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A common theme among the proposed models for network epidemics is the assumption that the
propagating object, i.e., a pathogen (in the context of infectious disease propagation) or a piece
of information (in the context of information propagation), is transferred across the nodes without
going through any modification or evolution. However, in real-life spreading processes, pathogens
often evolve in response to changing environments and medical interventions and information is
often modified by individuals before being forwarded. In this paper, we investigate the evolution
of spreading processes in complex networks with the aim of i) revealing the role of evolutionary
adaptations on the threshold, probability, and final size of epidemics; and ii) exploring the interplay
between the structural properties of the network and the evolutionary adaptations of the process.
We start by considering the case where co-infection with different pathogen strains (respectively,
different variations of information) is not possible. In this case, we develop a mathematical theory
that accurately predicts the epidemic threshold and the expected epidemic size as functions of the
characteristics of the spreading process, the evolutionary pathways of the pathogen (respectively,
information), and the structure of the underlying contact network. In addition to the mathematical
theory, we perform extensive simulations on random and real-world contact networks to verify our
theory and reveal the significant shortcomings of the classical mathematical models that do not
capture evolution. Our results reveal that the classical, single-type bond-percolation models may
accurately predict the threshold and final size of epidemics, but their predictions on the probability
of emergence are inaccurate on both random and real-world networks. We then consider the case
when co-infection is possible, i.e., a susceptible individual who receives simultaneous infections with
multiple pathogen strains (respectively, multiple variations of information) becomes co-infected. We
show by computer simulations that co-infection gives rise to a rich set of dynamics: it can amplify
or inhibit the spreading dynamics, and more remarkably lead the order of phase transition to change
from second-order to first-order.
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I. INTRODUCTION

What causes an outbreak of a disease? How can we
predict its emergence and control its progression? Over
the past several decades, multidisciplinary research ef-
forts were converging to tackle the above questions, aim-
ing for providing a better understanding of the intricate
dynamics of disease propagation and accurate predictions
on its course [1–12]. At the heart of these research efforts
is the development of mathematical models that provide
insights on predicting, assessing, and controlling poten-
tial outbreaks [13–16]. The early mathematical models
relied on the homogeneous mixing assumption, meaning
that an infected individual is equally likely to infect any
other individual in the population, without regard to her
location, age, or the people with whom she interacts. Ho-
mogeneity allowed writing a set of differential equations
that characterize the speed and scale of propagation (in
the limit of large population size), providing insights on
how the parameters of a disease, e.g., its basic reproduc-
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tive number, indicate whether a disease will die out, or
an epidemic will emerge [5, 16].

In real-life, however, the spread of a disease is highly
dependent on the contact patterns between individuals.
In particular, a person may only infect those with whom
she interacts, and the number of contacts people have,
varies dramatically between individuals. These basic ob-
servations render the homogeneous mixing models inac-
curate, as they tend to underestimate the epidemic size
in the initial stages of the outbreak and overestimate it
towards the end [17]. As a result of the these shortcom-
ings, network epidemics has emerged as a mathematical
modeling approach that takes the underlying contact net-
work into consideration [1, 3, 18–20]. Since then, a large
body of research has looked into the delicate interplay
between the structural properties of the contact network
and the dynamics of propagation, leading to accurate
predictions of the spatio-temporal progression of disease
outbreaks. In addition to diseases, opinions and informa-
tion also propagate through networks in patterns similar
to those of epidemics [21]. Hence, research efforts on in-
formation propagation draw on the theory of infectious
diseases to model the dynamics of propagation [8, 22–25].
Throughout, we use the term spreading processes to de-
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note a general class of processes that propagate in contact
networks, such as infectious diseases and information.

A common theme among the proposed models for net-
work epidemics is the assumption that the propagat-
ing object, i.e., a virus or a piece of information, is
transferred across the nodes without going through any
modification or evolution [5, 22, 23, 26–31]. However,
in real-life spreading processes, pathogens often evolve
in response to changing environments and medical in-
terventions [9, 32–35], and information is often modi-
fied by individuals before being forwarded [36, 37]. In
fact, 60% of the (approximately) 400 emerging infec-
tious diseases that have been identified since 1940 are
zoonotic [38] [39, 40]. A zoonotic disease is initially
poorly adapted, poorly replicated, and inefficiently trans-
mitted [41], hence its ability to go from animal-to-human
transmissions to human-to-human transmissions depends
on the pathogen evolving to a strain that is well-adapted
to the human host.

Similar patterns of evolution are observed in the way
information propagates among individuals. Needless to
say, one observes, on a daily basis, how information mu-
tates unintentionally, or perhaps intentionally by an ad-
versary, on social media platforms [36]. At a high-level,
an individual may mutate the information by exaggera-
tion, hoping for her variant to go viral. Mutations may
also occur unintentionally. In particular, Dawkins [42]
argued that ideas and information spread and evolve be-
tween individuals with patterns similar to genes, in a
sense that they self-replicate, mutate, and respond to
selective pressure as they interact with their host. Con-
cluding, if we are to ignore evolution, we underestimate
the severity of the epidemic and fail to understand the
intricate interplay between the dynamics of propagation
and evolution.

In this paper, we aim to bridge the disconnect between
how spreading processes propagate and evolve in real-
life, and the current mathematical and simulation models
that do not capture evolution. In particular, we investi-
gate the evolution of spreading processes with the aim of
i) revealing the role of evolutionary adaptations on the
threshold, probability, and final size of epidemics; and ii)
understanding the interplay between the structural prop-
erties of the network and the evolutionary adaptations
of the process. Throughout, we use the term epidemics
to denote disease/information outbreaks that result in
a positive fraction of infected individuals in the limit of
large network size and self-limited outbreaks to denote
small disease/information outbreaks for which the frac-
tion of infected individuals tends to zero in the limit of
large network size. We also use the term strain to de-
note a pathogen strain in the context of infectious dis-
ease propagation, or a particular variation of the infor-
mation in the context of information propagation. At a
high level, strains represent homogeneous groups within
species [43] and they generally possess unique features
such as virulence, infectivity, growth rate, etc.

In modeling the evolution of spreading processes, we

adopt the multiple-strain model that was introduced by
Alexander and Day in [33]. Their model can be briefly
outlined as follows (more details are given in Section II).
Consider a multiple-strain spreading process that starts
with an individual, i.e., the seed, receiving infection
(from an external reservoir) with strain-1 of a particu-
lar pathogen (respectively, information). The seed in-
fects each of her contacts independently with probability
T1, called the transmissibility of strain-1. Once a sus-
ceptible individual receives the infection from the seed,
the pathogen may evolve within that new host prior to
any subsequent infections. In particular, the pathogen
may remain as strain-1 with probability µ11 or mutate
to strain-2 (that has transmissibility T2) with probability
µ12 = 1 − µ11. If the pathogen remains as strain-1 (re-
spectively, mutates to strain-2) within a newly infected
host, then that host infects each of her susceptible neigh-
bors in the subsequent stages independently with proba-
bility T1 (respectively, T2). As the process continues to
grow, if any susceptible individual receives strain-1, the
pathogen may remain as strain-1 with probability µ11 or
mutate to strain-2 with probability µ12 = 1 − µ11 prior
to subsequent infections. Similarly, if any susceptible in-
dividual receives strain-2, the pathogen may remain as
strain-2 with probability µ22 or mutate to strain-1 with
probability µ21 = 1− µ22 prior to subsequent infections.
The process continues to grow until no additional infec-
tions are possible. We remark that it is straightforward
to extend the model to the general case, where there are
m possible strains for some finite integer m ≥ 2. More
details are given in Section III.

