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Abstract

We investigate k-connectivity in secure wireless sensor networks under the random
pairwise key predistribution scheme with unreliable links. With wireless communication
links modeled as independent on-off channels, this amounts to analyzing a random graph
model formed by intersecting a random K-out graph and an Erdős-Rényi graph. We
present conditions on how to scale the parameters of this intersection model so that
the resulting graph is k-connected with probability approaching to one (resp. zero) as
the number of nodes gets large. The resulting zero-one law is shown to improve and
sharpen the previous result on the 1-connectivity of the same model. We also provide
numerical results to support our analysis.

Keywords: Wireless Sensor Networks, Security, Key Predistribution, Random Key Graphs,
k-connectivity.

1 Introduction

1.1 Motivation and Background

Random key predistribution schemes are widely regarded as the appropriate solution to ensure
secure communications in resource-constrained wireless sensor networks (WSNs) [6, 28, 7, 11, 24,
25, 30, 31, 32, 33, 34, 36]. The idea of randomly assigning symmetric cryptographic keys to sensors
before deployment has been introduced by Eschenauer and Gligor [11]. Since then many alternative
methods have been proposed and random key predistribution schemes have been extensively studied
in the last decade; e.g., see survey articles [22, 23] and references therein.

In this work, we consider the random pairwise key predistribution scheme proposed by Chan
et al. [6], which works as follows: Prior to deployment, each of the n sensors is assigned to a set
of K distinct sensors that are selected uniformly at random from among all other (n− 1) sensors.
Then, two sensors are deemed to be paired if at least one of them has been assigned to the other.

∗A preliminary version of this paper was presented at IEEE International Conference on Communications (ICC
2015), London (UK), June 2015.
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For each such sensor pair, a unique pairwise key is then generated and loaded into the memory
modules of the paired sensors together with their IDs. After deployment, any two sensors that
share at least one common key can securely communicate over an existing wireless link. Precise
implementation details are given in Section 2.1. Interest in the pairwise scheme arises from the
fact that it has several advantages over other key predistribution techniques including the original
one by Eschenauer and Gligor. For instance, the pairwise scheme enables distributed node-to-
node authentication and quorum-based key revocation by construction [6]. These advantages have
motivated a significant body of research devoted to analyzing various properties of the pairwise
scheme including its connectivity [25, 28, 31, 32, 33, 34], resilience against node capture attacks
[27], scalability [26, 30], etc.

This paper is devoted to analyzing the k-connectivity of WSNs under the pairwise scheme.
Namely, given the randomness involved in the key predistribution mechanism, as well as in the
availability of wireless communication links, we study how the scheme parameter K can be adjusted
(possibly as a function of n) so that k-connectivity is achieved with high probability. A network (or
a graph) is said to be k-connected if it remains connected despite the deletion of any (k− 1) nodes
or links; a graph is simply deemed connected if it is 1-connected. Therefore, k-connectivity provides
a guarantee of network reliability against the possible failures of (k − 1) sensors or links due to
adversarial attacks, battery depletion, harsh environmental conditions, etc. Reliability against the
failure of sensors or links is particularly important in WSN applications where sensors are deployed
in hostile environments (e.g., battlefield surveillance), or, are unattended for long periods of time
(e.g., environmental monitoring), or, are used in life-critical applications (e.g., patient monitoring).

Our approach is based on modeling the WSN by an appropriate random graph model and then
studying its k-connectivity. The pairwise scheme naturally induces what is known in the literature
as a random K-out graph [4, 14, 12]: each of the n vertices is assigned K arcs towards K distinct
vertices that are selected uniformly at random, and then the orientation of the arcs is ignored; see
Section 2.2 for details. Put differently, the edges in a random K-out graph H(n;K) identify pairs
of sensors that share at least one key. In addition, we consider a wireless communication model
comprising independent channels that are either on with probability p or off with probability
(1− p). The on/off channel model has been extensively used recently [24, 32, 36, 28, 33, 34] in the
context of secure WSNs, and was also shown to exhibit very similar connectivity properties with
the disk model [24, 32] (whereby any two sensors need to be within a certain distance of each other
to have a wireless link in between). Thus, the communication connectivity in the network can be
modeled by a classical Erdős-Rényi (ER) graph [4], G(n; p). Combining, our modeling framework
consists of the intersection of a random K-out graph and an ER graph, denoted H ∩G(n;K, p), or
simply I(n;K,P ), whereby pairs of nodes are connected by an edge if they share a key and have
wireless channel in between that is on; i.e., edges in I(n;K, p) represent pairs of sensor that can
establish a direct secure communication link in between1.

1The main structural difference between these random graph models lies in the regularity of the resulting degree
distributions. In particular, with a positive scalar m denoting the mean degree for all graphs involved, the degree of
an arbitrary node in ER and K-out graph are distributed as Bin(n−1, m

n−1
) and Bin(n−1, m

2(n−1)
) + m

2
, respectively,

meaning that K-out graphs have more regular degree distributions than ER graphs. As would be expected, the
intersection of these graphs, defined as I(n;K, p), have more (resp. less) regular degree distributions than ER graphs
(resp. K-out graphs). Put differently, we have dER �cx dI �cx dK-out, where �cx denotes the convex ordering and
dER, dI, dK-out denote random variables standing for the degree of a node in ER graph, I(n;K, p), and K-out graph,
respectively.
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1.2 Contributions

With these in mind, we finalize in this work our analysis of the k-connectivity of I(n;K, p) that was
initiated in [34]. There, the authors had established a zero-one law for a property that is related
but weaker than k-connectivity, i.e., that of minimum node degree in I(n;K, p) being at least k.
Here, we complement the analysis in [34] and establish a zero-one law for the k-connectivity of
I(n;K, p), confirming the validity of [34, Conjecture 4.1]. Namely, we present scaling conditions
on the parameters p and K with respect to the number of sensors n, such that I(n;Kn, pn) is
k-connected with probability approaching to zero, or one, as the number of sensors n gets large.
We identify the critical scaling and show that it coincides with that obtained for the property of
minimum node degree being at least k.

Our main result is shown to extend and improve upon the zero-one law for 1-connectivity
obtained by Yağan and Makowski [28, 32]. In particular, we show that the critical scaling for 1-
connectivity was incorrectly stated in [28, 32], leading to an unnecessary and unnatural additional
condition that limn→∞ pn should exist. Here we identify the correct critical scaling and show that
this additional condition is not required for the zero-one law for 1-connectivity (or, k-connectivity
for k = 2, 3, . . .) to hold. In fact, we show that a special case of our main result with k = 1
establishes a stronger and more fine-grained version of the zero-one law for 1-connectivity than
obtained in [28, 32], while dropping the assumption on the existence of the limit of pn; see Section
4.2 for details. Finally, we present numerical results for the finite node case under various parameter
settings. This extensive simulation study suggests that although asymptotic in nature, our result
can still help design WSNs (in a secure and reliable manner) in practical scenarios.

1.3 Notation and Conventions

A word on the notation: All statements involving limits are understood with n going to infinity. The
random variables (rvs) under consideration are all defined on the same probability triple (Ω,F ,P).
Probabilistic statements are made with respect to this probability measure P, and we denote the
corresponding expectation operator by E. The indicator function of an event E is denoted by 1 [E].
In comparing the asymptotic behaviors of the sequences {an}, {bn}, we use an = o(bn), an = ω(bn),
an = O(bn), an = Ω(bn), and an = Θ(bn), with their meaning in the standard Landau notation.
Namely, we write an = o(bn) (resp. an = ω(n)) as a shorthand for the relation limn→∞

an
bn

= 0
(resp. limn→∞

an
bn

=∞), whereas an = O(bn) means that there exists c > 0 such that an ≤ cbn for
all n sufficiently large. Also, we have an = Ω(bn) if bn = O(an), or equivalently, if there exists c > 0
such that an ≥ cbn for all n sufficiently large. Finally, we write an = Θ(bn) if we have an = O(bn)
and an = Ω(bn) at the same time.

1.4 Organization of the Paper

We organize the rest of the paper as follows. The paper is organized as follows: In Section 2, we
give a formal model for the random pairwise key predistribution scheme of Chan et al. [6], and
introduce the induced random K-out graph. In particular, the main model I(n;K, p) considered
in this paper, i.e., the intersection of a random K-out graph with an ER graph, is introduced in
Section 2.3. The main result of the paper concerning the k-connectivity of I(n;K, p) is presented
in Section 3. In Section 4, we compare our results against the classical results of Erdős-Rényi and
then against earlier results by Yağan and Makowski [32] on the 1-connectivity of I(n;K, p). Also
in Section 4.3, we provide numerical results in support of our analytical results. The proof of the
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main result is initiated in Section 5 where we present some basic ideas and preliminary results to
be used throughout. The necessary steps for completing the proof are established in Sections 6, 7,
and 8.

2 Basic Building Blocks

In what follows, we provide precise definitions of the intersection model to be studied. For conve-
nience, these definitions are adopted by and large from [32, Sec. II and III].

2.1 The random pairwise key predistribution scheme

The random pairwise key predistribution scheme of Chan et al. [6] is motivated by the following
advantages over the original EG scheme: (i) Even if some nodes are captured, the secrecy of the
remaining nodes is perfectly preserved; (ii) Unlike earlier schemes, this pairwise scheme enables both
node-to-node authentication and quorum-based revocation. See also [25] for a detailed comparison
of these two classical key predistribution schemes.

