
FedSPD: A Soft-clustering Approach for Personalized Decentralized
Federated Learning

I-Cheng Lin Osman Yağan Carlee Joe-Wong
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University

Abstract

Federated learning has recently gained pop-
ularity as a framework for distributed clients
to collaboratively train a machine learning
model using local data. While traditional
federated learning relies on a central server
for model aggregation, recent advancements
adopt a decentralized framework, enabling
direct model exchange between clients and
eliminating the single point of failure. How-
ever, existing decentralized frameworks of-
ten assume all clients train a shared model.
Personalizing each client’s model can en-
hance performance, especially with heteroge-
neous client data distributions. We propose
FedSPD, an efficient personalized federated
learning algorithm for the decentralized set-
ting, and show that it learns accurate models
even in low-connectivity networks. To pro-
vide theoretical guarantees on convergence,
we introduce a clustering-based framework
that enables consensus on models for distinct
data clusters while personalizing to unique
mixtures of these clusters at different clients.
This flexibility, allowing selective model up-
dates based on data distribution, substan-
tially reduces communication costs compared
to prior work on personalized federated learn-
ing in decentralized settings. Experimental
results on real-world datasets show that Fed-
SPD outperforms multiple decentralized vari-
ants of personalized federated learning al-
gorithms, especially in scenarios with low-
connectivity networks.

1 Introduction

Federated Learning (FL) is a popular approach for dis-
tributed clients to collaboratively learn from their lo-
cal data. The most popular FL algorithm, FedAvg
(McMahan et al., 2017), and most of its variants op-

erate within a centralized federated learning (CFL)
framework, where a central server coordinates the
training process.1 In CFL, each client independently
trains a model on its local data and then sends the
model parameters to a central server for aggregation,
which is subsequently broadcast back to the clients
to begin a new training round. However, communica-
tion delays and bottlenecks often arise when managing
numerous mobile or IoT (Internet-of-Things) clients,
hampering CFL’s efficiency. Furthermore, this cen-
tralized structure poses risks of attacks and failures
due to the single point of failure (Lalitha et al., 2018).

Decentralized Federated Learning (DFL) ad-
dresses these limitations by adopting a fully decen-
tralized architecture where clients share their locally
trained model parameters directly with neighboring
clients, eliminating the need for a central server
(Lalitha et al., 2018). This approach allows for sub-
stantial reductions in communication and computa-
tional costs (Beltrán et al., 2023) while mitigating
vulnerabilities associated with a central server. How-
ever, most existing DFL methods focus on learning a
single global model for all clients, aiming for consen-
sus across clients. This global model, however, may
under-perform on clients with non-IID (independent
and identically distributed) local data. To address
this challenge, we aim to design an efficient person-
alized, decentralized federated learning algo-
rithm that personalizes models to each client’s data
distribution without relying on a central server and
preserves DFL’s communication benefits by limiting
the required communication between clients. Person-
alized DFL can be particularly useful when clients are
IoT devices using device-to-device communication pro-
tocols, e.g., vehicles learning personalized models of
human driver preferences (Nakanoya et al., 2021).

Personalization of a shared global model has shown
to improve performance in CFL settings (Ruan and

1Note that clients in the CFL setting still train their
models in a distributed manner; the term ”centralized”
simply refers to the presence of a central server managing
the clients’ interactions.

ar
X

iv
:2

41
0.

18
86

2v
1

 [
cs

.L
G

]
 2

4
O

ct
 2

02
4

FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning

Joe-Wong, 2022; Marfoq et al., 2021). However, ex-
tending such personalization methods to DFL poses
significant technical challenges. DFL algorithms
typically strive for consensus by sharing local mod-
els among neighboring clients, which represent only
a subset of all clients. Ensuring that all clients can
benefit from each other’s updates despite limited com-
munication is a key challenge (Beltrán et al., 2023).
In contrast, learning personalized models requires in-
tentionally maintaining differences in clients’ models,
particularly for non-IID data. This makes it difficult to
distinguish whether model disparities are due to com-
munication issues or differences in local data distribu-
tions. We overcome this challenge by quantifying sim-
ilarities between client data using a clustering-based
method, allowing the training of distinct models for
different data clusters, which are then personalized to
each client’s unique data mixture.

Prior works that seek to personalize models in DFL
settings, including cluster-based methods, are typ-
ically straightforward extensions of personalization
methods designed for CFL settings, which do not take
into account the distinct communication patterns in
DFL and thus perform poorly when the client network
has poor connectivity. For example, a näıve clustering
method assigns each client to a single cluster based
on its data distribution (Ghosh et al., 2020). How-
ever, such ”hard” clustering assumes identical distri-
butions within the same cluster, which is rarely the
case. Instead, we adopt a soft clustering approach,
as explored in CFL settings (Ruan and Joe-Wong,
2022; Marfoq et al., 2021), where each client’s data
is modeled as an unknown mixture of distributions,
and a model is trained for each cluster in this mix-
ture. Existing DFL soft clustering approaches require
clients to train models for all clusters in every round
(Marfoq et al., 2021), imposing significant train-
ing and communication overhead that scales lin-
early with the number of clusters. This is particu-
larly problematic in DFL scenarios, where clients often
have limited communication and computation capac-
ity (Nguyen et al., 2021). Therefore, we introduce a
training algorithm that (i) learns each client’s mixture
coefficients, (ii) ensures consensus on models for each
cluster, and (iii) unlike prior work, avoids communica-
tion resource requirements that scale with the number
of clusters. Our contributions are as follows:

• We propose FedSPD, a novel FL algorithm for
clients that utilizes soft clustering to train per-
sonalized models in a decentralized manner. Fed-
SPD allows clients to reach a consensus on cluster-
specific models and adapt their cluster mixture
estimates over time, while requiring each client to
train only one cluster model per training round,

significantly reducing communication costs.

• We prove the convergence of FedSPD in The-
orem 4. This proof adopts a different approach
from prior work on soft clustering in DFL, which
typically requires clients to train models for every
cluster in each round (Marfoq et al., 2021).

• We demonstrate through experiments on real-
world datasets that FedSPD outperforms ex-
isting DFL algorithms (both personalized and
non-personalized) and, in some cases, approaches
the accuracy of centralized training algorithms.
Furthermore, we show that FedSPD’s perfor-
mance remains robust across different client com-
munication topologies, making it particularly
effective in networks with low connectivity.

Following a review of related work in Section 2, we
present our DFL model in Section 3 and introduce the
FedSPD algorithm in Section 4. We then provide a
convergence proof in Section 5 and demonstrate the
algorithm’s superior performance in Section 6, before
concluding in Section 7.

2 Related Work

Decentralized Federated Learning has its roots in
decentralized optimization (Nedic and Ozdaglar, 2009;
Wei and Ozdaglar, 2012; Zhang et al., 2021) and in
particular decentralized Stochastic Gradient Descent
(SGD) (Lian et al., 2017). Several methods have
been explored for decentralized optimization (Nedic
and Ozdaglar, 2009; Wu et al., 2017; Lü et al., 2020),
while the convergence analysis of decentralized SGD
was first presented by Yuan et al. (2016) and Sirb and
Ye (2018) with delayed information, highlighting de-
centralized SGD’s advantages over centralized meth-
ods (Lian et al., 2017). This literature establishes con-
ditions on client connectivity such that all local mod-
els will converge to a consensus model (Lian et al.,
2017). The effects of client communication topologies
in DFL (Lalitha et al., 2018; Warnat-Herresthal et al.,
2021) have also been studied, and gradient tracking
techniques based on push-sum algorithms have been
proposed to relax the assumptions on client connectiv-
ity needed to show consensus (Nedić and Olshevsky,
2014, 2016; Assran et al., 2019).

Personalization in CFL is generally motivated by
highly non-IID client data (McMahan et al., 2017;
Collins et al., 2021), which can impede convergence
and lead to a global model performing poorly at some
clients, which may discourage them from participat-
ing in the FL process (Huang et al., 2020). Com-
mon techniques include local finetuning (Sim et al.,

I-Cheng Lin, Osman Yağan, Carlee Joe-Wong

2019), model interpolation (Mansour et al., 2020),
meta-learning (Fallah et al., 2020), pFedME (T Dinh
et al., 2020) adding regularization terms, and multi-
task learning (Smith et al., 2017; Yousefi et al., 2019;
Li et al., 2021). Clustered FL in particular includes
hard clustering, which partitions clients into clusters
based on their data’s similarity (Ghosh et al., 2020)
and its variations (Xie et al., 2021; Briggs et al., 2020;
Duan et al., 2021; Mansour et al., 2020). In soft clus-
tered FL, one instead assumes that each client’s data
conforms to a mixture of distributions (Marfoq et al.,
2021; Ruan and Joe-Wong, 2022). Like these prior
works, we use models learned for each cluster as guides
for a personalized model; unlike them, we add a final
personalization step to ensure good performance. We
discuss this comparison in more detail in Section 4.