Note that as multiple strains propagate throughout
the population, a susceptible individual may simultane-
ously get into infectious contact with neighbors infected
with strain-1 as well as neighbors infected with strain-2.
This gives rise to the possibility of a susceptible individ-
ual becoming co-infected with multiple pathogen strains.
Indeed, co-infection with multiple pathogen strains is
prevalent in disease-causing protozoa, helminths, bac-
teria, fungi, and viruses and is known to cause signifi-
cant implications [43–47]. However, from a mathematical
standpoint, the possibility of co-infections creates phase
discontinuities (see Section VI) that render the process
mathematically intractable.

We start by considering the case when co-infection is
ignored, meaning that a susceptible individual may only
be infected with a single strain. In particular, a suscepti-
ble individual who simultaneously receives x infections of
strain-1 and y infections of strain-2 becomes infected by
strain-1 (respectively, strain-2) with probability x/(x+y)
(respectively, y/(x+y)). In this case, we develop a math-
ematical theory that draws on the tools developed for an-
alyzing the zero-temperature random-field Ising model on
Bethe lattices [48] as well as on random graphs [49, 50].
Our theory fully characterizes the process and accurately
predicts the epidemic threshold, expected epidemic size
and the expected fraction of individuals infected by each
strain (all at steady state). These metrics are computed
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as functions of the characteristics of the spreading pro-
cess (i.e., T1 and T2), evolutionary adaptations (i.e., µ11

and µ22), and the structure of the underlying contact
network (e.g., its degree distribution).

In addition to the mathematical theory, we perform ex-
tensive simulations on random graphs with arbitrary de-
gree distributions (generated by the configuration model
[51–53]) as well as with real-world networks (obtained
from SNAP dataset [54] as well as [70] and [71]) to verify
our theory and reveal the significant shortcomings of the
classical mathematical models that do not capture evolu-
tion. In particular, we show that the classical, single-type
bond-percolation models [3, 55–57] may accurately pre-
dict the threshold and final size of epidemics, but their
predictions on the probability of emergence are signif-
icantly inaccurate on both random and real-world net-
works. This inaccuracy sheds the light on a fundamen-
tal disconnect between the classical single-type, bond-
percolation models and real-life spreading processes that
entail evolution.

We then focus on the case where co-infection is possi-
ble. Although recent studies have shown that co-infection
with multiple pathogen strains is prevalent in nature [43–
47], there has been a lack of models that explain its oc-
currence, reveal its implications, and investigate its deli-
cate interplay with the underlying contact network. Note
that a considerable amount of literature has examined
the case where co-infection with multiple diseases is pos-
sible [58–61], yet multiple-disease co-infection is funda-
mentally different from multiple-strain co-infection (see
Section I in the Supplementary Material). In this paper,
we use computer simulations to explore the case where
multiple-strain co-infection is possible. In particular, a
susceptible individual who gets infected with strain-1 and
strain-2 simultaneously becomes co-infected, and starts
to transmit the co-infection, i.e., the mixture of the two
strains, with a transmissibility Tco.

The transmissibility Tco could be larger than the max-
imum of T1 and T2 (e.g., modeling a synergistic cooper-
ation between the two resident strains) or smaller than
their minimum (e.g., modeling a negative competition
among the two resident strains), and it may also fall any-
where in between. We show that co-infection gives rise
to a rich set of dynamics: it can amplify or inhibit the
spreading dynamics, and more remarkably lead the order
of phase transition to change from second-order to first-
order. We investigate the interplay between the charac-
teristics of co-infection, the structure of the underlying
contact network, and evolutionary adaptations and re-
veal the cases where such interplay induces a first-order
phase transition for the expected epidemic size.

Summary: We consider the evolution of spreading
processes in complex networks. We start with the case
where co-infection is ignored. In this case, we develop a
mathematical theory that unravels the relationship be-
tween the characteristics of the spreading process, the
structure of the underlying contact network, and the
process of evolution, thereby, providing accurate predic-

tions on the epidemic threshold, expected epidemic size,
and the expected fraction of individuals infected by each
strain at steady state. In addition to the mathemati-
cal theory, we perform extensive simulations on random
and real-world networks to verify our theory and reveal
the significant shortcomings of the classical mathemat-
ical models that do not capture evolution. Then, we
use computer simulations to explore the case where co-
infection is possible and show that co-infection could lead
the order of phase transition to change from second-order
to first-order. We investigate the interplay between the
characteristics of co-infection, the structure of the under-
lying contact network, and evolutionary adaptations and
explain how such interplay controls the order of phase
transition for the expected epidemic size.
Structure: The rest of the paper is organized as fol-

lows. In Section II, we present the multiple-strain model
for evolution and demonstrate how we model the under-
lying contact network. In Section III, we present and de-
rive the main results of this work, while in Section IV, we
confirm our theoretical results via computer simulations.
We empirically consider the case where co-infection is
possible in Section VI. In Section V, we consider evo-
lution on real-world networks and reveal the significant
shortcomings of the classical mathematical models that
do not capture evolution. Finally, Section VII concludes
the paper.

II. MODEL DEFINITIONS

A. A multiple-strain model for evolution

In [33], Alexander and Day proposed a multiple-strain
model that accounts for evolution. Their model is cap-
tured by two matrices, namely, the transmissibility ma-
trix TTT and the mutation matrix µµµ, both with dimensions
m × m for a finite integer m ≥ 2 denoting the number
of possible strains. The transmissibility matrix TTT is a
m×m diagonal matrix, with [Ti] representing the trans-
missibility of strain-i, i.e.,

TTT =


T1 0 . . . 0
0 T2 . . . 0
...

...
. . .

...
0 0 . . . Tm

 .
The mutation matrix µµµ is a m × m matrix with µij

denoting the probability that strain-i mutates to strain-
j. Note that

∑
j µij = 1, hence µµµ is a row-stochastic

matrix. One example for the transmissibility and mu-
tation matrices was given by Antia et al. in [34], where
the fitness landscape consisted of m strains, with strain-1
through m−1 having identical transmissibility such that
R0,i < 1 for i = 1, . . . ,m−1, with R0,i denoting the basic
reproductive number of strain-i. Strain-m has transmis-
sibility Tm such that R0,m > 1, hence the emergence of
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the pathogen requires evolution from strain-1 to strain-
m. Antia et al. considered the the so-called one-step
irreversible mutation [33, 34] where the pathogen must
acquire m− 1 mutations (in order and one at a time) to
evolve to strain-m , i.e.,

TTT =


T1 0 0 . . . 0
0 T1 0 . . . 0
0 0 T1 . . . 0
...

...
...

. . .
...

0 0 . . . 0 Tm


and

µµµ =


1− µ µ 0 . . . 0 0 0

0 1− µ µ . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 0 1− µ µ
0 0 0 . . . 0 0 1


The multiple-strain model proposed by Alexander and

Day [33] works as follows. Consider a spreading process
that starts with an individual, i.e., the seed, receiving
infection with strain-1 from an external reservoir. Since
strain-1 has transmissibility T1, the seed infects each of
her contacts independently with probability T1. Once
a susceptible individual receives the infection from the
seed, the pathogen may evolve within that new host prior
to any subsequent infections. In particular, the pathogen
may remain as strain-1 with probability µ11 or mutate
to strain-i (that has transmissibility Ti) with probability
µ1i for i = 2, . . . ,m. If the pathogen remains as strain-
1 (respectively, mutates to strain-i), then the host in-
fects each of her susceptible neighbors in the subsequent
stages independently with probability T1 (respectively,
Ti). Observe that as the process continues to grow, mul-
tiple strains may coexist in the population as governed
by the transmissibility matrix TTT and the mutation matrix
µµµ. At an intermediate stage, if any susceptible individ-
ual receives strain-j, the pathogen may remain as strain-j
with probability µjj or mutate to strain-` with probabil-
ity µj` for ` ∈ {1, 2, . . . ,m} \ {j} prior to subsequent
infections. The process terminates when no additional
infections are possible. A graphical illustration for the
case when m = 2 is given in Figure 1. In this paper, we
focus on the case where m = 2, however, it is straight-
forward to extend our theory to handle the general case
with m strains. More details are given in Section III.