We parametrize the pairwise key predistribution scheme by two positive integers n and K
such that K < n. There are n nodes, labelled i = 1, . . . , n, with unique ids Id1, . . . , Idn. Write
V = {1, . . . , n} and set V−i = V − {i} for each i = 1, . . . , n. With node i, we associate a subset
Γi(K) of K nodes selected uniformly at random from V−i. We say that each of the nodes in Γi(K)
is paired to node i. Thus, for any subset A ⊆ V−i, we require

P [Γi(K) = A] =


(
n−1
K

)−1
if |A| = K

0 otherwise.

(1)

Put differently, the selection of Γi(K) is done uniformly amongst all subsets of V−i which are of
size K and we further assume that rvs Γ1(K), . . . ,Γn(K) are mutually independent.

Once this offline random pairing has been created, we construct the key rings Σ1(K), . . . ,Σn(K),
one for each node, as follows: Assumed available is a collection of nK distinct cryptographic keys
{ωi|`, i = 1, . . . , n; ` = 1, . . . ,K}. Fix i = 1, . . . , n and let `i : Γi(K)→ {1, . . . ,K} denote a labeling
of Γi(K). For each node j in Γi(K) paired to i, the cryptographic key ωi|`i(j) is associated with j.
For instance, if the random set Γi(K) is realized as {j1, . . . , jK} with 1 ≤ j1 < . . . < jK ≤ n, then
an obvious labeling consists in `i(jk) = k for each k = 1, . . . ,K so that key ωi|k is associated with
node jk. Of course other labelings are possible. Finally, with node j paired to node i, the pairwise
key ω?n,ij = [Idi|Idj |ωi|`i(j)] is constructed and inserted in the memory modules of both nodes i and
j. The key ω?n,ij is assigned exclusively to the pair of nodes i and j, hence the terminology pairwise
predistribution scheme. The key ring Σi(K) of node i is the set

Σi(K) =
{
ω?n,ij , j ∈ Γi(K)

}
∪
{
ω?n,ji,

j = 1, . . . , n
i ∈ Γj(K)

}
Two nodes i and j, can secure an existing communication link if and only if Σi(K)∩Σj(K) 6= ∅

which holds if at least one of the events i ∈ Γj(K) or j ∈ Γi(K) takes place. Namely, it is plain
that

[Σi(K) ∩ Σj(K) 6= ∅] = [i ∈ Γj(K)] ∪ [j ∈ Γi(K)]

4



Both events can take place, in which case the memory modules of node i and j both contain
the distinct keys ω?n,ij and ω?n,ji. It is plain by construction that this scheme supports distributed
node-to-node authentication.

2.2 Random K-out graphs

The pairwise key predistribution scheme naturally gives rise to the following class of random graphs:
With n = 2, 3, . . . and positive integer K < n, we say that the distinct nodes i and j are K-adjacent,
written i ∼K j, if and only if they have at least one key in common in their key rings, namely

i ∼K j iff Σi(K) ∩ Σj(K) 6= ∅. (2)

Let H(n;K) denote the undirected random graph on the vertex set {1, . . . , n} induced by the
adjacency notion (2). This ensures that edges in H(n;K) represent pairs of sensors that have at
least one cryptographic key in common, and thus that can securely communicate over an existing
communication channel. Let λn(K) define the edge assignment probability in H(n;K); i.e., we have

P [i ∼K j] = λn(K) (3)

for any distinct i, j ∈ V. It is easy to check that

λn(K) = 1− P [i 6∈ Γj(K) ∩ j 6∈ Γi(K)] = 1−

((
n−2
K

)(
n−1
K

))2

=
2K

n− 1
−
(

K

n− 1

)2

. (4)

The random graph H(n;K) is known in the literature on random graphs as the random K-out
graph [4, 14], or random K-orientable graph [12]. In these references, H(n;K) is defined in the
following manner that can easily be seen to be equivalent to the adjacency condition (2): To each
of the n vertices assign exactly K arcs towards K distinct vertices that are selected uniformly at
random, and then ignore the orientation of the arcs. The directed version of this graph (i.e., with
the orientation of the arcs preserved) has also been studied; e.g., see the work by Philips et al.
[20], who showed that the diameter of the directed K-out graph concentrates almost surely on two
values.

2.3 Intersection of H(n;K) with Erdős-Rényi (ER) graphs

As mentioned earlier, we assume a simple wireless communication model that consists of indepen-
dent channels, each of which can be either on or off. Thus, with p in [0, 1), let {Bij(p), 1 ≤ i < j ≤ n}
denote i.i.d. {0, 1}-valued rvs with success probability p. The channel between nodes i and j is
available (resp. up) with probability p and unavailable (resp. down) with the complementary prob-
ability 1 − p. Distinct nodes i and j are said to be B-adjacent, written i ∼B j, if Bij(p) = 1.
B-adjacency defines the standard ER graph G(n; p) on the vertex set {1, . . . , n} [4]. Obviously,
P [i ∼B j] = p.

The random graph model studied here is obtained by intersecting the random graphs induced
by the pairwise key predistribution scheme, and by the on-off communication model, respectively.
Namely, we consider the intersection of H(n;K) with the ER graph G(n; p). In this case, distinct
nodes i and j are said to be adjacent, written i ∼ j, if and only they are both K-adjacent and
B-adjacent, namely

i ∼ j iff Σi(K) ∩ Σj(K) 6= ∅ and Bij(p) = 1. (5)

5



The resulting undirected random graph defined on the vertex set {1, . . . , n} through this notion of
adjacency is denoted I(n;K, p); i.e., we have

I(n;K, p) := H(n;K) ∩G(n; p)

The relevance of I(n;K, p) in the context of secure WSNs is now clear. Two nodes that are connected
by an edge in I(n;K, p) share at least one cryptographic key and have a wireless link available to
them, so that they can establish a secure communication link.

Throughout we assume the collections of rvs {Γ1(K), . . . ,Γn(K)} and {Bij(p), 1 ≤ i < j ≤ n}
to be independent, in which case the edge occurrence probability in I(n;K, p) is given by

P [i ∼ j] = P [i ∼K j]P [i ∼B j] = pλn(K). (6)

2.4 k-connectivity vs. minimum node degree

Consider an undirected graph G defined on the vertices 1, . . . , n. The degree of a node i, denoted
di, is defined as the total number of links incident on it. Let δ be the minimum node degree in G,
i.e., δ = min{d1, . . . , dn}. We also let κv denote the vertex connectivity of G defined as the minimum
number of vertices whose deletion renders G disconnected; if G is not connected we clearly have
κv = 0. The edge connectivity κe is defined similarly in terms of edges, as the minimum number of
edges that needs to be deleted to make G disconnected. For any graph G, it is not difficult to see
that [10]

κv ≤ κe ≤ δ. (7)

For each k = 0, 1, 2, . . ., we say that the graph G is k-vertex-connected if it holds that κv ≥ k,
whereas it is said to be k-edge-connected if κe ≥ k. It is immediate from (7) that if a graph is
k-vertex-connected, then it is also k-edge-connected, and its minimum degree is at least k. With
this in mind, throughout we shall say that a graph is k-connected (without referring to vertex-
connectivity) to refer to the fact that it is k-vertex-connected, and hence k-edge-connected. The
terminology that has been in use thus far is now clear. If a graph is k-connected, then we have
κv, κe ≥ k, meaning that the graph can not be made disconnected even if any k−1 vertices or links
are deleted. This is what makes the study of the property of k-connectivity appealing in seeking
secure and reliable WSN designs.

2.5 Some Notation for Graph I(n;K, p)

This section introduces some notation that will be used throughout. The complement of an event
E is denoted by E. For arbitrary sets Sx and Sy, the part of Sx that is not in Sy is denoted as
Sx \ Sy. Sometimes, we find it convenient to use Eij to denote the event that nodes i and j have
an edge in between in I(n;K, p); i.e.,

Eij := [i ∼ j]
Hence, Eij denotes the event that there is no edge between nodes i and j.

3 The results

To fix the terminology, we refer to any mapping K : N0 → N0 as a scaling (for random K-out
graphs) provided it satisfies the natural conditions

Kn < n, n = 1, 2, . . . . (8)
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Similarly, we let any mapping p : N0 → [0, 1] define a scaling for ER graphs. To lighten the
notation we often group the parameters K and p into the ordered pair θ ≡ (K, p). Hence, a
mapping θ : N0 → N0 × [0, 1] defines a scaling for the intersection graph I(n; θ) provided that the
condition (8) holds. Oftentimes, we denote the scalings simply as {Kn}n≥1, {pn}n≥1, and {θn}n≥1
without explicitly stating the associated mappings.

Theorem 3.1 Consider scalings {Kn}n≥1 and {pn}n≥1 such that limn→∞(n − 2Kn) = ∞ and
lim supn→∞ pn < 1. With the sequence γ : N0 → R defined through

pnKn

(
1− log(1− pn)

pn
− Kn

n− 1

)
= log n+ (k − 1) log log n+ γn (9)

we have

lim
n→∞

P [I(n; θn) is k-connected ] =


0 if lim

n→∞
γn = −∞

1 if lim
n→∞

γn = +∞.
(10)

Theorem 3.1 establishes a zero-one law for k-connectivity for random K-out graphs intersecting
ER graphs, i.e., for I(n; θn). This result was conjectured by the authors in [33, 34, Conjecture
4.1], where an analog of Theorem 3.1 was obtained for the property that minimum node degree in
I(n; θn) is at least k; see Theorem 5.1 in Section 5.1. Thus, we conclude that I(n; θn) provides one
more instance where the zero-one laws for k-connectivity and minimum node degree being at least
k coincide; other examples include ER graphs [10], random key graphs [36, 37], certain classes of
random geometric graphs [18], etc.