Some prior works have considered combining per-
sonalization and DFL. Jeong and Kountouris
(2023) proposed a distillation-based algorithm, while
Ma et al. (2022) proposed a communication-efficient
algorithm with model pruning and neighbor selection.
Sadiev et al. (2022) proves lower bounds of personal-
ized DFL algorithms under specific objectives. Unlike
these works, we provide theoretical convergence guar-
antees under more general learning objectives. Some
centralized personalization algorithms also include de-
centralized versions, such as FedEM (Marfoq et al.,
2021) and hard-clustered FL (Ghosh et al., 2020). We
experimentally show (Section 6) that FedSPD outper-
forms both FedEM and hard-clustered FL, particularly
in low-connectivity settings. Moreover, we only require
each client to train one cluster model at a time, which
leads to significantly smaller computational and com-
munication overhead than FedEM.

3 Problem Formulation

We illustrate our system model in Figure 1 and sum-
marize our notation in Table 1. We suppose there are
N clients that are connected to each other via a graph
with adjacency matrix A and use Ni to denote the set
of client i’s neighbors. Each client i = 1, 2, . . . , N has
a fixed set Di of training data. Clients with a shared
edge can directly communicate with each other, e.g.,
to send model parameters.

Each data point d ∈ Di on each client i is ran-
domly sampled from one of S unique probability dis-
tributions (clusters) denoted as P1, P2, . . . PS , as illus-
trated in Figure 1. Consistent with standard clus-
tering methods, we take S as a hyperparameter pre-
determined (Ruan and Joe-Wong, 2022). Letting x
denote the parameters of a machine learning model,
we define the loss function l(x;D) as measuring the
sum of the model losses with parameters x over all

Figure 1: Illustration of the mixture of data distribu-
tion at clients in DFL.

points d in a dataset D. Cross-entropy loss, for
example, is a typical loss function for classification
problems. The risk of cluster s can then be writ-
ten as: Fs(x) = ED∼Ps [l(x;D)]. Our goal is for
the clients to collectively find the optimal (i.e., risk-
minimizing) model parameters for each cluster, which
we also call the cluster centers and can be written as:
c∗s = argminxFs(x), for s = 1, 2, ..., S.

Given the cluster centers and mixture coefficients uis,
which represent the proportion of cluster s in client
i’s data, each client can find a personalized model
for its local data mixture (Section 4). By focusing
on common cluster centers, personalized learning can
be reframed as achieving consensus on these centers,
addressing a key challenge in personalized DFL. How-
ever, clients cannot directly determine the cluster cen-
ters using their local data Di since it is a mixture of
clusters, and they do not know the cluster assignments
of their data points. In the next section, we present
an algorithm for clients to estimate the cluster centers
and use them to derive personalized models.

4 Proposed FedSPD Algorithm

At each round t = 1, 2, . . . , T , each client i maintains
two types of parameters: (i) its estimate of the cluster
center ctis for each cluster s, and (ii) the cluster to
which each data point d ∈ Di is associated, and the
corresponding fraction of its data belonging to each
cluster s, denoted by ut

is. In each round t, clients
update these parameters based on their local data and
information received from their neighbors.

Each round of training consists of four steps: (1)
local training, (2) parameter exchange, (3) parameter
(i.e., cluster center) update, and (4) data clustering.
Following the last training round, we conduct a final
personalization step, which involves a local training
update to each client’s personalized model. The entire

FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning

Name Notation Domain Description
Number of Clients / Clusters N,S N, S ∈ N The total number of clients / clusters
Learning Rate ηt ηt ∈ R, 0 < η < 1 Define the learning rate at time t of the task
Number of Local Updates τ τ ∈ N Number of local updates in each training round
Client Neighbors Ni Ni ∈ P(N) Indices (in {1, 2, . . . , N}) of client i’s neighbors

Final Model Parameters xi xi ∈ R1×X Final model parameters of client i

Final Concatenated Model Parameters X X ∈ RN×X Concatenated personalized model parameters

Local Dataset Dt
is Dt

is ⊆ Dt
i , client i’s data Data at client i associated with cluster s

Cluser Selection sti sti ∈ {1, 2, . . . , S} Index of cluster that client i trains in round t

Portion of Clusters ut
is ut

is ∈ R, 0 < uis ≤ 1 Portion of data for client i of cluster s at time t

Concatenated Portions of Clusters U(t) U ∈ RN×S Concatenated portion of data of all clients

Average Cluster Centers ct
s ct

s ∈ RX Average center of cluster s of all clients at time t

Concatenated Cluster Centers Ct
s Ct

s ∈ RN×X Concatenated centers of cluster s at time t

Collection of Cluster Centers C(t) C(t) ∈ RS×N×X C(t) = {Ct
1,C

t
2, ...,C

t
S}

Weight Matrix Wt
s Wt

s ∈ RN×N Weight matrix of cluster s at time t

Augmented Adjacency Matrix A A ∈ RN×N Augmented adjacency matrix with diagonal ele-
ments equal to 1

Concatenated Gradients Gt
s Gt

s ∈ RN×X Concatenated gradients at time t for cluster s,
Gt

s := [∇F1, ...,∇FN]

Table 1: Mathematical notations used in the paper.

training algorithm is shown in Algorithm 1.

Step 1: Local training (line 13 in Algorithm 1). In
round t, each client i has an estimated portion ut

is of

its data coming from cluster s, where
∑S

s=1 u
t
is = 1.

These values are computed at the end of the previous
round (step 4). Client i then selects cluster s to update
with probability uis, ensuring that clients contribute
more to clusters where they have more data. By se-
lecting only one cluster per round, FedSPD keeps the
training overhead independent of the number of clus-
ters S, as each client always trains a single model.

Once a cluster s is selected, the client performs τ SGD
updates on its current estimate ctis for the cluster cen-
ter using learning rate η. Gradients are computed on
the risk of the data associated with the selected clus-
ter, Dt

i,s, as ∇cℓ(c; d), where d is sampled uniformly at
random from Dt

i,s. The dataset Dt
i,s is formed in the

previous round’s clustering step, which assigns each
data point d ∈ Di to a cluster.

Step 2: Parameter exchange (line 20 in Algorithm
1). Let sti be the cluster selected by client i in round
t, resulting in an updated value for ctisti

. Client i then

broadcasts sti and ctisti
to its neighbors j where j ∈ Ni.

Consequently, each client i receives the communica-
tions {stj , ctjstj}j∈Ni

from all its neighbors.

Step 3: Cluster center updates (line 26 in Algo-
rithm 1). After receiving the updated cluster center
parameters and indices from its neighbors, each client
i updates its estimate of each cluster center s using
the average of the received updates for cluster s:

ct+1
is =

1

|j ∈ N [i] ∩ stj = s|
∑

j∈N [i]∩stj=s

ctjs (1)

Here, N [i] is the closed neighborhood, including client

i and its neighboring clients. |j ∈ N [i]∩ stj = s| repre-
sents the number of clients j that both selected cluster
s for updating and belong to N [i]. The client applies
Eq. (1) for all clusters s for which it received at least
one update. If no updates for cluster s are received in
round t, i.e., none of the neighbors selected it, the es-
timated cluster center remains unchanged: ct+1

is = ctis.
This update rule can be expressed in matrix form as
Ct+1

s = Wt
sC

t
s, where Wt

s is the weight matrix for
cluster s at time t, and Ct

s = [ct1s, . . . , c
t
Ns] contains

the concatenated cluster centers.

Step 4: Data clustering (line 33 in Algorithm 1).
After updating the cluster centers, each client i asso-
ciates its data points d ∈ Di with a cluster. It calcu-
lates the loss ℓ(ct+1

is , d) for each cluster s and assigns
data point d to the cluster with the lowest loss. Us-
ing these new associations, ut+1

is , the fraction of data
points linked to cluster s, is computed. This step en-
ables FedSPD to adapt the mixture coefficients as clus-
ter center estimates evolve. With clustering complete,
the process moves to the next round, t + 1, starting
again with local training.

