γ n⌋. Under (29) we can apply these bounds to obtain


⌊γ n⌋
r




n−⌊γ n⌋+r−1
K




n−1
K


r

·




n−r−1
K




n−1
K


⌊γ n⌋−r

≤


⌊γ n⌋e

r

r

·


n − ⌊γ n⌋ + r − 1

n − 1

rK

·


n − r − 1
n − 1

K(⌊γ n⌋−r)

≤

γ ne
r

r 
1 −

⌊γ n⌋ − r
n − 1

rK 
1 −

r
n − 1

K(⌊γ n⌋−r)

≤ (γ ne)r ·


1 −

⌊γ n⌋ − r
n

rK

·


1 −

r
n

K(⌊γ n⌋−r)

≤ (γ ne)r · e−


⌊γ n⌋−r

n


rK

· e−
r
n (⌊γ n⌋−r)K .

It is plain that

P

Cn,γ (K)c


≤

⌊
γ n
2 ⌋

r=1

(γ ne)r · e−2


⌊γ n⌋−r
n


rK

≤

⌊
γ n
2 ⌋

r=1

γ ne · e
−2


⌊γ n⌋−⌊

γ n
2 ⌋

n


K
r

. (36)

Next, consider a scaling K : N0 → N0 such that (6) holds for some c > 1. This amounts to

Kn =
cn
γ

log n, n = 1, 2, . . . (37)

for some sequence N0 → R+ : n → cn such that limn→∞ cn = c. Note that

an := γ ne · e
−2


⌊γ n⌋−⌊

γ n
2 ⌋

n


Kn

= (γ e) · n
1−2cn


⌊γ n⌋−⌊

γ n
2 ⌋

γ n



for each n = 1, 2, . . . . Since limn→∞ cn = c , it is a simple matter to check that

lim
n→∞


2cn


⌊γ n⌋ −


γ n
2


γ n


= c,

so that limn→∞ an = 0 by virtue of the fact that c > 1.
From (37) there exists a finite integer n⋆ such that the conditions

2(Kn + 1) < n, Kn + 1 ≤ n − ⌊γ n⌋ and 2 < γ n (38)

hold for all n ≥ n⋆. On that range, the bound (36) thus holds with K replaced by Kn, whence

P

Cn,γ (Kn)

c
≤

⌊
γ n
2 ⌋

r=1

(an)r ≤

∞
r=1

(an)r =
an

1 − an
(39)

where for all n sufficiently large the summability of the geometric series is guaranteed by the convergence limn→∞ an = 0.
This fact also yields the desired conclusion limn→∞ P


Cn,γ (K)c


= 0 via (39).

7. A proof of Theorem 3.2

Consider γ in (0, 1). Moreover, fix n = 2, 3, . . . and a positive integer K such that K < n. For each i = 1, . . . , ⌊γ n⌋, we
write

χn,γ ,i(K) := 1

Node i is isolated in Hγ (n; K)


.

The number of isolated nodes in Hγ (n; K) is simply given by

In,γ (K) :=

⌊γ n⌋
i=1

χn,γ ,i(K),

and the random graph Hγ (n; K) has no isolated nodes if In,γ (K) = 0.
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7.1. The method of first and second moments

We use the method of first moment [24, Eqn. (3.10), p. 55] and second moment [24, Remark 3.1, p. 55], an approach
which relies on the bounds

1 − E

In,γ (K)


≤ P


In,γ (K) = 0


≤ 1 −


E

In,γ (K)

2
E

In,γ (K)2

 . (40)

First some computations: The rvs χn,γ ,1(K), . . . , χn,γ ,⌊γ n⌋(K) being exchangeable, we find

E

In,γ (K)


= ⌊γ n⌋E


χn,γ ,1(K)


(41)

and

E

In,γ (K)2


= ⌊γ n⌋E


χn,γ ,1(K)


+ ⌊γ n⌋(⌊γ n⌋ − 1)E


χn,γ ,1(K)χn,γ ,2(K)


(42)

by the binary nature of the rvs involved. It follows in the usual manner that

E

In,γ (K)2


E

In,γ (K)

2 =
1

⌊γ n⌋E

χn,γ ,1(K)

 +
⌊γ n⌋ − 1

⌊γ n⌋
E

χn,γ ,1(K)χn,γ ,2(K)


E

χn,γ ,1(K)

2 . (43)

Pick a scaling K : N0 → N0 such that (6) holds for some c > 0, and replace K by Kn in (40), so that

1 − E

In,γ (Kn)


≤ P


In,γ (Kn) = 0


≤ 1 −


E

In,γ (Kn)

2
E

In,γ (Kn)2

 (44)

for all n = 2, 3, . . . . The next step relies on the two lemmas presented next; their proofs are available in Sections 7.3 and
7.4, respectively.