The proof of Theorem 3.1 is given in Sections 5-8. The main ideas leading to this proof are
reminiscent of those used for establishing a zero-one law for k-connectivity in ER graphs [10].
However, the proof given here is much more involved, mainly because of the intricate dependencies
between the edge events {Eij}1≤i≤j≤n; see Section 7.1 for details.

We now argue that the extra conditions enforced by Theorem 3.1 are mild and do not preclude
their application in realistic WSN scenarios. First, the condition lim supn→∞ pn < 1 enforces that
wireless communication channels between nodes do not become available with probability one as n
gets large. The situation lim supn→∞ pn = 1 that is not covered by Theorem 3.1 is reminiscent of the
full visibility case considered in [31], and is not likely to hold in practice. In fact, it may be expected
that pn goes to zero as the number of nodes increases due to interference associated with a large
number of nodes communicating simultaneously. Second, the condition limn→∞(n−2Kn) =∞ can
be satisfied 2Kn ≤ cn for some c < 1. Given that 2Kn is equal to the mean number of keys stored
per sensor in the pairwise scheme [30], this condition needs to hold in any practical WSN scenario
due to limited memory and computational capability of the sensors. In fact, Di Pietro et al. [7]
noted that key ring sizes on the order of log n are feasible for WSNs.

We now present a simple corollary of Theorem 3.1, that will help compare our main result with
the classical results of ER [10].

Corollary 3.2 Consider scalings {Kn}n≥1 and {pn}n≥1 such that limn→∞(n − 2Kn) = ∞ and
lim supn→∞ pn < 1. With the sequence γ : N0 → R defined through

pnKn

n− 1

(
1− log(1− pn)

pn
− Kn

n− 1

)
=

log n+ (k − 1) log log n+ γn
n

(11)
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we have

lim
n→∞

P [I(n; θn) is k-connected ] =


0 if lim

n→∞
γn = −∞

1 if lim
n→∞

γn = +∞.
(12)

The proof of Corollary 3.2 is trivial and omitted here for brevity.
The main benefit of having Corollary 3.2 is to obtain the zero-one law for k-connectivity under

the scaling (11), where the left-hand side is easily comparable with the link probability pnλn(Kn)
in I(n; θn); with the help of (4) we easily see that

P [i ∼ j] = pnλn(Kn) =
pnKn

n− 1

(
2− Kn

n− 1

)
. (13)

4 Comments and Discussion

4.1 Comparison with Erdős-Rényi (ER) Graphs

For each p in [0, 1] and n = 2, 3, . . ., let G(n; p) denote the ER graph on the vertex set {1, . . . , n} with
edge probability p. It is known that edge assignments are mutually independent in G(n; p), whereas
they are shown to be negatively associated in H(n;K) in sense of Joag-Dev and Proschan [15]; see
Section 7.1 for details. Therefore neither the random K-out graph H(n;K) nor the intersection
model I(n; θ) can be equated with G(n; p). This is so even when the parameters p and K are
selected so that the edge assignment probabilities in these graphs coincide, say λ(n;K) = p.

Although random K-out graphs are not statistically equivalent to ER graphs, they still exhibit
certain similarities. For instance, the following k-connectivity result for ER graphs is well-known
[10]: For any scaling {pn}n≥1, define γ : N0 → R through

pn =
log n+ (k − 1) log log n+ γn

n
. (14)

It holds that

lim
n→∞

P [ G(n; pn) is k-connected ] =


0 if γn → −∞

1 if γn → +∞.
(15)

We now compare this with our main result by means of Corollary 3.2. Notice that the right-
hand sides of the scalings (11) and (14) are exactly the same, and so are the corresponding zero-one
laws (12) and (15), respectively. In the case of the ER graph G(n; pn), the left-hand side of (14)
coincides with the edge probability pn. However, for I(n; θn) the left-hand side of (11) is not equal
to the corresponding edge probability pnλn(Kn) (viz. (13)). To see this, we recall (4) and use the
fact that log(1− pn) ≤ −pn to get

pnKn

n− 1

(
1− log(1− pn)

pn
− Kn

n− 1

)
≥ pnλn(Kn).

Hence, in ER graphs the threshold of k-connectivity appears when the link probability pn is com-
pared against (log n+ (k − 1) log log n)/n. In I(n; θn), our result shows that the threshold appears
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when a quantity that is always larger than the link probability pnλn(Kn) is compared against
(log n+ (k− 1) log log n)/n. Thus, we see that I(n; θn) tends to exhibit the k-connectivity property
easier than ER graphs; i.e., k-connectivity can be ensured by a smaller link probability between
nodes (which leads to a smaller average node degree). This is due to the fact that I(n; θn) has a
more regular degree distribution than ER graphs as discussed in Section 1.1.

The situation is more intricate when it holds that limn→∞ pn = 0, whereby

log(1− pn) = −pn −
p2n
2

(1 + o(1)).

This gives

pnKn

n− 1

(
1− log(1− pn)

pn
− Kn

n− 1

)
=

pnKn

n− 1

(
2− Kn

n− 1
+
pn
2

(1 + o(1))

)
=

pnKn

n− 1

(
2− Kn

n− 1

)(
1 +

pn
2
· 1 + o(1)

2− Kn
n−1

)
= pnλn(Kn)(1 + Θ(pn)) (16)

= pnλn(Kn)(1 + o(1)), (17)

where in (16), we used the fact that 1 ≤ 2 − Kn
n−1 ≤ 2 since Kn ≤ n − 1. This interestingly

shows that in the practically relevant case where wireless channels become weaker as n gets large,
the threshold for the k-connectivity of I(n; θn) appears when a quantity that is asymptotically
equivalent to the link probability is compared against (log n + (k − 1) log log n)/n. This suggests
that with limn→∞ pn = 0, I(n; θn) becomes reminiscent of the ER graph as far as the k-connectivity
property is concerned; a similar observation was made in [32] for the threshold of 1-connectivity
and absence of isolated nodes.

Nevertheless, a detailed analysis shows that even under limn→∞ pn = 0, the zero-one laws for
k-connectivity in ER graphs and I(n; θn) are not exactly analogous. This is due to the fact that
(1 + o(1)) term appearing in (17) may change the limit behavior of the sequence γn appearing in
(11). In particular, comparing (16) and (11), we have

γn = npnλn(Kn)(1 + Θ(pn))− log n− (k − 1) log log n

= npnλn(Kn)− log n− (k − 1) log log n+ Θ(np2nλn(Kn))

= npnλn(Kn)− log n− (k − 1) log log n+ Θ(Knp
2
n)

as we note that λn(Kn) = Θ(Kn/n). We now see that, even under limn→∞ pn = 0 the two results,
(15) under (14) and (12) under (11), may be deemed analogous if and only if the last term Knp

2
n is

bounded, i.e., Knp
2
n = O(1); note that only then this last term is guaranteed to not affect whether

limn→∞ γn = ±∞. In conclusion, we see that for the two graphs G(n; pn) and I(n;Kn, pn) to
exhibit asymptotically the same behavior for the property of k-connectivity, the parameter scalings
should satisfy

pn = o(1) and Knp
2
n = O(1).

4.2 Comparison with results by Yağan and Makowski for k = 1

We now compare our results with those by Yağan and Makowski [32] who established zero-one laws
for 1-connectivity and for absence of isolated nodes (i.e., absence of nodes with degree zero) in

9



I(n; θ). Here, we present their result in a slightly different form: Consider scalings {Kn}n≥1 and
{pn}n≥1 such that

pnKn

(
2− Kn

n− 1

)1− log(1−pn)
pn

2

 ∼ c log n, (18)

for some c > 0. Assume also that limn→∞ pn = p? exists. Then, we have

lim
n→∞

P [H ∩G(n; θn) is connected ] =


0 if c < 1

1 if c > 1.
(19)

To better compare this result with ours, we set k = 1 and rewrite our scaling condition (9) as

pnKn

(
2− Kn

n− 1

)1− log(1−pn)
pn

− Kn
n−1

2− Kn
n−1

 = log n+ γn (20)

under which Theorem 3.1 gives

lim
n→∞

P [I(n; θn) is connected ] =


0 if γn → −∞

1 if γn → +∞.