Final Step: Personalization (line 42 in Algorithm
1). After T rounds, each client i computes a personal-
ized model as a weighted sum of its cluster centers:

xi =

S∑
s=1

uT
i,sc

T
i,s (2)

Marfoq et al. (2021) show that this weighted sum pro-
vides the optimal personalized model for client i when
the loss function ℓ is convex. However, since most
practical loss functions, such as cross-entropy for neu-
ral networks, are not convex, this aggregated model
may not perform optimally in practice. To address
this, each client runs a few additional local training
iterations, starting from xi computed in Eq. (2), using

I-Cheng Lin, Osman Yağan, Carlee Joe-Wong

its entire local dataset Di.

Algorithm 1 Our Proposed FedSPD Algorithms

1: procedure FedSPD(η, τ , S, T , K0, W
t
s)

2: for t = 1, 2, ..., T τ do
3: LocalUpdate(C(t))
4: if t mod τ = 0 then
5: ParameterExchange(C(t), A)
6: ParameterUpdate(C(t), A)
7: DataClustering(C(t), A)
8: end if
9: end for
10: FinalPhase(C(t), u(t))
11: end procedure
12:
13: procedure LocalUpdate(C(t))
14: for i = 1, 2, ..., N do
15: Client i select cluster sti to update
16: ct+1

sti
= ctsti

− ηt∇fis(c
t
si)

17: end for
18: end procedure
19:
20: procedure ParameterExchange(C(t), A)
21: for i = 1, 2, ..., N do
22: For each client i, exchange the updated param-

eter cis and the selected cluster s with client j ∈ Ni

23: end for
24: end procedure
25:
26: procedure ParameterUpdate(C(t), A)
27: Construct Wt

s for each cluster s. If client i is not
selected to update cluster s, the row i and column i
will only have diagonal element equal to 1, else equal
to 0 , meaning the model parameter will remain the
same as it was in the previous epoch.

28: for s = 1, 2, ..., S do
29: Ct+1

s = Wt
sC

t+1
s

30: end for
31: end procedure
32:
33: procedure DataClustering(C(t), A)
34: for i = 1, 2, ..., N do
35: for dk ∈ Di do
36: Label data dk with the least loss of all the

model parameters among all clusters.
37: end for
38: For s = 1, ..., S update ut

i,s for client i
39: end for
40: end procedure
41:
42: procedure FinalPhase(C(t), ut)
43: for i = 1, 2, ..., N do
44: Xi =

∑S
s=1 u

t
i,sC

t
s(i, :)

45: end for
46: LocalUpdate(X) ▷ Do the local update using all

data of the client for the aggregated training
47: end procedure

Comparison to prior soft clustering algorithms.
Marfoq et al. (2021) and Ruan and Joe-Wong (2022)
use soft clustering to learn cluster centers and person-
alized models without this final personalization step,
directly learning personalized models in each iteration,

with a central server estimating the cluster centers. In
DFL, achieving consensus on cluster models is difficult
due to the extensive parameter exchanges needed for
model propagation, particularly when clients have few
neighbors. Marfoq et al. (2021) proposes a decentral-
ized algorithm that sets the personalized model as a
weighted sum of the cluster centers at each round’s
end, which can be sub-optimal for non-convex loss
functions. Such a framework can lead to overfitting in
DFL, as clients have low connectivity and thus cannot
rely on receiving many other clients’ updates in each
training round. Adding a final personalization step, as
we use in FedSPD, is likely to exacerbate overfitting,
as cluster center gradients already incorporate person-
alized models. In Section 6, we demonstrate that Fed-
SPD outperforms the FedEM algorithm by (Marfoq
et al., 2021), which requires each client to train all
models per round, incurring significantly higher com-
putational and communication costs than FedSPD.

5 Convergence Analysis

We prove that FedSPD converges in Theorem 4.
We first outline our technical assumptions and then
present our main results. All proof details can be
found in Appendix A due to space limitations.

Assumptions. Our analysis relies on the following
assumptions on the risk function and gradient esti-
mates, which are common in the literature (Marfoq
et al., 2021; Ghosh et al., 2020; Koloskova et al., 2020).

Assumption 1 (Strong convexity and smoothness)
The risk function Fs for each cluster s is µ-strongly
convex and L-smooth. That is, for some L > 0:

∥∇Fs(x)−∇Fs(y)∥ ≤ L∥x− y∥;

∇Fs(x)
T (y − x) +

µ

2
∥y − x∥2 ≤ Fs(y)− Fs(x)

(3)

Assumption 2 (Bounded risk function) The risk
function Fs for each cluster s is lower-bounded by some
Finf > 0, i.e., Fs(x) ≥ Finf .

Assumption 3 (Unbiased gradient estimation) The
gradient is unbiased, i.e., E[∇f(x)] = ∇F (x).

Assumption 4 (Bounded gradient) We have
E∥∇f(x)∥2 ≤ σ2 for some σ2 > 0.

Assumption 5 (Bounded variance of gradient esti-
mation) The gradient estimation is bounded:

E∥∇f(x)−∇F (x)∥2 ≤ v2, for some v2 > 0. (4)

Assumption 6 (Bounded cluster error) Following
(Ruan and Joe-Wong, 2022; Ghosh et al., 2020), at

FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning

a certain training step, all estimated cluster centers
have bounded distance to the optimal centers. That is:

∥ctis − c∗s∥ ≤ (0.5− α0)

√
µ

L
δ,∀s ∈ 1, 2, ..., S (5)

where 0 < α0 ≤ 0.5. Without loss of generality, we
also assume for all s, ∥c⋆s∥ ≤ 1.

Note that this assumption will always hold for some
value of δ; however, a larger δ, and thus larger cluster
error, will also lead to slower convergence.

We finally follow Koloskova et al. (2020) in assuming
that clients communicate sufficiently for consensus:

Assumption 7 (Expected consensus rate) For some
constant p ∈ (0, 1] and integer β ≥ 1, such that Cs,
the concatenated model parameter matrix of cluster s
and all non-negative integer l ≤ T

β we have:

E

∥∥∥∥∥∥Cs

(l+1)β−1∏
t=lβ

Wt
s −Cs

∥∥∥∥∥∥
2

F

≤ (1− p)∥Cs −Cs∥2F (6)

where C̄s := [c̄s, ..., c̄s]︸ ︷︷ ︸
total N terms.

is the matrix with every col-

umn equal to the average of the model parameters.

For simplicity, we further assume that all clients have
the same amount of data (i.e., Di has the same number
of data points for all clients i) and that the number of
local updates τ = 1 in the remainder of this section.
These can be easily relaxed if needed.

Results. Without loss of generality, we present our
results for a specific cluster i, where i = 1, . . . , S. Since
the convergence proof is identical for all S clusters,
we omit the cluster index for clarity. Let n be the
number of clients chosen to update the selected cluster.
If the total data across clients is roughly uniform for
each cluster, then n ≈ N

S . We begin by bounding the
distance of the average cluster center to its optimality:

Theorem 1 (Descent lemma) The distance

E
∥∥∥c(t+1) − c⋆

∥∥∥2 between the average cluster cen-

ter and its optimum c⋆ satisfies the bound (7) with
proper choice of learning rate ηt:

≤ ηt(L+ µ)

n

n1∑
i=1

∥∥∥c(t) − c
(t)
i

∥∥∥2 + 18L2ϵ2Nη2
t

n2
+ v2η2

t

+
(
1− ηtµ+

ηtµϵN
n

)∥∥∥c(t) − c⋆
∥∥∥2 + 2ϵN (S − 1)v2η2

t

n2

+

(
4η2

t (n− ϵN)2L

n2
+ 2ηt −

2ηtϵN
n

)(
f
(
c(t)
)
− f (c⋆)

)
(7)

Here ϵN is the bound of the expected number of clients
using the wrong data in Lemma 2.

We then derive an expression for the cluster centers
estimated by individual clients.

Theorem 2 (Update rule) Clients’ estimated centers
of the cluster after time t can be written as:

Ct = Clβ
t−1∏

m=lβ

Wm −
t−1∑

m=lβ

(
ηtG

m
m∏

r=t−1

Wr

)
(8)

Here l ∈ N and β is the the constant in Assumption
7. Given this expression, we can relate the clients’
cluster center estimates to their average, showing that
they eventually reach a near-consensus:

Theorem 3 (Consensus distance) Define Et =
1
N

∑N
i=1 E∥c

(t)
i − c(t)∥2, the expected squared distance

of the model parameters of client i to the average model
parameter. It is upper-bounded by(

1− p

2

)
Emβ+

t−1∑
j=mβ

(
pEj

16β
+

18βnσ2 + nv2p

Np
η2
j

+

(
36Lnβη2

t

pN

)
(f(cj)− f(c⋆))

) (9)

Here p is the constant defined in Assumption 7.