Lemma 7.1. Consider γ in (0, 1) and a scaling K : N0 → N0 such that (6) holds for some c > 0. We have

lim
n→∞

nE

χn,γ ,1(Kn)


=


0 if r(γ ) < c
∞ if c < r(γ )

(45)

with r(γ ) specified by (8).

Lemma 7.2. Consider γ in (0, 1) and a scaling K : N0 → N0 such that (6) holds for some c > 0. We have

lim sup
n→∞


E

χn,γ ,1(Kn)χn,γ ,2(Kn)


E

χn,γ ,1(Kn)

2


≤ 1. (46)

Assume r(γ ) < c. Lemma 7.1 yields limn→∞⌊γ n⌋E

χn,γ ,1(Kn)


= 0, whence

lim
n→∞

E

In,γ (Kn)


= 0.

Letting n go to infinity in the first inequality at (44) yields the one-law limn→∞ P

In,γ (Kn) = 0


= 1.

Assume c < r(γ ). This time, Lemma 7.1 gives limn→∞⌊γ n⌋E

χn,γ ,1(Kn)


= ∞, and with the help of the relation (43),

we find

lim sup
n→∞

E

In,γ (Kn)

2


E

In,γ (Kn)

2 ≤ 1

as we invoke Lemma 7.2. Inverting yields

1 ≤ lim inf
n→∞


E

In,γ (Kn)

2
E

In,γ (Kn)2

 .

Letting n go to infinity in the second inequality at (44) we conclude that

lim sup
n→∞

P

In,γ (Kn) = 0


≤ 1 − lim inf

n→∞


E

In,γ (Kn)

2
E

In,γ (Kn)2

 ≤ 0,

and the zero-law limn→∞ P

In,γ (Kn) = 0


= 0 is obtained. �
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7.2. A technical lemma

In the proofs of Lemmas 7.1 and 7.2 we repeatedly use the following technical fact.

Lemma 7.3. For any sequence m : N0 → N0 with mn = Θ(n), we have
1 −

Kn

mn

mn

∼ e−Kn . (47)

Proof. Recall the elementary decomposition

log(1 − x) = −x − Ψ (x) with Ψ (x) :=

 x

0

t
1 − t

dt (48)

valid for 0 ≤ x < 1. It is easy to check that

lim
x↓0

Ψ (x)
x2

=
1
2
. (49)

Under the enforced assumptions we havemn = Θ(n) and Kn = O(log n), whence Kn
mn

= O(
log n
n ) so that Kn < mn for all n

sufficiently large. On that range, the decomposition (48) yields
1 −

Kn

mn

mn

= e−Kn · e−mnΨ


Kn
mn


. (50)

Now note that

lim
n→∞

Kn

mn
= 0 and lim

n→∞
mn


Kn

mn

2

= 0.

With the help of (49) it is plain that limn→∞ mnΨ


Kn
mn


= 0, and this establishes (47) via (50). �

7.3. A proof of Lemma 7.1

Consider γ in (0, 1). Fix n = 2, 3, . . . and a positive integer K such that K < n. Here as well there is no loss of generality
in assuming n − ⌊γ n⌋ ≥ K and ⌊γ n⌋ > 1. Under the enforced assumptions, we get

E

χn,γ ,1(K)


=


n−⌊γ n⌋

K




n−1
K





n−2
K




n−1
K


⌊γ n⌋−1

= a(n; K) ·


1 −

K
n − 1

⌊γ n⌋−1

(51)

with

a(n; K) :=
(n − ⌊γ n⌋)!

(n − ⌊γ n⌋ − K)!
·
(n − 1 − K)!

(n − 1)!
.

