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ABSTRACT

We consider bandits with anytime knapsacks (BwAK), a novel version of the BwK problem where
there is an anytime cost constraint instead of a total cost budget. This problem setting introduces
additional complexities as it mandates adherence to the constraint throughout the decision-making
process. We propose SUAK, an algorithm that utilizes upper confidence bounds to identify the optimal
mixture of arms while maintaining a balance between exploration and exploitation. SUAK is an
adaptive algorithm that strategically utilizes the available budget in each round in the decision-making
process and skips a round when it is possible to violate the anytime cost constraint. In particular,
SUAK slightly under-utilizes the available cost budget to reduce the need for skipping rounds. We
show that SUAK attains the same problem-dependent regret upper bound of O(K log T ) established
in prior work under the simpler BwK framework. Finally, we provide simulations to verify the utility
of SUAK in practical settings.

Keywords multi-armed bandits · knapsack problem · online learning

1 Introduction

Multi-armed bandits (MAB) is one of the fundamental problems in the field of sequential decision-making under
uncertainty. In its essence, it is a problem setting where an agent must strategically allocate resources among the arms
to maximize cumulative reward over time, navigating the trade-off between gathering information about uncertain
arms (exploration) and exploiting known information to optimize immediate rewards (exploitation). This problem
finds applications across diverse domains, including reinforcement learning [Intayoad et al., 2020], online advertising
[Slivkins, 2013], clinical trials [Villar et al., 2015] , and resource allocation [Soare, 2015] .

The Bandits with Knapsacks (BwK) problem, introduced by Badanidiyuru et al. [2013], is an extension of the classical
multi-armed bandit problem, with the additional constraint of limited resource capacity akin to the knapsack problem
[Tran-Thanh et al., 2012]. In this scenario, an agent is confronted with a set of arms, each associated with an unknown
reward and cost distribution. Unlike the traditional bandit setting, selecting an arm incurs both a reward and a cost here,
and the objective is to maximize the total reward while respecting the total capacity constraint of the knapsack. The
BwK problem encapsulates the trade-off between exploration and exploitation while managing resource constraints,
presenting a rich framework with applications such as online advertising [Avadhanula et al., 2021, Badanidiyuru et al.,
2018], dynamic resource allocation [Kumar and Kleinberg, 2022], and personalized recommendations [Yu et al., 2016].

In this paper, we consider a specific variant of this problem, which we name as the bandits with anytime knapsacks
(BwAK) problem; where instead of a total cost budget, there is an anytime constraint on the average cost. This problem



setting introduces an additional level of complexity as a mixture strategy needs to be employed to be able to pull arms
with mean costs higher than the average cost budget without violating the anytime constraint.

1.1 Why State-of-the-Art Cannot Solve This Problem?

There are two naive approaches to adapting any BwK algorithm to our BwAK setting. The first involves running a
standard BwK algorithm but skipping a round whenever the anytime constraint risks being violated. The second is to
skip a sufficient number of initial rounds to ensure the anytime constraint is never violated. However, both methods,
as studied by Bernasconi et al. [2024a], result in significant regret. In their work, Bernasconi et al. [2024a] analyze
a more general BwK setting with long-term constraints, where total resource consumption at round T must remain
below zero, allowing for small sub-linear violations. They allow both positive and negative arm costs and propose
an algorithm that achieves an instance-independent regret bound of O(

√
KT log(KT )). They also note that skipping

an initial o(T ) rounds can help enforce the long-term constraint as a hard constraint, similar to our setting. However,
their upper bound of O(

√
KT ) constraint violations (Bernasconi et al. [2024a, Corollary 8.2]) suggests that at least

O(
√
KT ) initial rounds must be skipped to satisfy these hard constraints, leading to an O(

√
KT ) gap-independent

regret in our problem setting for both naive approaches.

Since prior work can achieve O(
√
KT ) instance-independent regret, the main goal of our work is to focus on the

instance-dependent regret bound, and develop new algorithms for this BwAK framework that achieve as small instance-
dependent regret bound as possible.

1.2 Why is the Anytime Constraint Important?

The formulation of the anytime constraint considered here has broad applications across various fields. A notable
example is inventory management, where a factory produces goods at a constant rate and seeks to maximize revenue by
selling to buyers in a marketplace, where bids consisting of price and order size are placed. Our anytime constraint
is especially relevant in such scenarios since having a negative inventory is not possible. An important aspect of
this constraint is that it introduces the trade-off between exploiting the available inventory, and skipping a round to
accumulate more inventory in order to capture bids with higher order sizes. This highlights the added complexity
of our problem setting and underscores its broader applicability across a range of settings beyond the standard BwK
framework.

Another example is in clinical trials, where drugs or treatment plans with unknown costs, which can be side effects; and
rewards, which can model treatment efficacy; need to be evaluated. This example can be modeled using the anytime
constraint if participants are recruited to the trials at a constant rate per week, and are not allowed to trial more than
one drug. In online advertising, an advertiser may have a daily budget limit to prevent overspending. In this context,
the ‘arms’ represent different ad campaigns or strategies, each with varying costs that can be selected for the day. The
reward can be modeled as the daily revenue generated from clicks or the number of users who subscribe. One last
example is in satellite systems, where solar panels generate energy and excess energy can be stored in a battery. Here,
c can correspond to the energy generated per unit time, and arms can correspond to different tasks that need to be
performed, with their rewards reflecting the importance or outcome of the tasks. The costs of an arm can then represent
the energy needed to complete the task.