Theorem 4 (Cluster convergence rate) For given tar-
get accuracy ϵ, there exists a constant learning rate for
which ϵ accuracy can be reached after T iterations.[

1 +
(n− ϵN

n

)
ηL
] T∑

t=0

rt
RT

(Ef(ct)− f(c⋆))

+ µE∥c(T+1) − c⋆∥2 ≤ ϵ

(10)

Here wt is a sequence of positive weights defined in
Lemma 3 in Appendix A.4 and RT =

∑T
t=1 rt. Rear-

ranging, we find that the number of required iterations
T is at the order:

Õ

(√
L+ µ√
ϵµ

(
σ +

√
n√
N

v

)
+

Lβn
3
2

µp
√
N(n− ϵN)

ln(
1

ϵ
)

+ v2
n2 + L2ϵ2N + ϵN (S − 1)

µn2ϵ

) (11)

The convergence rate, asymptotically requiring
O(1/

√
ϵ) training rounds to reach an error ϵ, aligns

with previous works on DFL without personalization
(Koloskova et al., 2020), leading us to conjecture that
FedSPD will converge well. We note that the network
connectivity appears in this bound through the con-
stant p ∈ (0, 1] (Assumption 7), where higher connec-
tivity indicates a larger p. However, the second term
in the convergence rate that involves p is not the domi-
nant term. Thus, as long as the network is connected,
we expect that the effect of network connectivity on
convergence will be relatively minor. Our simulation
results in later Section 6.2 support this observation.

I-Cheng Lin, Osman Yağan, Carlee Joe-Wong

6 Simulation Results

In this section, we evaluate the performance of our
proposed algorithms and compare them with existing
methods. We also analyze how different network con-
nectivity and topology influence the performance.

Datasets and models. Unless specified, we use
N = 100 clients for all experiments on hand-written
character recognition (MNIST and EMNIST datasets
(Cohen et al., 2017)) and N = 25 clients for all experi-
ments on image classification (CIFAR-10 and CIFAR-
100 datasets (Krizhevsky et al., 2009)). We use a CNN
(convolutional neural network) model for each client
with data from a mixture of S = 2 distributions, DA

andDB . Each client draws 10% to 90% of its data from
DAand the remainder from DB with unbalanced class
(Marfoq et al., 2021) or image rotation (Ruan and Joe-
Wong, 2022) or both. We follow Ruan and Joe-Wong
(2022) and Marfoq et al. (2021) for other parameter
settings. Details are described in the Appendix B.
The test accuracy is evaluated on each client’s local
test dataset, which is unseen during training.

Client communications. Unless specified, the client
graph is a connected Erdos-Renyi (ER) random graph
(Erdos et al., 1960) with average degree from 5 to 12;
more specifics are in the Appendix. To avoid the label
switching problem (Stephens, 2000), we compute the
cosine similarities of the model parameters received
from other clients to ensure cluster consensus.

Baselines. We compare FedSPD with: (i) centralized
and decentralized FedAvg (McMahan et al., 2017);
(ii) centralized and decentralized FedEM (Marfoq
et al., 2021), a prior soft clustering method; (iii) cen-
tralized and decentralized versions of FedSoft (Ruan
and Joe-Wong, 2022), which also uses soft clustering;
(iv) centralized and decentralized IFCA (Ghosh et al.,
2020) using hard clustering; (v) centralized and decen-
tralized pFedMe (T Dinh et al., 2020) another state-
of-the-art FL personalization approach without clus-
tering; and (vi) local training on local dataset only.

Additional results on the impact of (i) τ (local up-
date rounds), (ii) the number of epochs in the last
phase, and (iii) S (the number of clusters); and (iv)
extended experiments are included in Appendix B.

6.1 Comparison with Baselines

We first compare our method with other decentral-
ized personalized methods. Our results on EMNIST,
CIFAR-10, and CIFAR-100 are shown in Table 2.
FedSPD obtains higher test accuracy among all DFL
methods, approaching the accuracy of CFL. The cen-
tralized methods still outperform decentralized meth-
ods, as expected from prior literature (Sun et al.,

Figure 2: Box-plot for accuracy across clients on EM-
NIST dataset. FedSPD has much lower variance in
test accuracy across clients.

Figure 3: Training accuracy of different DFL methods
versus number of epochs on CIFAR-10 (N = 25). Fed-
SPD converges faster in terms of training accuracy
compared to all other DFL methods.

2023). However, decentralized methods offer advan-
tages such as lower communication traffic and in-
creased robustness, as they do not rely on a single
point of failure like a centralized server. Figure 3 shows
the training accuracy versus number of epochs on the
CIFAR-10 dataset. FedSPD converges faster than all
other DFL algorithms in terms of training accuracy.
This shows that each of the clusters in FedSPD does
converge as desired. Note that compared to FedEM,
another soft clustering method, our FedSPD needs
half the communication cost, since FedEM clients ex-
change the information of all S = 2 clusters.

To gaurantee the fairness across clients, we show
the box plot of the final test accuracy across different
clients on EMNIST in Figure 2. FedSPD has much
less variance in accuracy across different clients, vali-
dating that its improvement in average accuracy does
not come from high accuracy in a few clients.

6.2 Effects of Network Connectivity

In this section, we investigate how the performance
varies with the connectivity of the client network.

Figure 4 shows the test accuracy of different DFL

FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning

DFL CFL
Dataset FedSPD FedEM IFCA FedAvg FedSoft pFedMe FedEM IFCA FedAvg FedSoft pFedMe Local
EMNIST 84.16 80.63 83.82 77.87 74.81 81.61 88.83 89.42 88.81 84.97 90.95 57.64
CIFAR-10 68.71 50.02 51.75 49.10 42.38 50.29 79.93 79.76 79.44 76.62 79.12 42.38

CIFAR-100 41.12 18.12 17.36 17.34 13.17 18.31 44.54 43.82 43.33 39.76 7.262 13.14

Table 2: FedSPD achieves higher test accuracy than other DFL algorithms and at times comparable test accuracy
to CFL algorithms on EMNIST, CIFAR-10 and CIFAR-100 datasets. Accuracy in percentage (%)

Figure 4: Test accuracy of different methods under dif-
ferent connectivity of ER Random Graph on CIFAR-
100 dataset (N = 15). FedSPD shows consistently
high test accuracies compare to other DFL methods.

methods under different connectivity on the CIFAR-
100 dataset using the ER Random Graph, over three
experimental runs. FedSPD consistently shows the
highest test accuracies, though other methods’ perfor-
mance begins to increase as the graph becomes more
connected (a higher probability of link formation).

Tables 3 and 4 show the test accuracy of FedSPD in
different type of networks and connectivity. We use
three different network topologies: the ER Random
Graph; the Barabasi-Albert (BA) Model (Albert and
Barabási, 2002) with preferential attachment repre-
senting the network following the power law; and the
Random Geometrical Graph (RGG) (Penrose, 2003),
which is often used in wireless communication and
Internet-of-Things (IoT) scenarios with high cluster-
ing effect (Penrose, 2003). We observe that the final
test accuracy does not vary significantly across differ-
ent network topologies and levels of connectivity in
MNIST. In EMNIST, the test accuracy slightly in-
creases when the average degree increases. The test
accuracy is more stable in RGG under different con-
nectivity, which we conjecture is due to RGG’s highly
clustered nature. Thus, as long as the network is con-
nected, FedSPD performs well in both high and low
connectivity scenarios and across various types of net-
works, as we expect from Theorem 4, FedSPD con-
verges regardless of the network topology.

2The centralized pFedMe on CIFAR-100 does not con-
verge in the various settings of hyperparameters we tried.

Average Degree 6 8 10 12 14
ER 92.86 92.93 93.37 93.31 93.26
BA 93.06 92.58 92.56 92.87 93.17
RGG 92.86 92.61 92.84 93.49 92.97

Table 3: FedSPD shows consistently high test accura-
cies on MNIST data for N = 50 clients.

Average Degree 8 12 16 20
ER 79.79 82.26 84.28 84.49
BA 79.45 82.13 84.58 84.73
RGG 82.26 83.49 84.06 84.08

Table 4: FedSPD shows consistently high test accura-
cies on EMNIST data for N = 50 clients.