B. Network Model: Random graphs with arbitrary
degree distribution

Let G denote the underlying contact network, defined
on the node set N = {1, . . . , n}. We define the structure
of G through its degree distribution {pk}. In particular,
{pk, k = 0, 1, . . .} gives the probability that an arbitrary
node in G has degree k. We generate the network G

according to the configuration model [51, 52], i.e., the
degrees of nodes in G are all drawn independently from
the distribution {pk, k = 0, 1, . . .}. Furthermore, we as-
sume that the degree distribution is well-behaved in the
sense that all moments of arbitrary order are finite. Of
particular importance in the context of the configura-
tion model is the degree distribution of a randomly cho-
sen neighbor of a randomly chosen vertex, denoted by
{p̂k, k = 1, 2, . . .}, and given by

p̂k =
kpk
〈k〉

, k = 1, 2, . . .

where 〈k〉 denotes the mean degree, i.e., 〈k〉 =
∑
k kpk.

III. ANALYSIS

The analysis of the probability of emergence was estab-
lished by Alexander and Day in [33]. For completeness,
a brief summary of their results is given in Section II in
the Supplementary Material.

Our objective is to derive the expected epidemic size
S and the expected fraction of individuals infected by
each strain, i.e., S1, S2, . . . , Sm for m possible strains.
Note that S =

∑m
i=1 Si. Below, we provide analysis for

the case of two strains, but we later show how to ex-
tend our analysis to the general case with m strains, for
some finite integer m ≥ 2. We apply a tree-based ap-
proach that is based on the work by Gleeson [49, 50].
Their approach draws on the tools developed for ana-
lyzing the zero-temperature random-field Ising model on
Bethe lattices [48]. Note that as we build our network
using the configuration model, the network structure is
locally tree-like with the fraction of cycles approaching
zero in the limit of large network size [51–53].

Since G is locally tree-like, we can replace it by a tree
and arrange the vertices in a hierarchical structure, such
that at the top level, there is a single node (the root)
that has degree k with probability pk. Note that {pk}
is a proper degree distribution with

∑
k pk = 1. Each of

the k neighbors of the root has degree k′ with probability
k′pk′/〈k〉, where 〈k〉 denotes the mean degree of the net-
work. Furthermore, we label the levels of the tree from
level ` = 0 at the bottom to level ` =∞ at the top, i.e.,
the root.

We assume that nodes update their status starting
from the bottom of the tree and proceeding towards the
top. This gives rise to a delicate case, where a node at
some level ` may be exposed to simultaneous infections
by both strain-1 and strain-2 from her neighbors at level
` − 1. In the remainder of this section, we assume that
co-infection is not possible, hence a node that receives x
infections of strain-1 and y infections of strain-2 becomes
infected by strain-1 (respectively, strain-2) with probabil-
ity x/(x+ y) (respectively, y/(x+ y)). In Section VI, we
empirically consider the case where co-infection is possi-
ble, i.e., a node that receives simultaneous infections by
both strains becomes co-infected and starts to spread the
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(a) (b) (c) (d) (e)

FIG. 1. The multiple-strain model for evolution. (a) The process starts with a single individual, i.e., the seed, receiving
infection with strain-1 (highlighted in orange) from an external reservoir. (b) The seed infects each of her susceptible neighbors
(highlighted in green) independently with probability T1. (c) The pathogen mutates independently within hosts. The pathogen
remains as strain-1 with probability µ11 or mutates to strain-2 (highlighted in blue) with probability µ12. (d) Individuals
whose pathogen has mutated to strain-i infect their neighbors independently with probability Ti. (e) The pathogen mutates
independently within hosts. The pathogen remains as strain-2 with probability µ22 or mutates to strain-1 with probability µ21.

co-infection in the subsequent rounds. In this case, co-
infection may be modeled as an additional strain that has
transmissibility Tco and never mutates back to strain-1
or strain-2.

Throughout, we say that a node is either inactive if it
has not received any infection (i.e., still susceptible) or
active and type-i if it has been infected and then mutated
to strain-i, for i = 1, 2. With a slight abuse of nota-
tions, let q`+1,i be the probability that a node at level
` + 1, say node v, is active and type-i. Furthermore,
let q`+1 = q`+1,1 + q`+1,2, i.e., q`+1 is the total proba-
bility that a node at level ` + 1 is active. We start by
an arbitrary initial distribution for {q0,1, q0,2} satisfying
q0,1 > 0, q0,2 > 0. Then, we update the distribution
properly until we reach the root. Note that if the degree
of node v is k, then node v is using one edge to connect
to her parent at level `+ 2, and k−1 edges to connect to
her neighbors at level `. We can condition on the excess
degree (d̃) of node v to get

q`+1,i

=

∞∑
k=1

kpk
〈k〉

P
[
node v becomes active and type-i

∣∣∣∣ d̃ = k − 1

]
Next, we further condition on the number of active

neighbors of type-1 and type-2. Note that we have a
Multinomial distribution for the number of active neigh-
bors of both types. In particular, a neighbor at level `
may be active and type-1 with probability q`,1, active and
type-2 with probability q`,2, or inactive with probability
1−q` = 1−q`,1−q`,2. Let Ii denote the number of active
neighbors of type-i. Thus,

q`+1,i =

∞∑
k=1

kpk
〈k〉

k−1∑
k1=0

k−1−k1∑
k2=0

(
k − 1

k1

)(
k − 1− k1

k2

)
(q`,1)

k1

· (q`,2)
k2 (1− q`,1 − q`,2)

k−1−k1−k2

· P
[
node v becomes active and type-i

∣∣ I1 = k1, I2 = k2

]
Let X and Y denote the number of infections received

from type-1 and type-2 neighbors, respectively. Note that
conditioned on having k1 and k2 active neighbors of type-
1 and type-2, respectively, we have

X ∼ Binomial(k1, T1)

Y ∼ Binomial(k2, T2)

where Ti denotes the transmissibility of strain-i. Let

A := P
[
node v becomes active and type-i

∣∣ I1 = k1, I2 = k2

]
Consider a particular realization (x, y) of the random

variables (X,Y ). Observe that if x > 0, y = 0, then node
v becomes infected by strain-1 and eventually mutates
to type-i with probability µ1i. Similarly, if x = 0, y > 0,
then node v becomes infected by strain-2 and eventu-
ally mutates to type-i with probability µ2i. Finally, if
x > 0, y > 0, then node v becomes infected by strain-1
(respectively, strain-2) with probability x/(x+y) (respec-
tively, y/(x + y)) and eventually mutates to type-i with
probability µ1i (respectively, µ2i). Hence, by condition-
ing on X and Y , we have

A =

k1∑
x=0

k2∑
y=0

(
k1

x

)(
k2

y

)
T x1 T

y
2 (1− T1)k1−x(1− T2)k2−y·

· P
[
A
∣∣X = x, Y = y

]
=

k1∑
x=0

k2∑
y=0

(
k1

x

)(
k2

y

)
T x1 T

y
2 (1− T1)k1−x(1− T2)k2−y·

·

(
µ1i111[x > 0, y = 0] + µ2i111[x = 0, y > 0]+
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(
xµ1i

x+ y
+

yµ2i

x+ y

)
111[x > 0, y > 0]

)

Note that

k1∑
x=0

k2∑
y=0

(
k1

x

)(
k2

y

)
T x1 T

y
2 (1− T1)k1−x(1− T2)k2−y·

· µ1i111[x > 0, y = 0]

= µ1i(1− T2)k2 (1− P(X = 0))

= µ1ia2b1

where ai = (1− Ti)ki and bi = 1− ai. Similarly,

k1∑
x=0

k2∑
y=0

(
k1

x

)(
k2

y

)
T x1 T

y
2 (1− T1)k1−x(1− T2)k2−y·

· µ2i111[x = 0, y > 0] = µ2ia1b2

Thus, we have

q`+1,i =

∞∑
k=1

kpk
〈k〉

k−1∑
k1=0

k−1−k1∑
k2=0

(
k − 1

k1

)(
k − 1− k1

k2

)
(q`,1)

k1 (q`,2)
k2 (1− q`,1 − q`,2)

k−1−k1−k2 ·

·

(
b1a2µ1i + a1b2µ2i +

k1∑
x=0

k2∑
y=0

(
k1

x

)(
k2

y

)
T x1 T

y
2 (1− T1)k1−x(1− T2)k2−y

(
xµ1i

x+ y
+

yµ2i

x+ y

)
111[x > 0, y > 0]

)
,

(1)

for ` = 0, 1, . . . and i = 1, 2.