Now pick a scaling K : N0 → N0 such that (6) holds for some c > 0 and replace K by Kn in (51) according to this scaling.
Apply Stirling’s formula

m! ∼
√
2πm

m
e

m
(m → ∞)

to the factorials appearing in (51). Doing so readily yields

a(n; Kn) ∼


(n − ⌊γ n⌋)(n − 1 − Kn)

(n − ⌊γ n⌋ − Kn)(n − 1)
· αnβn ∼ αnβn (52)

under the enforced assumptions on the scaling where we have set

αn :=
(n − Kn − 1)n−Kn−1

(n − 1)n−1
=


1 −

Kn

n − 1

n−1

· (n − Kn − 1)−Kn
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and

βn :=
(n − ⌊γ n⌋)n−⌊γ n⌋

(n − ⌊γ n⌋ − Kn)n−⌊γ n⌋−Kn

=


1 −

Kn

n − ⌊γ n⌋

−(n−⌊γ n⌋)

· (n − ⌊γ n⌋ − Kn)
Kn .

Using (47), first withmn = n − 1, then withmn = n − ⌊γ n⌋, we obtain
1 −

Kn

n − 1

n−1

∼ e−Kn

and 
1 −

Kn

n − ⌊γ n⌋

−(n−⌊γ n⌋)

∼

e−Kn

−1
= eKn ,

whence

αnβn ∼


n − ⌊γ n⌋ − Kn

n − Kn − 1

Kn

. (53)

From (51) and (52) we now conclude that

nE

χn,γ ,1(Kn)


∼ n


1 −

Kn

n − 1

⌊γ n⌋−1

·


n − ⌊γ n⌋ − Kn

n − Kn − 1

Kn

. (54)

A final application of (47), this time withmn = n − 1, gives
1 −

Kn

n − 1

⌊γ n⌋−1

=


1 −

Kn

n − 1

n−1
 ⌊γ n⌋−1

n−1

∼ e−
⌊γ n⌋−1
n−1 Kn (55)

since limn→∞
⌊γ n⌋−1
n−1 = γ > 0. Substituting (55) into (54) we obtain

nE

χn,γ ,1(Kn)


∼ eζn (56)

with

ζn := log n −


⌊γ n⌋ − 1
n − 1

− log

n − ⌊γ n⌋ − Kn

n − Kn − 1


Kn

for all n = 1, 2, . . . . Finally, from the condition (6) on the scaling, we see that

lim
n→∞

ζn

log n
= 1 − c + c

log(1 − γ )

γ
= 1 −

c
r(γ )

.

Thus, limn→∞ ζn = −∞ (resp. ∞) if c < r(γ ) (resp. r(γ ) < c) and the desired result follows upon using (56). �

7.4. A proof of Lemma 7.2

Fix n = 3, 4, . . . and a positive integer K with K < n.With γ in (0, 1), we again assume that n−⌊γ n⌋ ≥ K and ⌊γ n⌋ > 1.
It is a simple matter to check that

E

χn,γ ,1(K)χn,γ ,2(K)


=




n−⌊γ n⌋
K




n−1
K


2


n−3
K




n−1
K


⌊γ n⌋−2

and invoking (51) we readily conclude that

E

χn,γ ,1(K)χn,γ ,2(K)


E

χn,γ ,1(K)

2 =




n−3
K




n−1
K


⌊γ n⌋−2

·




n−1
K




n−2
K


2(⌊γ n⌋−1)

=


n − 1 − K

n − 1


n − 2 − K

n − 2

⌊γ n⌋−2

·


n − 1

n − 1 − K

2(⌊γ n⌋−1)
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=


n − 2 − K

n − 2

⌊γ n⌋−2

·


n − 1

n − 1 − K

⌊γ n⌋

=


1 −

K
n − 2

⌊γ n⌋−2

·


1 +

K
n − 1 − K

⌊γ n⌋

≤ e−K ·En(K) (57)

where we have set

En(K) :=
⌊γ n⌋ − 2
n − 2

−
⌊γ n⌋

n − 1 − K
.

Elementary calculations show that

−K · En(K) =
⌊γ n⌋
n − 2

·
K(K − 1)
n − 1 − K

+
2K

n − 2
.

Now pick a scaling K : N0 → N0 such that (6) holds for some c > 0 and replace K by Kn in (57) according to this scaling.
It is plain that limn→∞ KnEn(Kn) = 0, and the conclusion (46) follows. �

8. Proofs of Lemma 4.1, Theorems 4.2 and 4.3

8.1. Basic concentration inequalities for binomial rvs

Fix n = 2, 3, . . . and a positive integer K with K < n. For each i = 1, . . . , n, it follows from (13) that

|Σn,i(K)| = K + Bn,i(K) (58)

where Bn,i(K) is the rv determined through

Bn,i(K) :=

n
j=1, j≠i

1

i ∈ Γn,j(K)


.