7 Conclusion

We propose FedSPD, a soft clustering approach that
enables federated training of personalized models in a
decentralized setting. FedSPD models each FL client’s
data as a mixture of cluster distributions and aims to
learn a distinct model for each cluster. In the final
phase, all models are aggregated and further person-
alized for each client. Importantly, FedSPD requires
each client to train only one cluster model per training
round, ensuring scalability with the number of clusters
and works well when communication resource is lim-
ited. We theoretically demonstrate that FedSPD can
achieve consensus within each cluster. Our experi-
ments on real-world datasets show that FedSPD out-
performs previous algorithms for personalized, decen-
tralized FL and performs well even in low-connectivity
networks. For future extensions, this work can serve
as a foundation for various applications, such as envi-
ronmental monitoring in IoT, object identification in
AR/VR, or autonomous driving, all of which benefit
from the low latency of direct communication and data
similarity among adjacent devices.

References

Albert, R. and Barabási, A.-L. (2002). Statistical me-
chanics of complex networks. Reviews of modern
physics, 74(1):47.

Assran, M., Loizou, N., Ballas, N., and Rabbat, M.
(2019). Stochastic gradient push for distributed
deep learning. In International Conference on Ma-
chine Learning, pages 344–353. PMLR.

I-Cheng Lin, Osman Yağan, Carlee Joe-Wong

Beltrán, E. T. M., Pérez, M. Q., Sánchez, P. M. S.,
Bernal, S. L., Bovet, G., Pérez, M. G., Pérez, G. M.,
and Celdrán, A. H. (2023). Decentralized federated
learning: Fundamentals, state of the art, frame-
works, trends, and challenges. IEEE Communica-
tions Surveys & Tutorials.

Briggs, C., Fan, Z., and Andras, P. (2020). Feder-
ated learning with hierarchical clustering of local up-
dates to improve training on non-iid data. In 2020
International Joint Conference on Neural Networks
(IJCNN), pages 1–9. IEEE.

Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A.
(2017). Emnist: Extending mnist to handwritten
letters. In 2017 international joint conference on
neural networks (IJCNN), pages 2921–2926. IEEE.

Collins, L., Hassani, H., Mokhtari, A., and Shakkot-
tai, S. (2021). Exploiting shared representations
for personalized federated learning. In International
conference on machine learning, pages 2089–2099.
PMLR.

Duan, M., Liu, D., Ji, X., Liu, R., Liang, L.,
Chen, X., and Tan, Y. (2021). Fedgroup: Effi-
cient federated learning via decomposed similarity-
based clustering. In 2021 IEEE Intl Conf on Par-
allel & Distributed Processing with Applications,
Big Data & Cloud Computing, Sustainable Comput-
ing & Communications, Social Computing & Net-
working (ISPA/BDCloud/SocialCom/SustainCom),
pages 228–237. IEEE.

Erdos, P., Rényi, A., et al. (1960). On the evolution
of random graphs. Publ. math. inst. hung. acad. sci,
5(1):17–60.

Fallah, A., Mokhtari, A., and Ozdaglar, A. (2020).
Personalized federated learning: A meta-learning
approach. arXiv preprint arXiv:2002.07948.

Ghosh, A., Chung, J., Yin, D., and Ramchandran, K.
(2020). An efficient framework for clustered feder-
ated learning. Advances in Neural Information Pro-
cessing Systems, 33:19586–19597.

Huang, T., Lin, W., Wu, W., He, L., Li, K., and
Zomaya, A. Y. (2020). An efficiency-boosting client
selection scheme for federated learning with fairness
guarantee. IEEE Transactions on Parallel and Dis-
tributed Systems, 32(7):1552–1564.

Jeong, E. and Kountouris, M. (2023). Personalized de-
centralized federated learning with knowledge distil-
lation.

Koloskova, A., Loizou, N., Boreiri, S., Jaggi, M., and
Stich, S. (2020). A unified theory of decentralized
sgd with changing topology and local updates. In In-
ternational Conference on Machine Learning, pages
5381–5393. PMLR.

Krizhevsky, A., Hinton, G., et al. (2009). Learning
multiple layers of features from tiny images.

Lalitha, A., Shekhar, S., Javidi, T., and Koushan-
far, F. (2018). Fully decentralized federated learn-
ing. In Third workshop on bayesian deep learning
(NeurIPS), volume 2.

Li, T., Hu, S., Beirami, A., and Smith, V. (2021).
Ditto: Fair and robust federated learning through
personalization. In International conference on ma-
chine learning, pages 6357–6368. PMLR.

Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang,
W., and Liu, J. (2017). Can decentralized algo-
rithms outperform centralized algorithms? a case
study for decentralized parallel stochastic gradient
descent. Advances in neural information processing
systems, 30.

Lü, Q., Liao, X., Li, H., and Huang, T. (2020).
A computation-efficient decentralized algorithm for
composite constrained optimization. IEEE Trans-
actions on Signal and Information Processing over
Networks, 6:774–789.

Ma, Z., Xu, Y., Xu, H., Liu, J., and Xue, Y. (2022).
Like attracts like: Personalized federated learning in
decentralized edge computing. IEEE Transactions
on Mobile Computing, pages 1–17.

Mansour, Y., Mohri, M., Ro, J., and Suresh, A. T.
(2020). Three approaches for personalization with
applications to federated learning. arXiv preprint
arXiv:2002.10619.

Marfoq, O., Neglia, G., Bellet, A., Kameni, L., and
Vidal, R. (2021). Federated multi-task learning un-
der a mixture of distributions. Advances in Neural
Information Processing Systems, 34:15434–15447.

McMahan, B., Moore, E., Ramage, D., Hampson, S.,
and y Arcas, B. A. (2017). Communication-efficient
learning of deep networks from decentralized data.
In Artificial intelligence and statistics, pages 1273–
1282. PMLR.

Nakanoya, M., Im, J., Qiu, H., Katti, S., Pavone, M.,
and Chinchali, S. (2021). Personalized federated
learning of driver prediction models for autonomous
driving. arXiv preprint arXiv:2112.00956.

Nedić, A. and Olshevsky, A. (2014). Distributed op-
timization over time-varying directed graphs. IEEE
Transactions on Automatic Control, 60(3):601–615.

Nedić, A. and Olshevsky, A. (2016). Stochastic
gradient-push for strongly convex functions on time-
varying directed graphs. IEEE Transactions on Au-
tomatic Control, 61(12):3936–3947.

Nedic, A. and Ozdaglar, A. (2009). Distributed
subgradient methods for multi-agent optimization.

FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning

IEEE Transactions on Automatic Control, 54(1):48–
61.

Nguyen, D. C., Ding, M., Pathirana, P. N., Senevi-
ratne, A., Li, J., and Poor, H. V. (2021). Federated
learning for internet of things: A comprehensive sur-
vey. IEEE Communications Surveys & Tutorials,
23(3):1622–1658.

Penrose, M. (2003). Random geometric graphs, vol-
ume 5. OUP Oxford.

Ruan, Y. and Joe-Wong, C. (2022). Fedsoft: Soft clus-
tered federated learning with proximal local updat-
ing. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 36, pages 8124–8131.

Sadiev, A., Borodich, E., Beznosikov, A., Dvinskikh,
D., Chezhegov, S., Tappenden, R., Takáč, M., and
Gasnikov, A. (2022). Decentralized personalized fed-
erated learning: Lower bounds and optimal algo-
rithm for all personalization modes. EURO Journal
on Computational Optimization, 10:100041.

Sim, K. C., Beaufays, F., Benard, A., Guliani, D.,
Kabel, A., Khare, N., Lucassen, T., Zadrazil, P.,
Zhang, H., Johnson, L., et al. (2019). Personal-
ization of end-to-end speech recognition on mobile
devices for named entities. In 2019 IEEE Auto-
matic Speech Recognition and Understanding Work-
shop (ASRU), pages 23–30. IEEE.

Sirb, B. and Ye, X. (2018). Decentralized consen-
sus algorithm with delayed and stochastic gradients.
SIAM Journal on Optimization, 28(2):1232–1254.

Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar,
A. S. (2017). Federated multi-task learning. Ad-
vances in neural information processing systems, 30.

Stephens, M. (2000). Dealing with label switching in
mixture models. Journal of the Royal Statistical So-
ciety: Series B (Statistical Methodology), 62(4):795–
809.

Sun, Y., Shen, L., and Tao, D. (2023). Which mode is
better for federated learning? centralized or decen-
tralized. arXiv preprint arXiv:2310.03461.