Observe that under the assumption that nodes do not
become inactive once they turn active, the quantities q`,i
appearing in (1) are non-decreasing in `, and thus they
converge to a limit q∞,i for i = 1, 2. Finally, the final
fraction of nodes that are active and type-i is equal (in

expected value) to the probability that the root of the
tree (at level ` → ∞) is active and type-i. Note that if
the tree root has degree k, then all of these k edges will
be utilized to connect with her neighbors at the lower
level. Hence,

Qi =

∞∑
k=0

pk

k∑
k1=0

k−k1∑
k2=0

(
k

k1

)(
k − k1

k2

)
(q∞,1)

k1 (q∞,2)
k2 (1− q∞,1 − q∞,2)

k−k1−k2 ·

·

(
b1a2µ1i + a1b2µ2i +

k1∑
x=0

k2∑
y=0

(
k1

x

)(
k2

y

)
T x1 T

y
2 (1− T1)k1−x(1− T2)k2−y

(
xµ1i

x+ y
+

yµ2i

x+ y

)
111[x > 0, y > 0]

)
(2)

where Qi for i = 1, 2 denotes the probability that the
tree root is active and type-i and q∞,i for i = 1, 2 is the
steady-state solution of the recursive equations (1). Note
that Q = Q1 + Q2 is the total probability that the tree
root is active.

Observe that q∞,1 = q∞,2 = 0 gives a trivial fixed-
point of the recursive equations (1). Indeed, this trivial
solution leads to Q = 0 by virtue of (2). Although the
trivial fixed point is a valid numerical solution for the
recursive equations (1), we can show that this trivial so-
lution is unstable. Hence, another solution with q∞,1 > 0
and q∞,2 > 0 may exist. To test whether or not the triv-
ial fixed point is stable, we check the spectral radius of
the Jacobian matrix JJJ(q`,1, q`,2) corresponding to the lin-
earization of (1) at q`,1 = q`,2 = 0. If the spectral radius

of the JJJ(q`,1, q`,2) at q`,1 = q`,2 = 0 is larger than one,
then the trivial fixed-point is unstable, indicating that
there exists another solution with q∞,1 > 0 and q∞,2 > 0
implying the existence of a giant component. The Jaco-
bian matrix is given by

JJJ(q`,1, q`,2)|q`,1=q`,2=0 =

[
∂q`+1,1

∂q`,1

∂q`+1,1

∂q`,2
∂q`+1,2

∂q`,1

∂q`+1,2

∂q`,2

]
q`,1=q`,2=0

=

(
〈k2〉 − 〈k〉
〈k〉

)[
T1µ11 T2µ21

T1µ12 T2µ22

]
=

(
〈k2〉 − 〈k〉
〈k〉

)
(TTTµµµ)

T

Note that a square matrix and its transpose have the
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same set of eigenvalues. It follows that a phase transition
occurs when (

〈k2〉 − 〈k〉
〈k〉

)
ρ (TµTµTµ) > 1 (3)

where ρ (TµTµTµ) denotes the spectral radius, i.e., the largest
eigenvalue (in absolute value) of the matrix product TµTµTµ.

We remark that it is straightforward to extend our
analysis to the general case with m strains, for some finite
integer m ≥ 2 as long as the underlying process is inde-
composable [33, 62, 63]. At a high level, indecomposable
processes are those for which each pathogen strain i even-
tually gives rise to strain-j at some generation nij ≥ 1 for
i, j = 1, 2, . . . ,m. In other words, if an indecomposable
process starts with an infection with strain-i, then as the
process continues to grow, all other strains will eventually
emerge. Such a property is established if, for every pair
of strains (i, j), there exists a positive integer nij such
that MMMnij (i, j) > 0 [33]. If the underlying process is de-
composable, then there exist classes of strain types such
that strain types belonging to the same class can even-
tually give rise to one another, but not to other strain
types. Indeed, the existence of multiple classes leads to
multiple solutions for the set of equations (2) depending
on the initial distribution of {q0,1, q0,2, . . . , q0,m}. Hence,
to guarantee the uniqueness of the solution of (2) and for
mathematical tractability, we limit our formalism to the
case when the underlying process is indecomposable.

IV. NUMERICAL RESULTS

A. The Structure of the Contact Network

In this section, we consider synthetic contact networks
generated randomly by the configuration model, while
real-world networks are considered in Section V. In par-
ticular, we consider contact networks with Poisson degree
distribution as well as Power-law degree distribution.

1. Poisson degree distribution

We start by considering contact networks with Poisson
degree distribution. Namely, with λ denoting the mean
degree, i.e., λ = 〈k〉, we have

pk = e−λ
λk

k!
, k = 0, 1, . . .

In this case, condition (3) implies that phase transition
occurs when

λ× ρ (TµTµTµ) = 1 (4)

where ρ (TµTµTµ) denotes the spectral radius of the matrix
multiplication TµTµTµ. Observe that condition (4) embodies
the structure of the contact network (represented by λ for

a contact network with Poisson degree distribution), the
characteristics of propagation (represented by the matrix
TTT ) and the process of evolution (represented by µµµ), hence
it unravels how these properties interact together to yield
an epidemic.

2. Power-law degree distribution

Poisson degree distribution provides a formalism for
homogeneous networks, where the degree sequence of the
graph is highly concentrated around the mean degree.
However, degree sequences in real-world networks were
observed to be heavily skewed to the right [1, 3, 7],
meaning that the distribution is heterogeneous, or heavy-
tailed. We consider Power-law degree distribution with
exponential cutoff since they are relevant to a variety of
real-world networks [3, 64]. In particular, we set

pk =

{
0 if k = 0(
Liγ
(
e−1/Γ

))−1
k−γe−k/Γ if k = 1, 2, . . . .

where γ and Γ are positive constants and Lim(z) is the

mth polylogarithm of z, i.e., Lim(z) =
∑∞
k=1

zk

km . Ob-
serve that condition (3) now translates to(

Liγ−2

(
e−1/Γ

)
− Liγ−1

(
e−1/Γ

)
Liγ−1

(
e−1/Γ

) )
× ρ (TµTµTµ) = 1 (5)

Similar to (4), condition (5) indicates how the struc-
ture of the underlying network, the characteristics of
propagation, and the process of evolution are intertwined
together, and under what conditions their relationship
would induce an epidemic.

B. Notations and Methods

Notations: In what follows, we use S, S1 and S2 to de-
note the total expected epidemic size, the expected frac-
tion of nodes infected with strain-1, and the expected
fraction of nodes infected with strain-2, respectively and
all at the steady state, i.e., when the process terminates.
We use PBP

1 and PBP
2 to denote the probability of emer-

gence on a single-strain bond-percolated network with
T1 and the probability of emergence on a single-strain
bond-percolated network with T2, respectively.