Under the enforced independence assumptions, the rv Bn,i(K) is a binomial rv Bin(n − 1, K
n−1 ) with mean

E

Bn,i(K)


= (n − 1) ·

K
n − 1

= K . (59)

Of particular relevance here is the following well-known concentration inequalities for binomial rvs [22, Lemma 1.1,
p. 16]: With H(t) := 1 − t + t log t (t > 0), we have

P

Bn,1(K) > K + t


≤ e−K ·H( K+t

K ) (60)

and

P

Bn,1(K) < K − t


≤ e−K ·H( K−t

K ) (61)

where the additional condition 0 < t < K is required for (61) to hold. Simple calculations yield

H

K ± t
K


= a


±

t
K


(62)

on the appropriate ranges as we make use of (16).
Taking the derivative of (16) we find

d
dτ

a(τ ) = log (1 + τ) , τ > −1.

Therefore, the mapping τ → a(τ ) is convex on (−1, ∞), first strictly decreasing on (−1, 0) and then strictly increasing on
(0, ∞) with limτ↓−1 a(τ ) = 1, a(0) = 0 and limτ→∞ a(τ ) = ∞, hence a(τ ) > 0 on (−1, 0) ∪ (0, ∞). Since

d
dτ

(a(−τ) − a(τ )) = − log(1 − τ 2) > 0, 0 < τ < 1,

it is easy to check that

a(τ ) < a(−τ), 0 < τ < 1. (63)
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8.2. A proof of Lemma 4.1

Fix n = 2, 3, . . . and a positive integer K with K < n. To take advantage of (60)–(61) we note from (58) that

|Σn,1(K)| − 2K = Bn,1(K) − K . (64)

For each t > 0, it then follows that

P
  |Σn,1(K)| − 2K

 > t


= P

Bn,1(K) > K + t


+ P


Bn,1(K) < K − t


(65)

with P

Bn,1(K) < K − t


= 0 for t ≥ K . Using (60)–(61) and the definition (17), we readily conclude from (65) that

P
  |Σn,1(K)| − 2K

 > t


≤ b


t
K


e−Ka( t

K )

as we recall the comparison (63). The desired conclusion (18) follows as we replace t by cK in this last inequality. �

8.3. A proof of Theorem 4.2

Fix n = 2, 3, . . . and a positive integer K with K < n. Again using (58) we get
max

i=1,...,n
|Σn,i(K)|


− 2K = max

i=1,...,n


Bn,i(K) − K


.

As in the proof of Lemma 4.1, for any given t > 0, we now find

P [ Mn(K) > 2K + t ] = P


max
i=1,...,n


Bn,i(K) − K


> t


= P


max

i=1,...,n
Bn,i(K) > K + t


. (66)

A simple union argument shows that

P


max
i=1,...,n

Bn,i(K) > K + t


= P


∪
n
i=1[Bn,i(K) > K + t]


≤

n
i=1

P

Bn,i(K) > K + t


= nP


Bn,1(K) > K + t


(67)

since the rvs Bn,1(K), . . . , Bn,n(K) are identically distributed (but not independent). By the first concentration inequality (60)
we then conclude that

P


max
i=1,...,n

Bn,i(K) > K + t


≤ elog n−Ka( t
K ). (68)

Next, consider a scaling K : N0 → N0 satisfying (21) for some λ > 0, and select the sequence t : N0 → R+ given by

tn = cKn, n = 1, 2, . . .

with c > 0. Replacing K and t accordingly by Kn and tn in (68), we conclude from (66) that

P [Mn(Kn) > (2 + c)Kn] ≤ e−(− log n+Kna(c)). (69)

Under the enforced assumptions (21) it is easy to check that

− log n + Kna (c) = (−1 + λa(c) + o(1)) · log n
= (h(λ; c) + o(1)) · log n

and the bound (22) follows.
Finally pick λ > 0: Since a(0) = 0 and limτ→∞ a(τ ) = ∞, the strict monotonicity of the mapping τ → a(τ ) on R+

implies that the equation

λa (c) = 1, c > 0 (70)

has a unique solution, hereafter denoted c(λ). This statement is equivalent to c(λ) being the only solution to the equation
h(λ; c) = 0, c > 0, hence the mapping c → h(λ; c) changes sign only once on R+. From arguments given earlier, it is clear
that

1 < λa (c) , c(λ) < c.