T Dinh, C., Tran, N., and Nguyen, J. (2020). Personal-
ized federated learning with moreau envelopes. Ad-
vances in Neural Information Processing Systems,
33:21394–21405.

Warnat-Herresthal, S., Schultze, H., Shastry, K. L.,
Manamohan, S., Mukherjee, S., Garg, V.,
Sarveswara, R., Händler, K., Pickkers, P., Aziz,
N. A., et al. (2021). Swarm learning for decentral-
ized and confidential clinical machine learning. Na-
ture, 594(7862):265–270.

Wei, E. and Ozdaglar, A. (2012). Distributed alter-
nating direction method of multipliers. In 2012

IEEE 51st IEEE Conference on Decision and Con-
trol (CDC), pages 5445–5450. IEEE.

Wu, T., Yuan, K., Ling, Q., Yin, W., and Sayed,
A. H. (2017). Decentralized consensus optimization
with asynchrony and delays. IEEE Transactions on
Signal and Information Processing over Networks,
4(2):293–307.

Xie, M., Long, G., Shen, T., Zhou, T., Wang, X.,
Jiang, J., and Zhang, C. (2021). Multi-center feder-
ated learning. arXiv preprint arXiv:2108.08647.

Yousefi, F., Smith, M. T., and Alvarez, M. (2019).
Multi-task learning for aggregated data using gaus-
sian processes. Advances in Neural Information Pro-
cessing Systems, 32.

Yuan, K., Ling, Q., and Yin, W. (2016). On the con-
vergence of decentralized gradient descent. SIAM
Journal on Optimization, 26(3):1835–1854.

Zhang, J., Ling, Q., and So, A. M.-C. (2021). A newton
tracking algorithm with exact linear convergence for
decentralized consensus optimization. IEEE Trans-
actions on Signal and Information Processing over
Networks, 7:346–358.

Supplementary Material

October 25, 2024

A Proof of the Theorems

A.1 Proof of Theorem 1

Without loss of generality, we select a single cluster, cluster 1 for analysis; the same analysis applies to the other
S − 1 clusters. For readability, we eliminate the subscription indicating the cluster number 1. Consider each
client running single step of SGD, we use n to indicate the number of clients selected to update this cluster and
n1 and n0 to indicate the number of clients using the correct data and incorrect data, respectively(i.e. the data
is drawn from this selected cluster is consider a correct data.), so that n1 + n0 = n. S indicates the set of the
client selected to update this cluster, S∗ indicates the set of clients using the correct data, and S∗ indicates the
set of clients using the incorrect data.

Lemma 1 (Doubly-stochastic weight matrix preserves the average) At the communication step, if the model of
each client in the network is updated according to a doubly-stochastic weight matrix Wt then the average after
the communication step remains the same. Formally, we have:

Ct+111
T

N
= CtWt11

T

N
= Ct11

T

N
(12)

From Lemma 1, we can write the left-hand side of Theorem 1 as:

∥∥∥c(t+1) − c⋆
∥∥∥2 =

∥∥∥∥∥c(t) − ηt
n

n∑
i=1

∇Fi

(
c
(t)
i , D

(t)
i

)
− c⋆

∥∥∥∥∥
2

=

∥∥∥∥∥∥c(t) − c⋆ − ηt
n

∑
i∈S∩S∗

∇Fi

(
c
(t)
i

)
− ηt

n

∑
i∈S∩S∗

∇Fi

(
c
(t)
i

)∥∥∥∥∥∥
2

=

∥∥∥∥∥c(t) − c⋆ − ηt
n

∑
i∈S∩S∗

∇Fi

(
c
(t)
i

)∥∥∥∥∥
2

+

∥∥∥∥∥∥ηtn
∑

i∈S∩S∗

∇Fi

(
c
(t)
i

)∥∥∥∥∥∥
2

− 2ηt
n

〈
c(t) − c⋆ − ηt

n

∑
i∈S∩S∗

∇Fi

(
c
(t)
i

)
,
∑

i∈S∩S∗

∇Fi

(
c
(t)
i

)〉
(13)

We let the first and the second term on the right-hand side as ∥T1∥2 and ∥T2∥2 respectively. Thus the above
equation can be written as:

∥∥∥c(t+1) − c⋆
∥∥∥2 = ∥T1∥2 + ∥T2∥2 + 2 ⟨T1, T2⟩ ≤ (1 + α)∥T1∥2 + (1 + α−1)∥T2∥2 (14)

for all α > 0.

The T1 part is the typical decentralized SGD items. Inspired by (Koloskova et al., 2020), we write T1 as:
11

FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning

∥∥∥∥∥c(t) − c⋆ − ηt
n

∑
i∈S∩S∗

∇Fi

(
c
(t)
i

)∥∥∥∥∥
2

≤
∥∥∥c(t) − c⋆

∥∥∥2 + η2t
n2
1

n2

∥∥∥∥∥ 1

n1

n1∑
i=1

∇fi

(
c
(t)
i

)∥∥∥∥∥
2

︸ ︷︷ ︸
T11

+ 2ηt
n1

n

〈
c(t) − c⋆,

−1

n1

n1∑
i=1

∇fi

(
c
(t)
i

)
︸ ︷︷ ︸

T12

〉
+ η2t v

2

(15)

We can bound T11 and T12 separately as:

T11 =

∥∥∥∥∥ 1

n1

n1∑
i=1

(
∇fi

(
c
(t)
i

)
−∇fi

(
c(t)
)
+∇fi

(
c(t)
)
−∇fi (c

⋆)
)∥∥∥∥∥

2

≤ 2

n1

n1∑
i=1

∥∥∥∇fi

(
c
(t)
i

)
−∇fi

(
c(t)
)∥∥∥2 + 2

∥∥∥∥∥ 1n
n1∑
i=1

∇fi

(
c(t)
)
− 1

n

n1∑
i=1

∇fi (c
⋆)

∥∥∥∥∥
2

=
2L2

n1

n1∑
i=1

∥∥∥c(t)i − c(t)
∥∥∥2 + 4L

(
f
(
c(t)
)
− f(c⋆)

)
(16)

−T12 = − 1

n1

n1∑
i=1

[〈
c(t) − c

(t)
i ,∇fi

(
c
(t)
i

)〉
+
〈
c
(t)
i − c⋆,∇fi

(
c
(t)
i

)〉]
≤ − 1

n1

n1∑
i=1

[
fi

(
c(t)
)
− fi

(
c
(t)
i

)
− L

2

∥∥∥c(t) − c
(t)
i

∥∥∥2 + fi

(
c
(t)
i

)
− fi (c

⋆) +
µ

2

∥∥∥c(t)i − c⋆
∥∥∥2]

≤ −
(
f
(
c(t)
)
− f (c⋆)

)
+

L+ µ

2n1

n1∑
i=1

∥∥∥c(t) − c
(t)
i

∥∥∥2 − µ

4

∥∥∥c(t) − c⋆
∥∥∥2

(17)

Now we deal with T2. From (Ruan and Joe-Wong, 2022) and (Ghosh et al., 2020) we have the following Lemma:

Lemma 2 (Mis-classified probability) For a data point belongs to cluster j, the probability of error classification
P(ϵj,j′) to cluster j′ ̸= j can be bound as:

P(ϵj,j
′
) ≤ c1

α2
0δ

4
(18)

And by union bound, the error probability is bounded as:

P(ϵ) ≤ c1S

α2
0δ

4
(19)

The expected number of clients using wrong cluster of data is bounded as:

E[S ∩ S∗] ≤ c1N

α2
0δ

4
= ϵN (20)

for some constant c1. We define this bound as ϵN

Inspired by (Ghosh et al., 2020), define T2k as the clients selecting the mis-classified data points that should be
belongs to cluster k where k ̸= 1(The correct cluster). That is:

T2k =
∑

i∈S∩S∗∩Sk∗

∇Fi(ci) (21)

For each T2k, we use nk to indicate the number of clients using mis-classified data that should be belongs to
cluster k. We have:

I-Cheng Lin, Osman Yağan, Carlee Joe-Wong

T2k =

nk∑
i=1

∇F k
i (ci) +

nk∑
i=1

∇Fi(ci)−∇F k
i (ci) (22)

Taking the expectation and by Markov’s inequality:

∥T2k∥ =

∥∥∥∥∥
nk∑
i=1

∇F k
i (ci) +

nk∑
i=1

∇Fi(ci)−∇F k
i (ci)

∥∥∥∥∥
≤ 3nkL+

√
nkv

θ1

(23)

For any θ1 ∈ (0, 1) with probability equal or greater than 1− θ1. The above used Lemma 2, Assumption 5 and
Assumption 6 and the Markov inequality.