Methods: We use the configuration model to create
random random graphs with particular degree distribu-
tions. In particular, we sample a degree sequence from
the corresponding distribution, then we use the config-
uration model to construct a random graph with that
degree sequence. We use igraph [65] on both C++ and
Python for simulations. Our simulation codes are avail-
able online [66]. Unless otherwise stated, we start the
process by selecting a node uniformly at random and in-
fecting it with strain-1. The node infects each neighbor
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FIG. 2. Evolution on Poisson and Power-law contact networks. The network size n is 2 × 105 and the number of
independent experiments for each data point is 500. Blue circles, brown plus signs, and green triangles denote the empirical
average epidemic size, average fraction of nodes infected with strain-1, and average fraction of nodes infected with strain-2,
respectively. The red, blue, and yellow lines denote the theoretical average total epidemic size, average fraction of nodes infected
with strain-1, and average fraction of nodes infected with strain-2, respectively. Theoretical results are obtained by solving the
system of equations (2) with the corresponding parameter set. (a)-(b) We set T1 = 0.2, T2 = 0.5, µ11 = µ22 = 0.75. (c)-(d)
We set T1 = 0.4, T2 = 0.8, and µ11 = 0.3, and µ22 = 0.7 implying that an infected node, regardless of what type of infection it
has, mutates to strain-1 (respectively, strain-2) with probability 0.3 (respectively, 0.7), independently. In all cases, we observe
good agreement with our theoretical results.

.

independently with probability T1. Each of the infected
neighbors mutate independently to strain-1 with prob-
ability µ11, or to strain-2 with probability µ12. As the
process continues to grow, both strains might exist in the
population. An intermediate node that becomes infected
with strain-i would mutate to strain-1 with probability
µi1, or strain-2 with probability µi2, for i = 1, 2. When
cycles start to appear, a susceptible node could be ex-
posed to multiple infections at once. If a node is exposed
to x infections of strain-1 and y infections of strain-2
simultaneously, the node becomes infected with strain-1
(respectively, strain-2) with probability x/(x+y) (respec-
tively, y/(x + y)) for any non-negative constants x and
y. A node that receives infection at round i mutate first
(by the end of round i) before it attempts to infect her

neighbors at round i + 1. The node is considered recov-
ered at round i + 2, i.e., a node is infective for only one
round.

C. Epidemic Size

We start by focusing on the total epidemic size and the
expected fraction of nodes that were infected with strain-
1 and strain-2. The network size n is set to 2× 105. We
consider two parameter sets that emphasize the corre-
lations between a node’s eventual type (after mutation)
and the type of infection it has originally received. In
particular, we have
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- Parameter set 1: T1 = 0.2, T2 = 0.5, µ11 = 0.75,
and µ22 = 0.75.

- Parameter set 2: T1 = 0.4, T2 = 0.8, µ11 = 0.3,
and µ22 = 0.7.

Observe that we have µ11 = µ21 and µ22 = µ12 for the
second parameter set. Hence, an infected node, regard-
less of what type of infection it has, mutates to strain-1
(respectively, strain-2) with probability 0.3 (respectively,
0.7), independently. This is a special case that can easily
be treated by our formalism given in Section III.

In Figure 2a and Figure 2b, we use the first param-
eter set and run 500 independent experiments for each
data point. We demonstrate our results on contact net-
works with Poisson degree distribution (Figure 2a) and
Power-law degree distribution with exponential cutoff
(Figure 2b). For Figure 2b, we set Γ = 15, and vary
γ with the mean degree. In particular, the mean degree
λ is given by

λ =
Liγ−1

(
e−1/Γ

)
Liγ
(
e−1/Γ

) . (6)

Hence, we can numerically solve (6) to obtain the partic-
ular value of γ corresponding to a given value of λ.

In order to establish the validity of our analytic results
given in Section III, we plot the theoretical values of S,
S1, and S2 obtained by solving the system of equations
(2) with the corresponding parameter set. We also plot a
vertical line at the critical mean degree that corresponds
to a phase transition (see (4) and (5)). Clearly, our ex-
perimental results are in perfect agreement with our the-
oretical results on both contact networks. In Figure 2c
and Figure 2d, we repeat the same procedure, but with
the second parameter set. Similarly, we observe perfect
agreement with our theoretical results on both contact
networks.

D. Probability of Emergence

In [33], Alexander and Day investigated the probabil-
ity of emergence for the multiple strain model presented
in Section II. However, authors did not provide a com-
prehensive simulation study to validate their formalism
on random or real-world networks. Instead, in [33, Sec-
tion 3], authors only evaluated their equations numeri-
cally. In this subsection, we aim to establish the valid-
ity of the results presented in [33] on random networks
generated by the configuration model. For brevity, we
limit our scope to contact networks with Poisson degree
distribution. However, similar patterns are observed for
contact networks with Power-law degree distribution.

In Figure 3, we set the network size n = 5×105 and run
a computer simulation with 104 independent experiment
for each data point. We use the two parameter sets given
in Section III.C. Namely, we set

- T1 = 0.2, T2 = 0.5, and µ11 = µ22 = 0.75 for
Figure 3.a, and

- T1 = 0.4, T2 = 0.8, µ11 = 0.3 and µ22 = 0.7 for
Figure 3.b.

Note that in Figure 3, we plot the probability of emer-
gence conditioned on the initial node receiving infection
with strain-1 [67]. We observe an agreement between our
experimental results and the theoretical results given in
[33]. The reasoning behind this is intuitive; the multi-
type branching framework assumes that the underlying
graph is tree-like, an assumption that works best for
networks with vanishingly small clustering coefficient,
e.g., networks which are generated by the configuration
model.

E. Reduction to Single-Type Bond-Percolation

An important question to ask is whether the classi-
cal single-type bond percolation models could predict the
threshold, probability, and final size of epidemics that en-
tail evolution, i.e., information or diseases that propagate
according to the multiple-strain model given in Section II.
In pursing an answer to this question, we start by estab-
lishing a matching condition between single-strain models
and multiple-strain models for epidemics.

In [3], Newman proposed a stochastic SIR model for
the propagation of a single-strain pathogen on a contact
network. Newman showed that, under some conditions,
the SIR model is isomorphic to a bond-percolation model
on the underlying contact network. Specifically, with the
average transmissibility of the pathogen (denoted TBP)
as the bond-percolation parameter, if we are to occupy
each edge of the network with probability TBP, then the
probability of emergence as well as the final size of the
epidemic are precisely given by the fraction of nodes in
the giant component of the percolated graph. Finally, it
was shown that a phase transition occurs when(

〈k2〉 − 〈k〉
〈k〉

)
TBP = 1 (7)

In other words, if the left hand side of (7) is strictly
larger than 1, a giant component emerges indicating an
epidemic. Otherwise, we have self-limited outbreaks.

Comparing (3) to (7) suggests the proposal of a match-
ing that results in the same condition for phase transi-
tion. More precisely, if we are to set

TBP = ρ (TTTµµµ) (8)

then, both (3) and (7) collapse to the same condition for
a given contact network. In what follows, we explore the
extent to which classical, single-type bond-percolation
models (under the matching condition (8)) may predict
the threshold, probability, and final size of epidemics that
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FIG. 3. The probability of emergence on contact networks with Poisson degree distribution. The network size n
is 5 × 105 and the number of independent experiments for data point is 104. Blue circles denote the empirical probability of
emergence while the red line denotes the theoretical probability of emergence according to [33]. (a) We set T1 = 0.2, T2 = 0.5,
µ11 = µ22 = 0.75. (b) We set T1 = 0.4, T2 = 0.8, and µ11 = 0.3, and µ22 = 0.7. Our experimental results prove the validity of
the formalism presented by Alexander and Day in [33]

.

entail evolution, i.e., information or diseases that propa-
gate according to the multiple-strain model given in Sec-
tion II. We focus on contact networks with Poisson de-
gree distribution, generated by the configuration model,
while we devote Section V for real-world networks.