We now argue how our result on 1-connectivity constitutes an improvement on the result of
[32]. This discussion will also reveal why the assumption that limit limn→∞ pn = p? exists was
crucial in establishing (19) under (18) in the earlier work [32]. First of all, it is clear that if p? = 0,
then

lim
n→∞

1− log(1−pn)
pn

2

 = 1 = lim
n→∞

1− log(1−pn)
pn

− Kn
n−1

2− Kn
n−1


so that the left hand sides of (20) and (18) are asymptotically equivalent. Next, if p? > 0, then it
follows that Kn = O(log n) (see [32]) under (18). This again yields the asymptotical equivalence of
the left hand sides of (20) and (18). Therefore, under the assumption that pn has a limit, a scaling
condition that is equivalent to (18) is given by

pnKn

(
2− Kn

n− 1

)1− log(1−pn)
pn

− Kn
n−1

2− Kn
n−1

 ∼ c log n, (21)

with the results (19) unchanged.
Comparing (20) with (21), we see that our 1-connectivity result is more fine-grained than the

one given in [32]. In a nutshell, the scaling condition (21) enforced in [32] requires a deviation of
γn = ±Ω(log n) (from the threshold logn) to get the zero-one law, whereas in our formulation (20),
it suffices to have an unbounded deviation; i.e., any γn = ω(1) will do. Put differently, we cover the
case c = 1 in (21) that is not covered in the result (19) given in [32]. In fact, we show that if c = 1
in (21), then I(n; θn) could be almost surely connected or almost surely not connected depending
on the limit of γn defined in (20). Furthermore, our main result Theorem 3.1 indicates that if (21)
holds with c > 1, then I(n; θn) will be not only 1-connected, but also k-connected (almost surely)
for all k = 1, 2, . . ..

10
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Figure 1: Probability that I(n;K, p) is 4-connected as a function of K with p = 0.3, 0.5, 0.7, 0.9 and
n = 2000.

Collecting, our contributions in this paper improve the results in [32] several directions. First,
we extend the results on the 1-connectivity of the model I(n; θn) to k-connectivity with arbitrary
k = 1, 2, . . .. As discussed before, the k-connectivity property quantifies the reliability of the
network against node or edge removals, and is desirable in a number of applications including
wireless sensor networks. Second, with k = 1, our main result sharpens and improves the zero-
one law for 1-connectivity of I(n; θn). In particular, our result does not require the unnatural
condition that limn→∞ pn should exist, and does establish a sharper phase transition result with
deviation functions of the form γn = ±(log n) being able to change the phase of the graph from
being disconnected to connected. Finally, our discussion also reveals that the aforementioned
unnatural condition was needed in [32] since the critical scaling for the connectivity of I(n; θn) was
not identified correctly; i.e., (18) was used instead of (21).

4.3 Numerical results

In this Section, we present numerical results to check the validity of Theorem 3.1 in the non-
asymptotic regime, i.e., when parameter values are set in accordance with real-world wireless sensor
network scenarios. In all experiments, we fix the number of nodes at n = 2000. Then for a given
parameter pair (K, p), we generate 200 independent samples of the graph I(n;K, p) and count the
number of times (out of a possible 200) that the obtained graph is k-connected for k = 1, 2, . . ..
Dividing the counts by 200, we obtain the (empirical) probabilities for k-connectivity.

For brevity, we display only three figures, namely Figures 1, 2, and 3. Each time, one of the
parameters (k, p,K) is fixed at a typical value, another is varied through a wide range, while the
third one is set to four different values of interest. In doing so, our goal is to understand the
sensitivity of the reliability of the network (as quantified by the probability of k-connectivity) to
the variations in the network parameters p and K. In particular, we want to check whether the
observed sensitivity is in parallel with our analytical results given in Theorem 3.1. To that end,
in each curve, we include a vertical dashed line that stands for the critical value of the varying
parameter (i.e., of K in Figures 1 and 2, and of p in Figure 3) that results in a change of sign in the

11
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Figure 2: Probability that I(n;K, p) is k-connected as a function of K with p = 0.5 and n = 2000.
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Figure 3: Probability that I(n;K, p) is k-connected as a function of p with K = 125 and n = 2000.

sequence γn given via (9). As an example, in Figure 1, vertical dashed lines stand for the minimum
integer value of K that satisfies

pK

(
1− log(1− p)

p
− K

n− 1

)
> log n+ 3 log log n. (22)

Our main conclusions from the numerical results are twofold. First, we see that the the sharp
phase transition behavior suggested by Theorem 3.1 is already observable with n = 2000 nodes.
Namely, the probability that I(n;K, p) is k-connected transitions from zero to one as the parameter
K (or, p) varies very slightly from a certain value. Second, we see that those critical values match
well the vertical dashed lines obtained from Theorem 3.1. This prompts us to conclude that
simulation outcomes are in good agreement with the analytical results.
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5 Basic Ideas for Proving Theorem 3.1

5.1 From minimum node degree to k-connectivity

The proof of Theorem 3.1 will take advantage of the relationship between minimum node degree
and k-connectivity in the following way. First, observe from (7) that

P [κv ≥ k ] ≤ P [ δ ≥ k ] (23)

and that

P[κv ≥ k] = P[δ ≥ k]− P[ (κv < k) ∩ (δ ≥ k) ]

= P[ δ ≥ k ]−
k−1⋃
`=0

P[ (κv = `) ∩ (δ ≥ k) ].

≥ P[ δ ≥ k ]−
k−1∑
`=0

P[ (κv = `) ∩ (δ > `) ]. (24)

The bounds (23)-(24) will pave the way to establishing the zero-one law for k-connectivity (i.e.,
for the property that κv ≥ k) in I(n; θn). Of particular importance will be the following zero-one
law for the minimum node degree of I(n; θn) (i.e., for the property that δ ≥ k) established by us in
[33].

Theorem 5.1 ([33, 34]) Consider scalings {Kn}n≥1 and {pn}n≥1 such that limn→∞(n− 2Kn) =
∞ and lim supn→∞ pn < 1. With the sequence γ : N0 → R defined through (9), we have

lim
n→∞

P
[

Min node degree of

I(n; θn) is at least k

]
=


0 if lim

n→∞
γn = −∞

1 if lim
n→∞

γn = +∞.
(25)

It is now clear how to proceed. Pick a scaling θ : N0 → N0 × [0, 1] as in the statements of
Theorem 3.1 and Theorem 5.1. If it holds that lim

n→∞
γn = −∞, then we get from Theorem 5.1 that

lim
n→∞

P [δ(n; θn) ≥ k] = 0,

with δ(n; θn) denoting the minimum node degree in I(n; θn). From (23), this already establishes
the zero-law for k-connectivity in (10), namely that

lim
n→∞

P [κv(n; θn) ≥ k] = 0 if lim
n→∞

γn = −∞,

with κv(n; θn) denoting the vertex connectivity of I(n; θn). Hence, we only need to establish the
one-law of Theorem 3.1. Now, assume that lim

n→∞
γn = +∞. From Theorem 5.1 we have that

lim
n→∞

P [δ(n; θn) ≥ k] = 1. (26)

Using this in (24), we see that the one-law of (10),

lim
n→∞

P [κv(n; θn) ≥ k] = 1 if lim
n→∞

γn = +∞,

13



will follow if we show under lim
n→∞

γn = +∞ that

lim
n→∞

P [(κv(n; θn) = `) ∩ (δ(n; θn) > `)] = 0 for each ` = 0, 1, . . . , k − 1. (27)

The rest of the paper is devoted to establishing (27), i.e., the fact that almost surely I(n; θn)
can not be made disconnected by deleting ` vertices when all of its nodes have degree larger than
`. This will be done by finding a sufficiently tight upper bound on the probability P[κv(n; θn) =
` ∩ δ(n; θn) > `] and then showing that it goes to zero as n→∞. The approach is similar to the
one used for proving the one-law for k-connectivity in ER graphs [4, p. 164].

5.2 Confining γn

In this section, we show that in establishing (27), we can restrict our attention to a subclass of
structured scalings, referred throughout as admissible scalings. Recall that any mapping (K, p) :
N0 → N0 × [0, 1) defines a scaling provided that the condition (8) is satisfied. We now introduce
the notion of an admissible scaling.

Definition 5.2 A mapping (K, p) : N0 → N0× [0, 1) is said to be an admissible scaling if (8) holds,
and the sequence γ : N0 → R defined through (9) satisfies

lim
n→∞

γn
log n

= 0. (28)

The notion of the admissible scaling for the graph I(n; θn) has been introduced by the authors
in [34]. There it was shown via a coupling argument that (see [34, Propositions 5.3, 5.4, and
5.5] for any monotone increasing2 property of the graph I(n; θn), a zero-one law established under
admissible scalings implies a zero-one law for general scalings. We present this result in more precise
form below:

Lemma 5.3 ([34]) Consider any scaling (K, p) : N0 → N0×[0, 1) such that limn→∞(n−2Kn) =∞
and lim supn→∞ pn < 1, and let the sequence γ : N0 → R be defined through (9). Then, for any
monotone increasing graph property P, we have the following:

a) If
lim
n→∞

γn = +∞ and (28) =⇒ lim
n→∞

P [I(n; θn) has property P] = 1

then
lim
n→∞

γn = +∞ =⇒ lim
n→∞

P [I(n; θn) has property P] = 1

b) If
lim
n→∞

γn = −∞ and (28) =⇒ lim
n→∞

P [I(n; θn) has property P] = 0

then
lim
n→∞

γn = −∞ =⇒ lim
n→∞

P [I(n; θn) has property P] = 0.

Lemma 5.3 shows that for the purposes of our discussion, there is no loss of generality in
considering only the admissible scalings. In view of this, the desired result (27) and hence the main
result of our paper will be established upon proving the following result.