Using the union bound we see that T2 =
∑

k T2k is bounded as the following with probability greater or equal
to 1− (S − 1)θ1 − θ2:

∥T2∥2 = ∥
S∑

k=2

T2k∥2 ≤ (S − 1)

S∑
k=2

∥T2k∥2

≤ 18L2ϵ2N
θ22

+
2ϵN (S − 1)v2

θ21θ2

(24)

When
∑S

k=2 nk ≤ ϵN
θ2

with probability at least 1− θ2.

Combining the above three terms and Lemma 2, we have:

E
∥∥∥c(t+1) − c⋆

∥∥∥2 ≤ (1− ηtµ+ ηtµ
ϵN
n

)
∥∥∥c(t) − c⋆

∥∥∥2 + 18L2ϵ2Nη2t
n2

+
2ϵN (S − 1)v2η2t

n2
+ η2t v

2

+
ηt(L+ µ)

n

n1∑
i=1

∥∥∥c(t) − c
(t)
i

∥∥∥2 + (4η2t (n− ϵN)2L

n2
+ 2ηt −

2ηtϵN
n

)(
f
(
c(t)
)
− f (c⋆)

) (25)

A.2 Proof of Theorem 2

For time t− 1, after the local updating round, the cluster parameters can be expressed as:

Ct−1′ = Ct−1 − ηtG
t−1 (26)

After the communication round, the parameters can be expressed as:

Ct = Ct−1′Wt−1 = Ct−1Wt−1 − ηtG
t−1Wt−1 (27)

Thus, recursively expanding the parameters at time t back to lβ, we can get the final form:

Ct = Clβ
t−1∏

m=lβ

Wm −
t−1∑

m=lβ

(
ηtG

m
m∏

r=t−1

Wr

)
(28)

A.3 Proof of Theorem 3

Following the same flow of Lemma 9 in (Koloskova et al., 2020), applying Theorem 3, we have for all α > 0:

FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning

E∥Ct −C
t∥2F = NEt ≤ E

∥∥∥∥∥∥C(mβ)

mβ∏
i=t−1

W(i) − C̄(mβ) +

t−1∑
j=mβ

ηj∇F
(
C(j)

) j∏
i=t−1

W(i)

∥∥∥∥∥∥
2

F

≤ E

∥∥∥∥∥∥C(mβ)

mβ∏
i=t−1

W(i) − C̄(mβ) +

t−1∑
j=mβ

ηj

(
∇F

(
C(j)

)
−∇F (C⋆) +∇f (C⋆)

) j∏
i=t−1

W(i)

∥∥∥∥∥∥
2

F

+

∥∥∥∥∥∥
t−1∑

j=mβ

ηj (∇F (C⋆) +∇f (C⋆))

j∏
i=t−1

W(i)

∥∥∥∥∥∥
2

F

≤ (1 + α)E

∥∥∥∥∥C(mβ)

mβ∏
i=t−1

W(i) − C̄(mβ)

∥∥∥∥∥
2

F

+ (1 + α−1)E

∥∥∥∥∥∥
t−1∑

j=mβ

ηj

(
∇F

(
C(j)

)
−∇F (C⋆) +∇f (C⋆)

) j∏
i=t−1

W(i)

∥∥∥∥∥∥
2

F

+

∥∥∥∥∥∥
t−1∑

j=mβ

ηj (∇F (C⋆) +∇f (C⋆))

j∏
i=t−1

W(i)

∥∥∥∥∥∥
2

F
(29)

Using Assumption 7, the above can be further simplified:

E∥Ct −C
t∥2F ≤ (1 + α)(1− p)E

∥∥∥C(mβ) −C
(mβ)

∥∥∥2
F

+ (1 + α−1)2β

t−1∑
j=mβ

η2jE
∥∥∥(∇F

(
C(j)

)
−∇F (C⋆) +∇f (C⋆)

)∥∥∥2
F

+

t−1∑
j=mβ

η2jE ∥(∇F (C⋆) +∇f (C⋆))∥2F

≤ (1 + α)(1− p)E
∥∥∥C(mβ) −C

(mβ)
∥∥∥2
F

+ (1 + α−1)2β

t−1∑
j=mβ

η2jE
∥∥∥(∇F

(
C(j)

)
−∇F (C⋆) +∇f (C⋆)

)∥∥∥2
F

+

t−1∑
j=mβ

η2jnv
2

(30)

The expectation of the second term on the right-hand side can be bounded as:

E
∥∥∥(∇F

(
C(j)

)
−∇F (C⋆) +∇f (C⋆)

)∥∥∥2
F

= E
∥∥∥(∇F

(
C(j)

)
−∇F

(
C
)
+∇F

(
C
)
−∇F (C⋆) +∇f (C⋆)

)∥∥∥2
F

≤ 3
n

N
L2∥C(j) −C

(j)∥2F + 3nσ2 + 6nL(f(cj)− f(c⋆))

≤ 3
n

N
L2∥C(j) −C

(j)∥2F + 3nσ2 + 6nL(f(cj)− f(c⋆))

(31)

Putting the above equations together and setting a proper α to make the first term become 1 − p
2 , similar to

(Koloskova et al., 2020) with stepsize ηj ≤ p
√
N

12
√
2nβL

, we can get the desired bound:

I-Cheng Lin, Osman Yağan, Carlee Joe-Wong

Et ≤ (1− p

2
)Emβ +

p

16β

t−1∑
j=mβ

Ej +
36Lnβ

pN

t−1∑
j=mβ

η2j (f(c
j)− f(c⋆))

+

(
18βn

Np
σ2 +

n

N
v2
) t−1∑

j=mβ

η2j

(32)

A.4 Proof of Theorem 4

We adapted the following Lemma 3 from (Koloskova et al., 2020):

Lemma 3 (Simplify the Recursive Equations) For a bound of the cluster distance to the optimal dt = E∥c(t) −
c⋆∥2 in the following form:

dt+1 ≤ (1− aηt) dt − bηtet + cη2t + ηtBEt, (33)

and for any non-negative sequences {Et}t≥0, {et}t≥0, {ηt}t≥0 that satisfy the following form:

Et ≤
(
1− p

2

)
Emβ +

p

16β

t−1∑
j=mβ

Ej +D

t−1∑
j=mβ

η2j ej +A

t−1∑
j=mβ

η2j , (34)

then if the learning rate {η2t }t≥0 and {rt}t≥0 are respectively a 8β
p -slow decreasing sequence and 16β

p -slow in-

creasing non-negative sequence, then for some constant E > 0 with learning rate ηt ≤ 1
16

√
pb

DBβ the following

holds:

E

T∑
t=0

rtEt ≤
b

2

T∑
t=0

rtet + 64BA
β

p

T∑
t=0

rtη
2
t (35)

By combining the above equations we have:

1

2RT

T∑
t=0

brtet ≤
1

RT

T∑
t=0

(
(1− aηt) rt

ηt
dt −

rt
ηt
dt+1

)
+

c

RT

T∑
t=0

rtηt +
64BA

RT

T∑
t=0

rtη
2
t (36)

Where RT =
∑T

t=0 rt

Following the previous Lemma, we adapt Lemma 13 from (Koloskova et al., 2020) as the following Lemma 4

Lemma 4 (Main Recursion) The main recursion can be bounded as the following with a constant step-size
ηt = η < 1

h :

1

2RT

T∑
t=0

betrt + adT+1 ≤ Õ
(
d0h exp

[
−a(T + 1)

h

]
+

c

aT
+

BA

a2T 2

)
(37)

For the following two cases, tuning η we have: If 1
h ≥ ln(max{2,a2d0T

2/c})
aT η is chosen to be equal to this value

and that:

Õ
(
ad0T exp

[
− ln

(
max

{
2, a2d0T

2/c
})])

+ Õ
(c

aT

)
+ Õ

(
BA

a2T 2

)
= Õ

(c

aT

)
+ Õ

(
BA

a2T 2

)
(38)

If else choose η = 1
h and that:

Õ
(
d0h exp

[
−a(T + 1)

h

]
+

c

h
+

BA

h2

)
≤ Õ

(
d0h exp

[
−a(T + 1)

h

]
+

c

aT
+

BA

a2T 2

)
(39)

Using the above Lemma 3, Lemma 4 and Theorem 1 and Theorem 3, we can get the final bound.

FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning

B Simulation Details and Additional Simulations

B.1 Experiment Details

The following shows the detailed settings of our experiments. We largely follow Marfoq et al. (2021); Ruan and
Joe-Wong (2022) in our experiment settings.