In Figure 4, we extend Figure 3 by further adding the
experimental results for the final epidemic size as well
as the corresponding theoretical values for the proba-
bility of emergence on a bond-percolated network un-
der the matching condition (8). Note that the probabil-
ity of emergence is equivalent to the final epidemic size
for single-type, bond-percolated networks [3]. Observe
that the classical single-type bond-percolation model ac-
curately captures the threshold and final size of epidemic
but provides significantly inaccurate predictions when it
comes to the probability of emergence. Similar pattern
will be observed in Section V for real-world networks.
This inaccuracy sheds the light on a fundamental discon-
nect between the classical, single-type bond-percolation
models and real-life spreading processes that entail evo-
lution. We explain the intuition behind our findings in
Section IV in the Supplementary Material.

F. Effect of Mutation

When only a single evolutionary pathway is available,
mutations have to occur in a particular order [68]. In
[34], Antia et al. considered the case where the fitness
landscape consists of m strains such that R0,i < 1 for
i = 1, . . . ,m − 1, while R0,m > 1. Hence, an introduced
pathogen (with R0,1 < 1) must acquire m− 1 successive
mutations in order for the disease to emerge. Antia et al.
derived a set of recursive equations whose solution char-

acterizes the probability of emergence under some condi-
tions; see [34] for more details. To gain further insights
on the effect of mutation, Antia et al. proposed a theo-
retical approximation of the probability of emergence as
a product of the probability of mutation, i.e., the prob-
ability that the introduced pathogen would eventually
mutate to strain-m, and the probability of emergence of
strain-m. Indeed, the probability of mutation plays a
key role in the overall extinction probability. After all, if
the introduced pathogen does not gain m− 1 successive
mutations, the disease would eventually die out.

Recall that the mathematical theory developed by
Alexander and Day [33] defines the probability of emer-
gence as a function of the evolutionary dynamics of the
pathogen (i.e., the mutation matrix µµµ), the characteris-
tics of the spreading process (i.e., the transmissibility ma-
trix TTT ), and the structure of the underlying contact net-
work (i.e., the degree distribution {pk, k = 0, 1, . . .}).
All of these factors are intertwined together in a way that
makes it difficult to predict how the probability of mu-
tation influences the probability of emergence. In what
follows, we provide a theoretical approximation to the
probability of emergence in a way that clearly distin-
guishes the role of mutation and shows how it strongly
influences the probability of emergence.

Consider the case when the fitness landscape consists
of two strains with transmissibility matrix TTT and muta-
tion matrix µµµ given by

TTT =

[
T1 0
0 T2

]
and µµµ =

[
1− µ µ

0 1

]
.

Assume also that T1 < T2. Note that the process starts
by picking a random individual uniformly at random and
infecting her with strain-1.
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FIG. 4. Reduction to single-type bond-percolation. The network size n is 5 × 105 and the number of independent
experiments for each data point is 104. Blue circles and brown plus signs denote the empirical average epidemic size and the
probability of emergence, respectively. The navy blue line denotes the theoretical probability of emergence according to [33]
while the red line denotes the theoretical average epidemic size (as well as the probability of emergence) predicted by the
single-type bond-percolation framework under the matching condition (8). (a) We set T1 = 0.2, T2 = 0.5, µ11 = µ22 = 0.75.
(b) We set T1 = 0.4, T2 = 0.8, and µ11 = 0.3, and µ22 = 0.7. The classical, single-type bond percolation models may accurately
predict the threshold and final size of epidemics, but their predictions on the probability of emergence are clearly inaccurate.

Let Pµ denote the probability that at some point along
the chain of infections (starting from the type-1 seed), a
type-2 node would emerge. For a fixed mean degree λ of
the underlying network, we may approximate the proba-
bility of emergence by (see Section III in the Supplemen-
tary Material)

P [emergence] ≥ PµPBP
2 (9)

where PBP
2 denotes the probability of emergence on a

single-type bond percolated network with edge occupa-
tion probability T2 and mean degree λ.

To confirm the validity of (9), we run a computer sim-
ulation on random networks generated by the configura-
tion model with Poisson degree distribution. In Figure 5,
we set the network size n = 2×105 and perform 104 inde-
pendent experiments for each data point. In Figure 5a,
we set T1 = 0.1, T2 = 1, and µ = 0.01. Observe that the
bound given by (9) is tight, as T2 is significantly larger
than T1. In general, we would expect a tight bound
whenever λ2 ≤ λ < λ1, where λ1 and λ2 denote the
phase transition points (i.e., critical mean degrees) for a
single-strain, bond-percolated network with T1 and T2,
respectively, i.e., 1 ≤ λ < 10 for the given parameter set.
As λ increases beyond λ1, the tightness of the bound de-
pends on the ratio between T2 to T1. This is illustrated
in Figure 5b for the case when T1 = 0.2 and T2 = 0.3.

The availability of an explicit expression for the prob-
ability of mutation (see Section III in the Supplementary
Material) allows for exploring the effects of mutation on
the overall probability of emergence. Indeed, the way the
probability of emergence behaves with respect to changes
in the mean degree resembles, to a great extent, the way
Pµ behaves, as illustrated in Figure 5. Hence, in what

follows, we focus on the behavior of Pµ with respect to
changes in the mean degree. In Figure 6, we set T1 = 0.1
and plot Pµ against the mean degree for a network with
Poisson degree distribution. We observe that different
values for µ impacts the shape of Pµ (hence, the prob-
ability of emergence) in a remarkable way. Firstly, for
all values of µ ∈ (0, 1), the behavior of Pµ appears to
be strikingly different than the universality class of per-
colation models, e.g., see the shape of the probability of
emergence (respectively, PB

2 ) in Figure 3 (respectively,
Figure 5). Secondly, the effect of mutation probabilities
on Pµ appears to be significant as the mean degree in-
creases from small values, reaches its peak right before
the critical mean degree corresponding to PBP

1 , then de-
cays as the mean degree increases further.

The reasoning behind the aforementioned observation
is intuitive. Recall that the process starts with a sin-
gle infection with strain-1 and note that Pµ is influenced
by the structure of the underlying contact network, the
transmissibility of strain-1, and the particular value of
µ. As the mean degree λ increases towards λ1, the
length of the tree of infections starting from the seed
[69] also increases, however, no cycles appear and the
epidemic propagates on a finite, tree-like percolated net-
work (since λ < λ1). Increasing the length of the tree
increases the probability that at least one intermediate
node would mutate to strain-2, but the fact that the tree
is finite makes the particular value of µ very crucial to Pµ.
Namely, a small value of µ makes it less likely that a mu-
tant emerges before the chain of infections is terminated,
while a relatively larger value could drive the emergence
of strain-2 and lead the epidemic to escape extinction.
Put differently, the finiteness of the chain of infections
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FIG. 5. Approximating the probability of emergence: The network size n is 2 × 105 and the number of independent
experiments for each data point is 104. Blue circles denote the empirical probability of emergence while the red line denotes the
theoretical approximation of the probability of emergence according to (9). The light blue dashed line denotes the probability of
emergence for a single-strain, bond-percolated network with T2. (a) We set T1 = 0.1, T2 = 1, and µ = 0.01. (b) We set T1 = 0.2,
T2 = 0.3, and µ = 0.01. We observe good agreement between the experimental results and the theoretical approximation given
by (9) whenever λ2 ≤ λ < λ1 or whenever T2 is significantly larger than T1.

when λ < λ1 creates a limited number of opportunities
for mutation, causing the particular value of µ to bear the
burden of generating a mutant and driving the whole pro-
cess to emergence. However, as λ increases beyond λ1,
cycles start to appear and a giant component of nodes
infected with strain-1 emerges. In this case, the chain of
infections is no longer finite, and any positive value of µ
results in a mutation almost surely in the limit of large
network size. Put differently, when λ ≥ λ1, the structure
of the underlying network starts to facilitate the emer-
gence of strain-2, hence reducing the dependence on µ.