2A graph property is called monotone increasing if it holds under the addition of edges in a graph.
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Proposition 5.4 Consider scalings {Kn}n≥1 and {pn}n≥1 such that lim supn→∞ pn < 1 and

pnKn

(
1− log(1− pn)

pn
− Kn

n− 1

)
∼ log n. (29)

Then it holds for each ` = 0, 1, . . . that

lim
n→∞

P [(κv(n; θn) = `) ∩ (δ(n; θn) > `)] = 0. (30)

In the special case with ` = 0, Proposition 5.4 becomes analogous to [32, Proposition 11.1]. In
order to see why (27) is implied by Proposition 5.4 under admissible scalings, just note that with
γ : N0 → R defined through (9), the admissibility condition (28) is equivalent to (29). Put
differently, Proposition 5.4 establishes (27) under any admissible scaling (K, p) : N0 → N0 × [0, 1),
even those that do not satisfy limn→∞ γn = +∞. This last condition is nevertheless required for
the one-law limn→∞ P [I(n; θn) is k-connected ] = 1 to hold as it is crucial in obtaining (26).

5.3 Useful consequences of the scaling condition (29)

We collect in this section some useful consequences of the scaling condition (9) that follow under
the assumptions of admissibility and lim supn→∞ pn < 1.

Lemma 5.5 Consider scalings {Kn}n≥1 and {pn}n≥1 such that lim supn→∞ pn < 1 and (29) is
satisfied. Namely, the sequence γ : N0 → R defined through (9) satisfies γn = ±o(log n). Then, we
have

pnKn = Θ(log n) (31)

and

pnλn(Kn) ≤ (1 + o(1))
log n

n
. (32)

Proof. It is easy to see that (31) follows directly from (29) under lim supn→∞ pn < 1. A complete
proof was given by the authors in [34, Lemma 5.7].

In order to see (32), note that

1− log(1− pn)

pn
≥ 2

so that

pnλn(K) =
pnKn

n− 1

(
2− Kn

n− 1

)
≤ pnKn

n− 1

(
1− log(1− pn)

pn
− Kn

n− 1

)
. (33)

Reporting (29) into (33), we get (32) as we note that

pnKn

n− 1

(
1− log(1− pn)

pn
− Kn

n− 1

)
=

(1 + o(1)) log n

n− 1
= (1 + o(1))

log n

n
.

Finally, we will also make use of the following consequence of (29). For any ε > 0, it holds that

pnKn

(
1− log(1− pn)

pn
− Kn

n− 1

)
≥ (1− ε) log n, for all n sufficiently large. (34)
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6 A Proof of Proposition 5.4

The arguments given next are analogous to those presented in [32, Sec. XI] for the case ` = 0.
We start by introducing some notation. Let N denote the collection of all non-empty subsets of
{1, . . . , n}. For any U ∈ N , we define the graph I(n;K, p)(U) (with vertex set U) as the subgraph
of I(n;K, p) restricted to the nodes in U . If all nodes in U are deleted from I(n;K, p), the remaining
graph is given by I(n;K, p)(U c) on the vertices U c = {1, . . . , n} \U . Let NUc denote the collection
of all non-empty subsets of U c. We say that T ∈ NUc is isolated in I(n;K, p)(U c) if there are no
edges (in I(n;K, p)) between the nodes in T and the nodes in U c \ T . This is characterized by the
events {Eij : i ∈ T, j ∈ U c \ T}, and defines the notion of I(n;K, p) being (U, T )−separable; i.e.,
deleting all nodes in U renders I(n;K, p) disconnected into a subgraph on T and a subgraph on
U c/T with no edges in between the two subgraphs.

The proof starts with the following observations:

1. If the vertex-connectivity of I(n;K, p) is ` (i.e., if κv(n; θ) = `) and yet each node has degree at
least `+1 (i.e., δ(n; θ) > `), then there must exist subsets U , T of nodes with U ∈ N , |U | = `,
and T ∈ NUc , |T | ≥ 2 such that I(n;K, p)(T ) is connected while T is isolated in I(n;K, p)(U c).
This ensures that I(n;K, p) is (U, T )−separable, and hence can be disconnected by deleting
an appropriately selected set (i.e., U) of ` nodes. Notice that, this would not be possible for
sets T in NUc with |T | = 1, since the degree of a node in T is at least `+ 1 by virtue of the
event δ(n; θ) > `; this ensures that a single node in T is connected to at least one node in
U c \ T .

2. Secondly, the event κv(n; θ) = ` enforces I(n;K, p) to remain connected after the deletion of
any `− 1 nodes. Therefore, if there exists a subset U (with |U | = `) such that some T in NUc

is isolated in I(n;K, p)(U c), then each of the ` nodes in U should be connected to at least
one node in T and to at least one node in U c \ T . This can easily be seen by contradiction:
Consider subsets U ∈ N with |U | = `, and T ∈ NUc with |T | ≥ 2, such that there exists no
edge between the nodes in T and the nodes in U c \ T . Suppose there exists i ∈ U that is
not connected to any node in T . Then, I(n;K, p) can be disconnected by deleting the nodes
in U \ {i} since there will be no edge between the nodes in T and the nodes in {i} ∪ U c \ T .
But, |U \ {i}| = `− 1, and this contradicts the fact that κv(n; θ) = `. Similar arguments can
be used to show that it is not possible for i ∈ U to be disconnected from all nodes in U c \ T .

We now use the above arguments to characterize the event [(κv(n; θ) = `) ∩ (δ(n; θ) > `)]. With
each non-empty subset T ⊆ U c of nodes, we associate several events of interest: Let CT denote the
event that the subgraph I(n;K, p)(T ) is itself connected. The event CT is completely determined
by the rvs {Γi(K), i ∈ T} and {Bij , i, j ∈ T}. We also introduce the event DU,T to capture the
fact that T is isolated in I(n;K, p)(U c), i.e.,

DU,T :=
⋂
i∈T

j∈Uc\T

Eij .

Finally, we let BU,T denote the event that each node in U has an edge with at least one node in T ,
i.e.,

BU,T :=
⋂
i∈U

⋃
j∈T

Eij . (35)
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We also set3

AU,T := BU,T ∩ CT ∩ DU,T .

The inclusion

[(κv(n; θ) = `) ∩ (δ(n; θ) > `)] ⊆
⋃

U∈Nn,`, T∈NUc : |T |≥2
AU,T

is now immediate with Nn,r denoting the collection of all subsets of {1, . . . , n} with exactly r
elements. It is also easy to check that this union need only be taken over all subsets T of {1, . . . , n}
with 2 ≤ |T | ≤ bn−`2 c.

We now use a standard union bound argument to obtain

P [(κv(n; θ) = `) ∩ (δ(n; θ) > `)] ≤
∑

U∈Nn,`,T∈NUc : 2≤|T |≤bn−`
2
c

P [AU,T ]

=

bn−`
2
c∑

r=2

∑
U∈Nn,`,T∈NUc,r

P [AU,T ]

with NUc,r denoting the collection of all subsets of U c with exactly r elements.
For each r = 1, . . . , n − ` − 1, we simplify the notation by writing A`,r := A{1,...,`},{`+1,...,`+r},

D`,r := D{1,...,`},{`+1,...,`+r}, B`,r := B{1,...,`},{`+1,...,`+r} and Cr := C{`+1,...,`+r}. Under the enforced
assumptions on the system model, exchangeability yields

P [AU,T ] = P [A`,r] , U ∈ Nn,`, T ∈ NUc,r

and the expression ∑
U∈Nn,`,T∈NUc,r

P [AU,T ] =

(
n

`

)(
n− `
r

)
P [A`,r]

follows since |Nn,`| =
(
n
`

)
and |NUc,r| =

(
n−`
r

)
. Substituting into (36) we obtain the key bound

P [(κv(n; θ) = `) ∩ (δ(n; θ) > `)] ≤
bn−`

2
c∑

r=2

(
n

`

)(
n− `
r

)
P [A`,r] . (36)

The proof of Proposition 5.4 will be completed once we show the following result.

Lemma 6.1 Consider scalings {Kn}n≥1 and {pn}n≥1 such that lim supn→∞ pn < 1 and (29) holds.
Then, for each ` = 0, 1, . . ., we have

lim
n→∞

bn−`
2
c∑

r=2

(
n

`

)(
n− `
r

)
P [A`,r] = 0. (37)

3For brevity of notation, the dependence of the events AU,T ,BU,T , CT and DU,T on the parameters n,K, p are
suppressed.
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In view of (36), Lemma 6.1 implies (30) and hence the proof of Proposition 5.4 is completed. As
explained before, Proposition 5.4 establishes (27), which in turn leads to the proof of Theorem 3.1
by means of the arguments given in Section 5.1.

We will establish (37) by first obtaining sufficiently tight upper bounds for the term P [A`,r].
The means to do so are provided in the following section.

7 Bounding the probabilities P [A`,r]

7.1 Negative Association of link assignment random variables

Fix positive integers n = 2, 3, . . . and K with K < n. Recall that [i ∼ j] denotes the event that
nodes i and j are adjacent in I(n;K, p). Several properties of the {0, 1}-valued rvs

{1 [i ∼ j] , i 6= j, i, j = 1, . . . , n} (38)

will play a key role in some of the forthcoming arguments (which are mainly adopted from [32, Sec.
IX]).