B.1.1 MNIST/EMNIST Data

Half of the dataset was selected to undergo a 90-degree rotation. Each client received the same amount of
data, but the ratio of rotated to non-rotated data was set uniformly at random in the range from 10% and
90%. The number of clients was fixed at N = 100 for comparison with the baselines. A CNN (convolutional
neural network) model was employed, consisting of two convolutional layers with kernel size and padding set
to 5 and 2, respectively. Each convolutional layer was followed by a max-pooling layer with a kernel size of
2. After the convolutional layers, fully connected layers were used, with a dropout layer of size 50. The ReLU
activation function was applied to each convolution layer and fully-connected layer. All clients utilized SGD as
the optimizer. The number of local epochs was set to 5, with the initial step having double the local epochs to
accelerate the initial learning, leading to a faster reduction in global loss. The initial learning rate was 5e-2, with
a decay factor of 0.80. Training was carried out over 150 global epochs.

B.1.2 CIFAR-10 & CIFAR-100 Data

The dataset was divided into even and odd labels by its number of label marked in the dataset, and half of the
data was randomly selected to undergo a 90-degree rotation. This process potentially created four different data
distributions (rotated even, un-rotated even, rotated odd, un-rotated odd). Each client received an equal amount
of data, but the proportion of odd-labeled and even-labeled data was randomly assigned, ranging uniformly at
random from 10% to 90%. The number of clients was set to N = 25 for comparison with the baselines. A CNN
model with four convolutional layers was used. The first two layers had a kernel size and padding of 5 and 2,
respectively, while the last two layers had a kernel size and padding of 3 and 1, respectively. Each convolutional
layer was followed by batch normalization. After the second and fourth convolutional layers, max-pooling with a
kernel size of 2 and a dropout layer were applied. Following the convolutional layers, two fully connected layers
with dropout and batch normalization were used, containing 1024 and 512 hidden neurons, respectively. The
activation function was ReLU on each layer. All clients used SGD as the optimizer. The number of local epochs
was set to 5, with the initial step doubling the local epochs. The initial learning rate was set to 5e-2, with a
decay factor of 0.85. Training was conducted for 150 global epochs.

B.2 Additional Simulation Results

B.2.1 Effect of τ

We conducted experiments for 150 epochs on the MNIST, CIFAR-10, and CIFAR-100 datasets. As shown in
Figure 5, increasing the number of local epochs in FedSPD leads to faster convergence. For τ = 1, the training
did not converge even after 150 epochs on MNIST, and for CIFAR-10 and CIFAR-100, it seemed to converge
to a lower training accuracy. We observed that as the dataset and model complexity increased, increasing the
number of local epochs tended to improve performance.

Table 5 presents the final FedSPD testing accuracies for different numbers of local epochs across the datasets.
On MNIST, the testing accuracies were 93.27% and 93.47%, respectively, showing only a slight difference, likely
because the MNIST dataset is relatively simple, so the learning hyperparameters do not make much of a difference
in model performance. For CIFAR-10, the testing accuracies for τ = 5 and τ = 10 were 70.61% and 66.52%,
respectively, where a larger number of local epochs actually reduced the final performance. However, for CIFAR-
100, τ = 10 resulted in the best performance. This suggests that for more complex datasets, a higher number of
local epochs can be beneficial, as indicated by the training accuracy curves. Nevertheless, it is important to note
that setting τ too high may lead to overfitting to the local data, as was the case with τ = 10 on the CIFAR-10
dataset. These findings are consistent with known results in general federated learning, where a higher number
of local epochs can effectively increase the number of gradient steps taken, accelerating convergence as long as
the local models do not diverge too much due to a large number of local steps.

I-Cheng Lin, Osman Yağan, Carlee Joe-Wong

(a) Training accuracy on MNIST. (b) Training accuracy on CIFAR-10. (c) Training accuracy on CIFAR-100.

Figure 5: FedSPD training accuracy with different numbers of local steps τ . When the data become more
complicated, increasing local epochs may be a better choice.

Local Epochs 1 5 10
MNIST 74.20 93.27 93.47
CIFAR-10 41.34 70.61 66.52
CIFAR100 19.86 43.35 44.99

Table 5: Final FedSPD testing accuracies for different number of local epochs.

B.2.2 Influence of the Final Phase

Our FedSPD algorithm uses a final phase that follows the typical federated learning training process. The optimal
number of epochs for this final phase varies depending on the dataset and learning model. Due to the simplicity
of EMNIST and its model, the testing accuracy is already sufficiently high after aggregation. In our EMNIST
setup, using 10 epochs in the final phase increases performance by 0.5%, and beyond 10 epochs, the testing
accuracy stabilizes. For CIFAR-10 and CIFAR-100, the testing accuracy improves by 7% and 6%, respectively,
after 15 epochs. Around 30 epochs are sufficient to achieve optimal performance for both datasets. It is important
to note that choosing the correct number of epochs and learning rate for this final phase is crucial. Too many
epochs, or a learning rate that is too high (or with insufficient decay), may lead to overfitting to the local data.
Since this final phase is trained locally without any communication overhead, it presents a key advantage of our
FedSPD algorithm in communication-constrained settings. Additionally, note that for EMNIST, CIFAR-10, and
CIFAR-100, our FedSPD already achieves higher accuracies compared to other methods, even without this final
phase. Other algorithms like FedEM perform aggregation during the regular training phase, so adding extra
local rounds in a final phase of training may lead to overfitting.

(a) Testing accuracy on EMNIST. (b) Testing accuracy on CIFAR-10. (c) Testing accuracy on CIFAR-100.

Figure 6: Testing accuracy of the final phase.

FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning

Figure 7: FedSPD testing accuracy for different numbers of clusters S.

B.2.3 Influence of the Hyperparameter S

The testing accuracy with different hyperparameters S (number of clusters) for the CIFAR-10 and CIFAR-100
datasets is shown in Figure 7. In the experimental settings, we potentially created four different distributions
by using varying labels and image rotations. In our FedSPD algorithm, setting S too high does not necessarily
improve performance. This may be because most practical loss functions, such as the cross-entropy used in
neural networks, are non-convex, meaning that the aggregated model may not perform optimally in practice.
Aggregating more models in the final phase can exacerbate this issue. However, in our FedSPD algorithm, setting
S = 2 already yields excellent performance in terms of the final test accuracy.

B.2.4 Extra Details for Experiments with Different Graph Connectivity

FedSPD’s training accuracy versus epochs for MNIST across different topologies is shown in Figure 8. We observe
that networks with lower connectivity typically converge more slowly than those with higher connectivity, in
each topology. Additionally, RGG exhibits more oscillations compared to other topologies, likely due to its high
clustering effect (Penrose, 2003). However, all topologies eventually reach the same level of training accuracy,
regardless of the network structure, indicating that, as predicted by Theorem 4, FedSPD converges as long as
the network is connected.

(a) Training accuracy of ER Graph. (b) Training accuracy of BA Model. (c) TrainingaAccuracy of RGG.

Figure 8: FedSPD converges slightly faster on networks of higher average degree, with noisier convergence on
highly clustered RGG graphs, on MNIST Data.

B.2.5 Additional Comments on the Main Results

As shown in Table 2, local learning performs the worst among all algorithms, validating that all other methods
benefit from exchanging information between clients to learn a better model. Among the DFL algorithms,

I-Cheng Lin, Osman Yağan, Carlee Joe-Wong

FedAvg, the only one without personalization, typically performs the worst, indicating that personalization is
beneficial in non-iid data distributions, as we would intuitively expect. However, an exception is observed with
the FedSoft algorithm. In the CIFAR-10 and CIFAR-100 datasets, FedSoft performs poorly, nearing the accuracy
of local training. We conjecture that this is due to the way FedSoft aggregates models, making it difficult to
learn the correct cluster centers in a low-connectivity network, leading to suboptimal performance.

	Introduction
	Related Work
	Problem Formulation
	Proposed FedSPD Algorithm
	Convergence Analysis
	Simulation Results
	Comparison with Baselines
	Effects of Network Connectivity

	Conclusion
	Proof of the Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Simulation Details and Additional Simulations
	Experiment Details
	MNIST/EMNIST Data
	CIFAR-10 & CIFAR-100 Data

	Additional Simulation Results
	Effect of
	Influence of the Final Phase
	Influence of the Hyperparameter S
	Extra Details for Experiments with Different Graph Connectivity
	Additional Comments on the Main Results