This last statement being equivalent to (24), the proof is now completed. �
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We conclude by addressing the comments following the statement of Theorem 4.2: By the Implicit Function Theorem,
the mapping λ → c(λ) is differentiable on (0, ∞). The defining relation (70) for c(λ) implies

a(c(λ)) =
1
λ

, λ > 0.

Differentiating we find

log (1 + c(λ)) ·
d
dλ

c(λ) = −
1
λ2

, λ > 0

and the conclusion d
dλ c(λ) < 0 follows whenever λ > 0 since then c(λ) > 0. In short, λ → c(λ) is strictly decreasing on

(0, ∞)—this could also have been established graphically. Also, note that

λa (1) = λ (2 log 2 − 1) =
λ

λ⋆
, λ > 0 (71)

where λ⋆ is given by (25). Thus, λ⋆a(1) = 1 so that c(λ⋆) = 1 necessarily, and by the strict monotonicity of λ → c(λ)
established earlier, it is plain from (71) that 1 < c(λ) (resp. c(λ) < 1) if and only if λ < λ⋆ (resp. λ⋆ < λ).

8.4. A proof of Theorem 4.3

Fix n = 2, 3, . . . and a positive integer K with K < n, and pick c > 0. The arguments that lead to (66)–(67) in the proof
of Theorem 4.2 also yield

P [Mn(K) > K + wn(c)] ≤ nP

Bn,1(K) > wn(c)


(72)

where for convenience we have set

wn(c) = c ·
log n

log log n
.

Therefore, (28) will be established if we show that

nP

Bn,1(K) > wn(c)


≤ n1−c+o(1). (73)

Note that

lim
n→∞

wn(c)
n

= 0

so that wn(c) < n for all n sufficiently, say n ≥ n⋆ for some finite integer n⋆. On that range, since the rv Bn,1(K) is a binomial
rv Bin(n − 1, K

n−1 ), we find

P

Bn,1(K) > wn(c)


≤ P


Bn,1(K) ≥ ⌊wn(c)⌋


=

n−1
ℓ=⌊wn(c)⌋


n − 1

ℓ


K

n − 1

ℓ 
1 −

K
n − 1

n−1−ℓ

≤

n−1
ℓ=⌊wn(c)⌋


n − 1

ℓ


K

n − 1

ℓ

≤

n−1
ℓ=⌊wn(c)⌋


e(n − 1)

ℓ

ℓ  K
n − 1

ℓ

(74)

=

n−1
ℓ=⌊wn(c)⌋


eK
ℓ

ℓ

≤

∞
ℓ=⌊wn(c)⌋


eK

⌊wn(c)⌋

ℓ

(75)

upon using the bound (35) in (74).
Because limn→∞ wn(c) = ∞, we have eK < ⌊wn(c)⌋ for all n sufficiently large beyond n⋆. On that range, the infinite

geometric series in (75) is summable, and the inequality

P

Bn,1(K) > wn(c)


≤


1 −

eK
⌊wn(c)⌋

−1

·


eK

⌊wn(c)⌋

⌊wn(c)⌋

(76)
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follows. From the decomposition (48), we also note that

− log

1 −

eK
⌊wn(c)⌋


=

eK
⌊wn(c)⌋

+ Ψ


eK

⌊wn(c)⌋


∼

eK
⌊wn(c)⌋

.

Therefore,

− log

1 −

eK
⌊wn(c)⌋


log n

∼
eK
c

·
log log n

(log n)2
,

and we readily conclude that
1 −

eK
⌊wn(c)⌋

−1

= no(1). (77)

Thus, in view of (75)–(77) we shall be able to conclude (73) if we can show that

n


eK
⌊wn(c)⌋

⌊wn(c)⌋

= n1−c+o(1). (78)

Taking logarithms in the left hand side of (78) we find

log


n


eK
⌊wn(c)⌋

⌊wn(c)⌋


= log n + ⌊wn(c)⌋ log eK − ⌊wn(c)⌋ log⌊wn(c)⌋

=


1 +

⌊wn(c)⌋
log n

log eK −
⌊wn(c)⌋
log n

log⌊wn(c)⌋


· log n

= (1 − c + o(1)) · log n

since

lim
n→∞

⌊wn(c)⌋
log n

= 0 and lim
n→∞

⌊wn(c)⌋
log n

· log⌊wn(c)⌋ = c.

This establishes (78), and the proof of Theorem 4.3 is now completed. �
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