The properties of interest can be couched in terms of negative association, a form of negative
correlation introduced by Joag-Dev and Proschan [15]. We first develop the needed definitions and
properties: Let {Xλ, λ ∈ Λ} be a collection of R-valued rvs indexed by the finite set Λ. For any
non-empty subset A of Λ, we write XA to denote the R|A|-valued XA = (Xλ, λ ∈ A). The rvs
{Xλ, λ ∈ Λ} are then said to be negatively associated if for any non-overlapping subsets A and B
of Λ and for any monotone increasing mappings ϕ : R|A| → R and ψ : R|B| → R, the covariance
inequality

E [ϕ(XA)ψ(XB)] ≤ E [ϕ(XA)]E [ψ(XB)] (39)

holds whenever the expectations in (39) are well defined and finite.
This definition has some useful consequences to be utilized repeatedly: First of all, it is also well

known [15, P2, p. 288] that the negative association of the rvs {Xλ, λ ∈ Λ} implies the inequality

E

[∏
λ∈A

fλ(Xλ)

]
≤
∏
λ∈A

E [fλ(Xλ)] (40)

where A is a subset of Λ and the collection {fλ, λ ∈ A} of mappings R → R+ are all monotone
increasing; by non-negativity all the expectations exist and finiteness is moot. Also, the negative
association of {Xλ, λ ∈ Λ} implies the negative association of the collection {Xλ, λ ∈ Λ′} where
Λ′ is any subset of Λ.

We can apply these ideas to collections of indicator rvs, namely for each λ in Λ, Xλ = 1 [Eλ] for
some event Eλ. From the definitions, it is easy to see that if the rvs {1 [Eλ] , λ ∈ Λ} are negatively
associated, so are the rvs {1 [Ecλ] , λ ∈ Λ}. Moreover, for any subset A of Λ, we have

P [Eλ, λ ∈ A] ≤
∏
λ∈A

P [Eλ] . (41)

This follows from (40) by taking fλ(x) = x+ on R for each λ in Λ.
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A key observation for our purpose is as follows: For each i = 1, . . . , n, the rvs

{1 [j ∈ Γi(K)] , j ∈ N−i} (42)

form a collection of negatively associated rvs. This is a consequence of the fact that the set Γi(K)
represents a random sample (without replacement) of size K from N−i; see [15, Example 3.2(c)]
for details. Using this fact, it is not difficult to show that the rvs{

1 [j ∈ Γi(K) ∨ i ∈ Γj(K)] ,
i 6= j

i, j = 1, . . . , n

}
, (43)

or equivalently the rvs
{1 [i ∼K j] , i 6= j, i, j = 1, . . . , n} (44)

are also negatively associated. This is already established by Yağan and Makowski in [32, Sec. IX]
and indicates that link assignment events in H(n;K) are negatively associated.

We now extend this argument to show that link assignment events in the intersection graph
H ∩G(n;K, p) are also negatively associated. We start by noting that the collection of rvs

{1 [i ∼B j] , i 6= j, i, j = 1, . . . , n}

are mutually independent, and hence they are negatively associated since (39) holds with equality. It
is clear that the collection of rvs {1 [i ∼B j] , i 6= j, i, j = 1, . . . , n} and {1 [i ∼K j] , i 6= j, i, j = 1, . . . , n}
are mutually independent. Thus, by the “closure under products” property of negative association
[15, P7, p. 288] [9, p. 35], the rvs

{1 [i ∼B j] ,1 [i ∼K j] , i 6= j, i, j = 1, . . . , n}

also form a collection of negatively associated rvs. With distinct i, j = 1, . . . , n, we note that

1 [i ∼ j] := 1 [(i ∼B j) ∩ (i ∼K j)] = g (1 [i ∼B j] ,1 [i ∼K j])

with mapping g : R2 → R given by g(x, y) = x+y+ for all x, y in R. This mapping being non-
decreasing on R2, it follows [15, P6, p. 288] that the rvs{

1 [i ∼ j] , i 6= j
i, j = 1, . . . , n

}
(45)

are negatively associated. This establishes the fact that edge assignment events are negatively
associated in H ∩G(n;K, p).

7.2 Bounding the probabilities P [B`,r]

Recall from (35) that B`,r denotes the event that each of the nodes in {1, . . . , `} has at least one

edge with the nodes in {` + 1, . . . , ` + r}; i.e., B`,r :=
⋂`
i=1

⋃`+r
j=`+1Eij . Also, recall from (6) that

P [Eij ] = pλn(K). The following bound is a direct consequence of the negative association of link
assignment events {Eij} (and a standard application of the union bound) and will prove useful in
various occasions.
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Lemma 7.1 For each r = 2, . . . , n, we have

P [B`,r] ≤ (rpλn(K))`. (46)

Proof. We start by recalling the definition B`,r :=
⋂`
i=1

⋃`+r
j=`+1Eij , and noting that the collection

of rvs {1 [Eij ] , i 6= j, i, j = 1, . . . , n} are negatively associated as shown in Section 7.1. Next, we
argue that the collection of rvs {

1
[
∪`+rj=`+1Eij

]
, i = 1, . . . , `

}
are also negatively associated. This follows from the “disjoint monotone aggregation” property of
negative association [9, p. 35] upon noting that the collections {1 [E1j ] , j = ` + 1, . . . , ` + r},
{1 [E2j ] , j = `+ 1, . . . , `+ r}, . . . , {1 [E`j ] , j = `+ 1, . . . , `+ r} are mutually disjoint (i.e., that
they have no common terms), and the mapping

fi ({1 [Eij ] , j = `+ 1, . . . , `+ r}) = 1
[
∪`+rj=`+1Eij

]
= 1−

`+r∏
j=`+1

(1− 1 [Eij ])

is non-decreasing for each i = 1, 2, . . . , `. In view of (40), this leads to

P [B`,r] = E [1 [B`,r]] = E

[∏̀
i=1

1
[
∪`+rj=`+1Eij

]]
≤
∏̀
i=1

E
[
1
[
∪`+rj=`+1Eij

]]
≤
∏̀
i=1

rP [Eij ] = (rpλn(K))`,

where we also used a standard union bound. This establishes Lemma 7.1.

7.3 Bounding the probabilities P [D`,r]

The following two results will be used to efficiently bound the probability P [D`,r], i.e., the event
that vertices {` + 1, . . . , ` + r} are isolated from the vertices {` + r + 1, . . . , n} in I(n; θ). Their
proofs, based on the negative association of the rvs in (42), are very similar to the proofs of [32,
Lemma 12.1] and [32, Lemma 12.2], respectively, with only small modifications needed. We skip
these details here for brevity, but comment on the intuition behind them.

The first bound leverages the fact that D`,r takes place only if all the edges in K-out graph
H(n;K) from {`+ r+ 1, . . . , n} to {`+ 1, . . . , `+ r} are deleted during the intersection with the ER
graph G(n; p); more precisely, all E?n,r(K) edges (see (48) below) between the two sets of vertices
that result from the selections {Γ`+r+1, . . . ,Γn} of the first set shall be off in the ER graph.

Lemma 7.2 For each r = 2, . . . , n− 1, the inequality

P
[
D`,r

∣∣∣ Bij(p), 1 ≤ i < j ≤ r + `
Γ1(K), . . . ,Γn(K)

]
≤ (1− p)E

?
n,r(K) (47)

holds where the rv E?n,r(K) is given by

E?n,r(K) =
`+r∑
i=`+1

n∑
j=r+`+1

1 [i ∈ Γj(K)] . (48)
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The bound (47) is fairly intuitive and could be inferred directly by inspection. To see this, recall
that

D`,r =
`+r⋂
i=`+1

n⋂
j=`+r+1

Eij .

Namely, D`,r stands for the event that vertices {` + 1, . . . , ` + r} are isolated from the vertices
{`+ r + 1, . . . , n} in I(n; θ). But, the individual K-out graph H(n;K) contains at least

`+r∑
i=`+1

n∑
j=r+`+1

1 [i ∈ Γj(K)]

many distinct edges between these two sets of vertices (counting only the edges resulting from the
selections {Γj}nj=`+r+1 of the second set). For the event D`,r to take place, all these edges should
disappear when intersecting with the ER graph G(n; p). We then get (47) by independence.

The arguments leading to (47) can be modified to obtain the next bound, this time with the
help of negative association.

Lemma 7.3 For each r = 2, . . . , n− 1, the inequality

P
[
D`,r

∣∣∣ Bij(p), 1 ≤ i < j ≤ r + `
Γ1(K), . . . ,Γ`+r(K)

]
≤ (1− p)E

??
n,r(K) ·

(
1− pK

n− 1

)r(n−r−`)−E??n,r(K)

(49)

holds with E??n,r(K) given by

E??n,r(K) =

`+r∑
i=`+1

n∑
j=r+`+1

1 [j ∈ Γi(K)] . (50)

In order to understand the intuition behind the bound (49), note again that for D`,r to take place,
there should be no edge between the vertices {`+ 1, . . . , `+ r} and {`+ r+ 1, . . . , n} in I(n; θ). For
this to happen, we need

i) All edges that are assigned in H(n;K) due to the selections {Γ`+1, . . . ,Γ`+r} of vertices {`+
1, . . . , `+ r} shall be deleted upon intersection with the ER graph G(n; p). By independence,
this gives the first term of the bound given at (49).

ii) Once the edges in item (i) above are taken out of consideration, there remains r(n− r− `)−
E??n,r(K) possible edges between the two aforementioned sets of vertices, each of which does
not exist in I(n; θ) with probability

P [(i ∈ Γj(K) ∩ Bij(p) = 1)c] = 1− Kp

n− 1
.

The second term in (49) follows from the fact that indicators of these r(n− r − `)− E??n,r(K)
events (each indicating the non-existence of a particular edge) are negatively associated.
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The following bounds follow from the facts that |Γi(K)| = K and
∑n

j=1 1 [j ∈ Γi(K)] = K, and
will be used repeatedly.