V. EVOLUTION IN REAL-WORLD
NETWORKS

In Section IV.F, we explored the validity of analyzing
the multiple-strain model for evolution with the avail-
able tools from the classical, single-type bond-percolation
framework. We focused on random networks generated
by the configuration model and demonstrated that a
reduction to the classical, single-type bond percolation
framework leads to accurate results with respect to the
threshold and final size of epidemics, but significantly in-
accurate results with respect to the probability of emer-
gence. In this section, we aim to examine the univer-
sality of our findings by analyzing the probability of
emergence on real-world contact networks obtained from
SNAP data sets [54]. Our objective is twofold. Firstly,
we would like to validate the multi-type branching for-
malism of Alexander and Day (see Section III.A) on real-
world networks. Secondly, we seek to highlight and con-
firm the limitations of the single-type bond-percolation
framework in predicting the probability of emergence on
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FIG. 6. Effect of Mutation: We set T1 = 0.1 and plot the
behavior of Pµ against the mean degree for a network with
Poisson degree distribution. Intuitively, different values of µ
have different impact on Pµ. The impact is pronounced be-
fore the critical mean degree corresponding to a single-strain,
bond-percolated network with T1. Inset: The difference be-
tween the value of Pµ when µ = 0.4 and the value of Pµ when
µ = 0.01 as a function of the mean degree of the underlying
contact network.

real-world networks.
Dataset: In the context of information propagation,

we consider four different contact networks obtained from
SNAP [54]. In particular, we consider the following con-
tact networks:

- Facebook [54, 72]: The contact network among
the friends of 10 users (including those 10 users).
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Network |N | |E| λoriginal Φoriginal Φ{λ=1} Φ{λ=10} Φrandom

Facebook 4, 039 88, 234 43.7 0.519 0.011 0.117 0.0107

Twitter 81, 306 1, 342, 296 33 0.170 0.005 0.051 0.0004

Slashdot 82, 168 504, 230 12.3 0.024 0.001 0.019 0.0001

Higgs 456, 626 12, 508, 413 54.8 0.008 0.0001 0.001 0.0001

High school 773 6342 16.4 0.094 0.019 0.059 0.020

Hospital 73 543 14.87 0.446 0.090 0.296 0.183

FIG. 7. Real-world contact networks. We consider four real-world contact networks in the context of information prop-
agation, namely, Facebook, Twitter, Slashdot, and Higgs networks from SNAP [54] dataset. We also consider two real-world
contact networks in the context of infectious disease propagation, namely, a contact network among students, teachers, and
staff at a US high school [70] and a contact network among professional staff and patients in a hospital in Lyon, France [71].
For each network, we indicate the number of nodes |N |, the number of edges |E|, the mean degree of the original network
λoriginal, and the clustering coefficient of the original network Φoriginal. Φ{λ=1} (respectively, Φ{λ=10}) denotes the clustering
coefficient of the original network after removing a random subset of edges such that the resulting mean degree is 1 (respectively,
10). Φrandom denotes the average clustering coefficient (over 200 independent realizations) of a random network generated by
the configuration model with Poisson degree distribution. The random network has the same number of nodes and the same
(original) mean degree of the corresponding real-world network.

- Twitter [54, 72]: The contact network among the
friends of 1000 users (including those 1000 users).

- Slashdot [54, 73]: The network contains
friend/foe links between the users of Slashdot.

- Higgs [54, 74]: The Higgs data set has been col-
lected upon monitoring the spreading processes on
Twitter before, during and after the announcement
of the discovery of a new particle with the features
of the elusive Higgs boson on July 4, 2012. Nodes
correspond to the authors of the collected tweets
and edges represent the followee/follower relation-
ships between them.

In the context of infectious disease propagation, we
consider the following two contact networks:

- High school network [70]: The contact network ob-
served at a US high school during a typical school
day. The dataset covers 762, 868 interactions be-
tween students, teachers, and staff. Each inter-
action between two individuals is characterized by
their identification numbers as well as the dura-
tion of the interaction. Two individuals could have
multiple interactions throughout the day, and we
sum the durations of these interactions to calcu-
late the total contact time between these two indi-
viduals over the whole day. We proceed by sam-
pling a static graph out of this dataset, by assign-
ing an edge between nodes u and v with probability
tuv/tmax where tuv denotes the total contact time
between nodes u and v throughout the day and tmax

denotes the maximum total contact time observed
in the dataset.

- Hospital network [71]: The contact network ob-
served in a short stay geriatric unit of a univer-

sity hospital in Lyon, France. The dataset covers
five days of interactions between professional staff
members and patients. Similar to the high school
network, we compute the total contact time be-
tween two individuals (over the span of five days),
then we sample a static graph out of the dataset,
by assigning an edge between nodes u and v with
probability tuv/tmax.

More details on the networks, including their clustering
coefficients are given in Figure 7. We assume that all
edges are unidirectional.

A. Methods

To conduct a fair comparison between the formalism
given in Section III.A and the single-type bond percola-
tion framework, we fix the parameters of the transmissi-
bility matrix TTT and the mutation matrix µµµ, hence fixing
ρ (TµTµTµ) and TBP (according to (8)). We vary the mean de-
gree, denoted λ, for each of the contact networks between
1 and 10. For each value of λ, we remove a random subset
of edges such that the resulting network is of mean de-
gree λ (approximately). Note that the random removal of
edges would indeed lower the clustering coefficient of the
network, however, the resulting subgraph would remain
highly clustered compared to random networks with the
same mean degree (see Figure 7). In other words, the
sampled networks still exhibit specific structural prop-
erties that distinguish them from synthetic contact net-
works generated randomly by the configuration model
(with Poisson degree distribution of the same mean de-
gree). After the mean degree is adjusted, the process
proceeds similar to Section IV.B.
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FIG. 8. The probability of emergence on real-world contact networks. In the context of information propagation, we
consider four contact networks sampled from SNAP data sets [54]: (a) Facebook network, (b) Twitter network, (c) Slashdot
network, and (d) Higgs network. In the context of infectious disease propagation, we consider two contact networks: (e) High
school contact network and (f) Hospital contact network. We set T1 = 0.2, T2 = 0.5, µ11 = µ22 = 0.75 (hence TBP = 0.4) and
vary the mean degree, denoted λ, from 1 to 10. For each value of λ, we remove a random subset of edges such that the resulting
graph is of mean degree λ (approximately). The sampled networks still exhibit higher clustering coefficient as compared to
random networks with the same mean degree. The single-type bond-percolation framework provides inaccurate predictions on
the probability of emergence, in contrast to the multiple-strain formalism given by Alexander and Day [33]. The multiple-strain
formalism offers remarkably accurate predictions on a class of real-world networks with low clustering coefficient.

B. Results

In Figure 8, we plot the probability of emergence for
the four contact networks shown in Figure 7. We compare

the results obtained by computer simulations with those
obtained by the multiple-strain formalism (Section III.A)
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and the single-type bond-percolation framework. We set
T1 = 0.2, T2 = 0.5, and µ11 = µ22 = 0.75. It follows that
TBP = 0.4 according to (8).

Similar to our observations on random networks (Sec-
tion IV.E), the single-type, bond-percolation framework
provides significantly inaccurate predictions on the prob-
ability of emergence, should the underlying process en-
tail evolution. The limitation is universal as it applies
to both random and real-world networks. Section IV in
the Supplementary Material explains the intuition be-
hind our observations. In contrast, the multiple-strain
formalism provides remarkably accurate predictions, es-
pecially on contact networks with low clustering coef-
ficient. Note that the multi-type branching framework
assumes that the underlying graph is tree-like; an as-
sumption that holds for networks with small clustering
coefficient. Hence, one could reasonably argue that the
multiple-strain formalism would provide high prediction
accuracy on such networks.