E??n,r(K) ≥ r(K − r − `)+ (51)

r(n− r − `)− E??n,r(K) ≥ r(n− r − `−K)+ (52)

The tail of the rv E?n,r(K) is controlled through the next result, obtained from the Chernoff-
Hoeffding bound applied to the negatively associated rvs [9, Thm 1.1., p.6].

Lemma 7.4 Fix ` = 0, 1, . . . , n− 3 and r = 2, . . . , n− `− 1. For any t in (0, 1) we have

P
[
E?n,r(K) ≤ (1− t)rK · n− r − `

n− 1

]
≤ e−

t2

2
rK·n−r−`

n−1 . (53)

Proof. It is easy to see that E
[
E?n,r(K)

]
= rK n−r−`

n−1 . The proof then follows from the Chernoff-
Hoeffding bound, and is identical to the proof of [32, Lemma 12.3].

7.4 Bounding the probabilities P [Cr]

A key consequence of the negative association of the link assignment rvs in I(n; θ) is the following
bound established by Yağan and Makowski [32, Lemma 12.5].

Lemma 7.5 [32, Lemma 12.5] For each r = 2, . . . , n, we have

P [Cr] ≤ rr−2(pλn(K))r−1. (54)

The proof of this bound passes through the facts that i) if a set of r vertices are to form a connected
component, then they would have to contain – as a subgraph – at least one of the rr−2 possible
spanning trees that can exist on these vertices; and ii) for any spanning tree, the r − 1 edges it
contains form a set of negatively associated edge occurrence events, meaning that probability of its
existence on this particular set of vertices is less than the r−1th power of a single edge probability.

7.5 Establishing the negative association of 1 [Cr] and 1 [B`,r]

A key ingredient in bounding the terms P [A`,r] and hence in our proof is the following result which
states that rvs 1 [Cr] and 1 [B`,r] are negatively associated.

Lemma 7.6 For each ` = 0, 1, . . . , n− 3 and r = 2, . . . , n− `− 1, we have

P [B`,r ∩ Cr] ≤ P [B`,r]P [Cr] . (55)

Proof. Recall that Cr stands for the event that nodes `+ 1, . . . , `+ r form a connected sub-
graph in I(n;K, p). This is equivalent to stating that I(n;K, p) contains a spanning tree on
nodes {`+ 1, . . . , `+ r}. Let T`+1,`+r denote the collection of all spanning trees on the vertex set
{`+ 1, . . . , `+ r} – By Cayley’s formula [16], we know that there are rr−2 trees on r vertices, i.e.,
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|T`+1,`+r| = rr−2. Put differently, T`+1,`+r contains rr−2 distinct trees T , where each T ∈ T`+1,`+r

is a collection of r − 1 node pairs (j1, j2) (with j1, j2 ∈ {`+ 1, . . . , `+ r}) that stand for the r − 1
edges of the tree. Hence, we have

1 [Cr] = 1

 ⋃
T∈T`+1,`+r

⋂
(j1,j2)∈T

Ej1j2

 = 1−
∏

T∈T`+1,`+r

1−
∏

(j1,j2)∈T

1 [Ej1j2 ]

 (56)

while, as before, 1 [B`,r] is given by

1 [B`,r] = 1

⋂̀
i=1

`+r⋃
j=`+1

Eij

 =
∏̀
i=1

1−
`+r∏
j=`+1

(1− 1 [Eij ])

 . (57)

It is already established in Section 7.1 that the collection of rvs {Eij , i 6= j, i, j = 1, . . . , n} are
negatively associated. Since j1, j2 ∈ {` + 1, . . . , ` + r}, it is easy to see that the 1 [Ej1j2 ] terms
that appear in (56) are disjoint from the 1 [Eij ] terms that appear in (57). It is also clear that
both relations (56) and (57) constitute non-decreasing mappings of the rvs 1 [Ej1j2 ] and 1 [Eij ],
respectively. Thus, from “disjoint monotone aggregation” property of negative association [9, p.
35] we obtain that rvs 1 [Cr] and 1 [B`,r] are negatively associated and (55) follows immediately.

7.6 Bounds on P [A`,r]

We now combine the findings of Sections 7.1 - 7.5 to obtain a bound on the probabilities P [A`,r].
The corresponding result is presented next.

Lemma 7.7 Fix ` = 0, 1, . . . , n− 3 and r = 2, . . . , n− `− 1. For some a > 0 we have

P [A`,r] ≤ min
{

(rpλn(K))`, 1
}
· rr−2(pλn(K))r−1 (58)

×min

{
(1− p)r(K−r−`)

(
1− pK

n− 1

)r(n−r−`−K)

, 2e−arpK
n−r−`
n−1

}
.

We will use Lemma 7.7 in Section 8 to establish (37). In doing so, the first parts of the min
expressions appearing in the bound (58) will be used for small values of r (see Section 8.1), while
the second parts will be used for large values of r (see Section 8.2), in the range r = 2, . . . , bn−`2 c.

Proof. The arguments needed for the proof are similar to those used in [32, Sec. XIV]. We
start by noting that the event Cr is determined solely by the rvs {Γ`+1(K), . . . ,Γ`+r(K)} and
{Bij(p), `+ 1 ≤ i < j ≤ `+ r}. Similarly, B`,r depends only on the rvs {Γ1(K), . . . ,Γ`+r(K)} and
{Bij(p), i = 1, . . . , `, j = `+ 1, . . . , `+ r}. We will establish (58) by combining two bounds that
are obtained next via different arguments. First, conditioning on the rvs {Bij(p), 1 ≤ i < j ≤ r+`}
and {Γ1(K), . . . ,Γ`+r(K)} we get

P [A`,r] = E

[
E

[
1 [Cr] 1 [B`,r] 1 [D`,r]

∣∣∣∣∣ Bij(p), 1 ≤ i < j ≤ r + `
Γ1(K), . . . ,Γ`+r(K)

]]
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= E

[
1 [Cr] 1 [B`,r]E

[
1 [D`,r]

∣∣∣∣∣ Bij(p), 1 ≤ i < j ≤ r + `
Γ1(K), . . . ,Γ`+r(K)

]]

= E

[
1 [Cr] 1 [B`,r]P

[
D`,r

∣∣∣∣∣ Bij(p), 1 ≤ i < j ≤ r + `
Γ1(K), . . . ,Γ`+r(K)

]]

≤ E

[
1 [Cr] 1 [B`,r] · (1− p)E

??
n,r(K)

(
1− pK

n− 1

)r(n−r−`)−E??n,r(K)
]

(59)

≤ E

[
1 [Cr] 1 [B`,r] · (1− p)r(K−r−`)

(
1− pK

n− 1

)r(n−r−`−K)
]

(60)

= P [Cr ∩ B`,r] · (1− p)r(K−r−`)
(

1− pK

n− 1

)r(n−r−`−K)

(61)

≤ P [Cr]P [B`,r] · (1− p)r(K−r−`)
(

1− pK

n− 1

)r(n−r−`−K)

(62)

where (59) follows from Lemma 7.3, (60) follows from the bounds (51)-(52), and (62) follows directly
from Lemma 7.6.

Second, we condition on the rvs {Bij(p), 1 ≤ i < j ≤ r + `} and {Γ1(K), . . . ,Γn(K)} to get

P [A`,r] = E

[
E

[
1 [Cr] 1 [B`,r] 1 [D`,r]

∣∣∣∣∣ Bij(p), 1 ≤ i < j ≤ r + `
Γ1(K), . . . ,Γn(K)

]]

= E

[
1 [Cr] 1 [B`,r]E

[
1 [D`,r]

∣∣∣∣∣ Bij(p), 1 ≤ i < j ≤ r + `
Γ1(K), . . . ,Γn(K)

]]

= E

[
1 [Cr] 1 [B`,r]P

[
D`,r

∣∣∣∣∣ Bij(p), 1 ≤ i < j ≤ r + `
Γ1(K), . . . ,Γn(K)

]]
≤ E

[
1 [Cr] 1 [B`,r] (1− p)E?n,r(K)

]
(63)

= P [Cr ∩ B`,r]E
[
(1− p)E?n,r(K)

]
(64)

≤ P [Cr]P [B`,r]E
[
(1− p)E?n,r(K)

]
(65)

where (63) follows from Lemma 7.2 and (64) follows from the fact that the rv E?n,r(K) depends only
on {Γr+`+1(K), . . . ,Γn(K)} and thus is independent from the rvs 1 [Cr] and 1 [B`,r]. Finally, (65)
follows directly from Lemma 7.6.

Combining (62) and (65), we find

P [A`,r] ≤ P [Cr]P [B`,r] min

{
(1− p)r(K−r−`)

(
1− pK

n− 1

)r(n−r−`−K)

,E
[
(1− p)E?n,r(K)

]}
.

Reporting (46) and (54) into this last bound, we see that the desired result (58) will follow if we
show that

E
[
(1− p)E?n,r(K)

]
≤ 2e−arpK

n−r−`
n−1 (66)

for some a > 0.
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We will establish (66) by means of Lemma 7.4. Pick t arbitrary in (0, 1). A simple decomposition
argument shows that

E
[
(1− p)E

?
n,r(K)

]
≤ E

[
(1− p)E

?
n,r(K) 1

[
E?n,r(K) > (1− t)rK · n− r − `

n− 1

]]
+ P

[
E?n,r(K) ≤ (1− t)rK · n− r − `

n− 1

]
≤ (1− p)(1−t)rK·

n−r−`
n−1 + e−

t2

2
rK·n−r−`

n−1

≤ e−(1−t)rpK·
n−r−`
n−1 + e−

t2

2
rK·n−r−`

n−1

≤ e−(1−t)rpK·
n−r−`
n−1 + e−

t2

2
rpK·n−r−`

n−1

≤ 2e−arpK·
n−r−`
n−1

where we set a = min
{

1− t, t22
}
> 0. This gives (66) and Lemma 7.7 is now established.

8 Establishing (37)

The rest of the proof is based on arguments similar to those used in [32, Sec. XIV and XV]:
Consider a scaling θ : N0 → N0 × [0, 1] as in the statement of Proposition 5.4. For the time being,
pick an integer R ≥ 2, and consider the decomposition

bn−`
2
c∑

r=2

(
n

`

)(
n− `
r

)
P [A`,r] =

R∑
r=2

(
n

`

)(
n− `
r

)
P [A`,r] +

bn
2
c∑

r=R+1

(
n

`

)(
n− `
r

)
P [A`,r] .

Let n go to infinity: The desired convergence (37) will be established if we show that

lim
n→∞

R∑
r=2

(
n

`

)(
n− `
r

)
P [A`,r] = 0, (67)

and

lim
n→∞

bn−`
2
c∑

r=R+1

(
n

`

)(
n− `
r

)
P [A`,r] = 0. (68)

The next sections are devoted to proving the validity of (67) and (68). Throughout, we use the
standard bound

(
n
r

)
≤
(
en
r

)r
which is valid for all r, n = 1, 2, . . . with r ≤ n. In particular, we will

repeatedly use the facts that (
n

`

)(
n− `
r

)
≤ n` · nr = n`+r, (69)

and (
n

`

)(
n− `
r

)
≤ n` ·

(
n

r

)
≤ n`

(en
r

)r
= n`+rerr−r. (70)
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8.1 Establishing (67)

Fix r = 2, 3, . . .. From (29), (33), (69), and Lemma 7.7, it follows that(
n

`

)(
n− `
r

)
P [A`,r] (71)

≤ n`+r · r`+r−2 (pnλn(Kn))`+r−1 (1− pn)r(Kn−r−`)
(

1− pnKn

n− 1

)r(n−r−`−Kn)

(72)

≤ n`+r · r`+r−2 ·
{

log n

n
· [1 + o(1)]

}`+r−1
(1− pn)r(Kn−r−`)

(
1− pnKn

n− 1

)r(n−r−`−Kn)

, (73)

where we have

(1− pn)r(Kn−r−`)
(

1− pnKn

n− 1

)r(n−r−`−Kn)

≤ exp

{
r(Kn − r − `) log(1− pn)− pnKn

n− 1
· r(n− r − `−Kn)

}
= exp

{
rKn log(1− pn) + r(−r − `) log(1− pn)− rpnKn +

rpnKn
2

n− 1
+
pnKn

n− 1
r(`+ r − 1)

}
= exp

{
−rpnKn

(
1− log(1− pn)

pn
− Kn

n− 1

)
+ r(−r − `) log(1− pn) +

pnKn

n− 1
(`+ r − 1)

}
. (74)

Under bounded r, ` and lim supn→∞ pn < 1, it holds that er(−r−`) log(1−pn) = O(1). Under
bounded r, ` and (31), it follows that

lim
n→∞

e
pnKn
n−1

(`+r−1) = 1.

Applying the above and (34) to (74), we obtain

(1− pn)r(Kn−r−`)
(

1− pnKn

n− 1

)r(n−r−`−Kn)

≤ O(1) · e−r(1−ε) logn = O(1) · n−r(1−ε). (75)

for arbitrary ε > 0. Substituting (75) into (73) and using the fact that r ≥ 2, we derive(
n

`

)(
n− `
r

)
P [A`,r] ≤ O(1) · n1−r(1−ε) · (log n)`+r−1 · r`+r−2 ≤ O(1) · n2ε−1 · (log n)`+r−1.

Since ε was arbitrary, we can select ε with 0 < ε < 1
2 so that 2ε− 1 < 0. This yields

lim
n→∞

(
n

`

)(
n− `
r

)
P [A`,r] = 0

for each r = 2, 3, . . .. Hence, for any bounded R, we immediately obtain the desired result

lim
n→∞

R∑
r=2

(
n

`

)(
n− `
r

)
P [A`,r] = 0.
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8.2 Establishing (68)

Consider now the range r = R+ 1, . . . , bn−`2 c, where we have

n− r − `
n− 1

≥ n− `
2(n− 1)

.

From (33), (70), and Lemma 7.7, it follows for all n sufficiently large that(
n

`

)(
n− `
r

)
P [A`,r] ≤ n`+rerr−r · rr−2 · (pnλn(Kn))r−1 · 2e−arpnKn

n−r−`
n−1

≤ n`+rerr−r · rr−2 ·
{

log n

n
· [1 + o(1)]

}r−1
· 2e−arpnKn

n−r−`
n−1

≤ 2n`+1(e2 log n))r · e−arpnKn
n−`

2(n−1)

= 2n`+1

(
exp

{
2 + log log n− apnKn

2

(
1− `− 1

n− 1

)})r
Since pnKn = Θ(log n) from (31), it holds that

2 + log log n− apnKn

2

(
1− `− 1

n− 1

)
= −Θ(log n).

This implies that there exists a positive constant c such that for all n sufficiently large.

2 + log log n− apnKn

2

(
1− `− 1

n− 1

)
≤ −c log n.

Therefore, it follows for all n sufficiently large that(
n

`

)(
n− `
r

)
P [A`,r] ≤ 2n`+1 · e−cr logn, (76)

yielding that

bn−`
2
c∑

r=R+1

(
n

`

)(
n− `
r

)
P [A`,r] ≤ 2n`+1

∞∑
r=R+1

n−cr =
2n`+1−c(R+1)

1− n−c
.

Now, with R selected such that

R >
`+ 1

c
− 1

we get `+ 1− c(R+ 1) < 0. Then, letting n→∞ we obtain the desired result

lim
n→∞

bn−`
2
c∑

r=R+1

(
n

`

)(
n− `
r

)
P [A`,r] = 0.
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[5] S. A. Çamtepe and B. Yener, “Key Distribution Mechanisms for Wireless Sensor Networks: a
Survey,” Technical Report TR-05-07, Computer Science Department, Rensselaer Polytechnic
Institute, Troy (NY), March 2005.

[6] H. Chan, A. Perrig and D. Song, “Random key predistribution schemes for sensor networks,”
in Proceedings of the 2003 IEEE Symposium on Research in Security and Privacy (SP 2003),
Oakland (CA), May 2003, pp. 197-213.

[7] R. Di Pietro, L.V. Mancini, A. Mei, A. Panconesi and J. Radhakrishnan, “Redoubtable sensor
networks,” ACM Transactions on Information Systems Security TISSEC 11 (2008), pp. 1-22.

[8] W. Du, J. Deng, Y.S. Han and P.K. Varshney, “A pairwise key pre-distribution scheme for
wireless sensor networks,” in Proceedings of the 10th ACM Conference on Computer and
Communications Security (CCS 2003), Washington (DC), October 2003, pp. 42-51.

[9] D. Dubhashi and A. Panconesi, Concentration of Measure for the Analysis of Randomized
Algorithms, Cambridge University Press, New York (NY), 2009.
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[14] S. Janson, T.  Luczak and A. Ruciński, Random Graphs, Wiley-Interscience Series in Discrete
Mathematics and Optimization, John Wiley & Sons, 2000.

[15] K. Joag-Dev and F. Proschan, “Negative association of random variables, with applications,”
The Annals of Statistics 11 (1983), pp. 266-295

[16] G.E. Martin, Counting: The Art of Enumerative Combinatorics, Springer Verlag New York,
2001.

[17] K. Rybarczyk, “Diameter, connectivity and phase transition of the uniform random intersec-
tion graph,” Discrete Mathematics 311 (2011), pp. 1998-2019.

[18] M.D. Penrose, Random Geometric Graphs, Oxford Studies in Probability 5, Oxford University
Press, New York (NY), 2003.

[19] A. Perrig, J. Stankovic and D. Wagner, “Security in wireless sensor networks,” Communications
of the ACM 47 (2004), pp. 53–57.

[20] T. K. Philips, D. F. Towsley, and J. Wolf, “On the diameter of a class of random graphs,”
IEEE Transactions on Information Theory 36:2, 1990, pp. 285-288.

[21] D.-M. Sun and B. He, “Review of key management mechanisms in wireless sensor networks,”
Acta Automatica Sinica 12 (2006), pp. 900-906.

[22] Y. Wang, G. Attebury and B. Ramamurthy, “A survey of security issues in wireless sensor
networks,” IEEE Communications Surveys & Tutorials 8 (2006), pp. 2-23.

[23] Y. Xiao, V.K. Rayi, B. Sun, X. Du, F. Hu and M. Galloway, “A survey of key management
schemes in wireless sensor networks,” Computer Communications 30 (2007), pp. 2314-2341.
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[32] O. Yağan and A.M. Makowski, “Modeling the pairwise key predistribution scheme in the
presence of unreliable links,” IEEE Transactions on Information Theory IT-59 (2013), pp.
1740-1760.
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