VI. CO-INFECTION CONTROLS THE ORDER
OF PHASE TRANSITION

The preceding discussion considers the case when co-
infection is not possible, hence each infected host either
carries strain-1 or strain-2, but not both. However, hu-
mans, animals, plants, and other organisms may become
co-infected with multiple pathogen strains, causing major
consequences for both within- and between-host disease
dynamics [43–47, 75]. For instance, in the case of hu-
man malaria, the majority of infected adults are simul-
taneously infected by more than five strains of Plasmod-
ium falciparum [47, 76]. The competition and interaction
patterns between the resident strains trigger significant
ramifications of the disease dynamics. Also, the aggre-
gate virulence experienced by the co-infected host could
be higher than the most virulent strain, or lower than
the least virulent strain, or anywhere in between [47, 77–
79]. Co-infection also applies in the context of informa-
tion propagation. Observe that with the growing number
of news outlets, we may come across various variants of
information on social media platforms. Similar to the
case of infectious diseases, these variants may reinforce
or weaken each other based on whether they share the
same bias or not.

In this section, we seek to shed the light on the effects
of co-infection on information/disease propagation. In
particular, we investigate the extent to which co-infection
dynamics could enhance or suppress the scale of epi-
demics. Of particular interest is whether co-infection
could change the order of phase transition from second-
order (as it is the case with most epidemic models) to
first-order, leading to a phenomenon that is commonly
described as avalanche outbreaks [58]. To that end, we
extend the multiple-strain model given in Section II to
account for co-infection. In particular, a susceptible in-
dividual who comes into infectious contacts with type-1

and type-2 hosts simultaneously becomes co-infected and
starts to spread the co-infection. Henceforth, we consider
the case when the co-infection has its own transmissibil-
ity Tco and does not mutate back to either strain-1 or
strain-2. In other words, a co-infected host infects each
of her neighbors independently with probability Tco, and
infected neighbors are deemed co-infected with probabil-
ity 1.

As with Section IV, we consider contact networks with
Poisson degree distribution and Power-law degree distri-
bution with exponential cutoff, respectively. For both
cases, we set T1 = 0.2, T2 = 0.5, and µ11 = µ22 = 0.75.
Moreover, we set the network size to 2 × 106 and the
number of independent experiments for each data point
to 5×103. To illustrate how co-infection dynamics control
the order of phase transition, we simulate and compare
the process for two values of Tco, namely Tco = 0.1 and
Tco = 0.8. Finally, we plot the epidemic size, denoted by
sBPco , for a single-strain, bond-percolated network [3].

In all cases, co-infection emerges at the phase transi-
tion point that characterizes an epidemic of strain-1 and
strain-2, i.e., the mean degree for which ρ(MMM) = 1, where
MMM is given by

MMM =

(
〈k2〉 − 〈k〉
〈k〉

)[
T1 0
0 T2

] [
µ11 µ12

µ21 µ22

]
As seen in Figure 9, a first-order phase transition is

observed on both contact networks when Tco = 0.8 due
to the corresponding first order transition of Sco. In par-
ticular, the value of Sco jumps discontinuously from zero
to (approximately) the corresponding value of SBPco for
a single-strain, bond-percolated network with Tco = 0.8.
Hence, a first-order phase transition is observed. In gen-
eral, we conjecture that a first-order phase transition
emerges whenever Tco is large enough such that SBPco > 0
at the critical point ρ(MMM) = 1. If, however, Tco is small
such that SBPco = 0 when ρ(MMM) = 1, then a second-order
phase transition is observed. This is confirmed by our
simulation results for the case when Tco = 0.1.

In order to validate the order of phase transition when
Tco = 0.8, we conduct an extensive simulation study
around the phase transition point on both contact net-
works. In Figure 10, we set the number of nodes n to
15 × 106 (to alleviate finite size effects) and the number
of experiments to 104 for each data point. We use the
same parameters that were used to generate Figure 9,
i.e., T1 = 0.2, T2 = 0.5, and µ11 = µ22 = 0.75. Our
results confirm that the phase-transition is indeed first
order on both contact networks. In fact, the value of
Sco jumps discontinuously to (approximately) the corre-
sponding value of SBPco with Tco = 0.8.

VII. CONCLUSION

In this paper, we have investigated the evolution of
spreading processes on complex networks and developed
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FIG. 9. Co-infection dynamics determine the order of phase transition. We set T1 = 0.2, T2 = 0.5, and µ11 = µ22 =
0.75 for all subfigures. The network size n is 2× 106 and the number of independent experiments for each data point is 5× 103.
Blue circles denote the average total epidemic size S and red stars denote the average total epidemic size S conditioned on Sco
being greater than zero, i.e., conditioned on the existence of a positive fraction of co-infected nodes. Blue plus signs, orange
triangles, and yellow squares denote the fraction of nodes infected with strain-1, strain-2, and co-infection, respectively. The
black dashed-line denotes the epidemic size for a single-strain, bond-percolated network with Tco, i.e., SBPco . (a) and (c): A first
order phase transition is observed when Tco = 0.8 owing to the corresponding first order transition of Sco. Co-infection emerges
at the phase transition point that characterizes an epidemic of strain-1 and strain-2. At this point, the value of Sco jumps
discontinuously to (approximately) the corresponding value of SBPco with Tco = 0.8. Observe that SBPco > 0 at the transition
point, hence, a first-order phase transition is observed. (b) and (d): Co-infection still emerges right at the phase transition
point. However, since Tco is small, SBPco = 0 at the transition point. Hence, a second-order phase transition is observed.

a mathematical theory that unravels the relationship be-
tween the characteristics of the spreading process, evolu-
tion, and the structure of the contact network on which
the process spreads. Our mathematical theory was com-
plemented by an extensive simulation study on both ran-
dom and real-world contact networks. The simulation
results proved the validity of our theory and revealed
the significant shortcomings of the classical mathemat-
ical models that do not capture evolution. A match-
ing condition between single- and multiple-strain models
was proposed and evaluated in the context of probabil-
ity of emergence, epidemic size, and epidemic threshold.
Under the proposed matching condition, our results re-
vealed that the classical bond-percolation models may ac-

curately predict the threshold and final size of epidemics
that entail evolution, but their predictions on the prob-
ability of emergence are significantly inaccurate on both
random and real-world networks. Hence, our formalism
is necessary to bridge the disconnect between how spread-
ing processes propagate and evolve on complex networks,
and the current mathematical models that do not capture
evolution.

We proceeded by deriving a lower bound on the proba-
bility of emergence to gain further insights on the effects
of mutation. The bound was derived for the special case
of one-step irreversible mutation. Our results revealed
that the probability of mutation plays a key role in de-
termining the shape and behavior of the probability of
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FIG. 10. Validating the order of phase transition. We set the network size n to 15 × 106, the number of independent
experiments for each data point to 104, T1 = 0.2, T2 = 0.5, and µ11 = µ22 = 0.75. Our results confirm that the phase-transition
is indeed first order on both contact networks. The value of Sco jumps discontinuously to (approximately) the corresponding
value of SBPco with Tco = 0.8.

emergence. Moreover, the way the particular value of µ
influences the probability of mutation varies according to
the connectivity of the underlying contact network. Fi-
nally, we considered the case when co-infection is possible
and showed that co-infection dynamics control the order
of phase transition in an interesting way. In particular,
depending on co-infection dynamics, the order of phase
transition of the epidemic size could change from second-
order to first-order, in contrast to the universality class
of percolation models that are typically second-order.
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