1.3 Contributions

1. SUAK Algorithm: SUAK utilizes the upper confidence bounds to explore the optimal base that solves the problem,
and also strategically under-utilizes the available budget to limit the number of rounds that are skipped when
satisfying the anytime cost constraint.

2. Regret Upper Bound for SUAK: We improve prior work by providing the first O(K log T ) instance-dependent
bound for the problem setting, compared to O(

√
KT ) instance-independent bounds on prior work.

2 Problem Statement

We consider a K-armed stochastic bandit problem with the set of base arms [K], where pulling arm i ∈ [K] in round t
is associated with a random cost, ρi(t); drawn from a probability distribution supported in [0, 1] with mean ρi, that
is independent of the costs of other arms. After pulling arm i in round t, the agent receives a random reward, ri(t);
drawn from a probability distribution supported in [0, 1] with mean µi, that is independent of the rewards of other arms.
At each round t, the agent has the option of skipping by not pulling any of the K arms. We model this decision by
introducing an arm which has a cost and reward of 0, as arm K + 1, which is known as the null arm in BwK literature.
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Figure 1: The plots of cumulative empirical regret (Left), number of skips (Middle), and average empirical cost regret
(Right)

We let ρ = [ρ1, · · · , ρK , 0]T and µ = [µ1, · · · , µK , 0]T denote the mean cost vector and the mean reward vector of
the arm set [K + 1], respectively. Throughout this paper, we use bold symbols to denote vectors or matrices. ∆K is
used to denote the K-dimensional probability simplex. We let i∗ := argmaxi∈[K] µi/ρi denote the arm with highest
mean reward per cost, and let i∗∗ := argmaxi∈[K] µi denote the arm with the highest mean reward. For simplicity, we
assume there is only one arm with highest mean reward per cost and there is only one arm with highest mean reward.

Let i(t) be the arm pulled by the agent in round t, r(t) represent the reward received in round t, and c(t) represent
the cost incurred in round t. Also let Ni(t) denote the total number of times arm i has been pulled up to round t.
Further, define Sc(t) =

∑t
s=1 c(s) and c̄(t) = Sc(t)/t as the cumulative cost and the average cost incurred until round

t. Let ρ̄i(t) =
∑t

s=1 ρi(s) · 1 {i(t) = i}/Ni(t) be the empirical average cost of arm i at round t, and similarly let
µ̄i(t) =

∑t
s=1 1 {i(t) = i} · µi(s)/Ni(t) be the empirical average reward. We assume that there is an average cost

budget of c per round that cannot be exceeded at any round, which we refer to as the anytime cost constraint. The agent
aims to maximize cumulative reward received under this constraint. This can formally be expressed as:

maxF (t) = E

[
t∑

s=1

r(s)

]
s.t.

∑u
s=1 c(s)

u
≤ c ,∀ u ≤ t.

We call this setting, which represents many practical applications as discussed in §1.2, the Bandits with Anytime
Knapsacks (BwAK) problem.

Linear Relaxation. Following the prior work, we consider the following linear relaxation:

OPTLP (T ) = max
π

T · µTπ (1)

s.t. ρTπ < c, π ∈ ∆K+1.

where the vector π represents the policy which defines the fraction of time an arm will be pulled. In any policy, there
will be at most two arms that have nonzero πi values since there are two constraints in the problem. We refer to a set
consisting of at most two arms as a base. We denote the set of all possible valid bases (where valid means that the
average cost less than or equal to c can be reached through a mixture of arms in the base) as V. Note that for simplicity,
we assume that the arms in a base are ordered so that the higher cost arm appears first. We let Ii := {I ∈ V : i ∈ I}
denote the set of valid bases that include the arm i. We let π∗ denote the optimal solution to (1), and let r∗ := µTπ∗

be the optimal reward per round. We also define I∗ := {i : π∗
i > 0} as the optimal base. The optimal solution of

this problem can be divided into three cases. First, if the arm with the highest mean reward has cost less than c, i.e.
ρi∗∗ ≤ c; then the optimal base consists of only this arm; hence I∗ = {i∗∗}, and π∗

i∗∗ = 1. In the second case, if
ρi∗∗ > c, ρi∗ > c, then I∗ = {i∗,K + 1} , and the optimal solution is π∗

i∗ = c/ρi∗ , and π∗
K+1 = 1 − π∗

i∗ . In third
case, if ρi∗∗ > c, ρi∗ < c, then optimal base includes two arms which might or might not include i∗ or i∗∗.

Let OPT denote the total expected reward of a dynamic policy in T rounds that conforms to a total budget constraint
over T rounds as in the standard BwK literature instead of the anytime budget constraint we consider here. It was
shown that OPTLP ≥ OPT [Badanidiyuru et al., 2013].

Let REF denote the total expected reward of a dynamic policy over T rounds that conforms to the average cost
constraint. This constraint is stricter than the total budget constraint. This can easily be seen as satisfying the
anytime constraint in the last round T with c = B/T produces the total budget constraint of B over T rounds.
Hence, OPTLP ≥ OPT ≥ REF . While regret could be defined as the difference between expected cumulative
reward of SUAK and REF , we choose a stronger regret definition by defining it with respect to OPTLP as RT =
OPTLP −E [F (T )] = Tr∗ −E [F (T )] so that our results can be compared with prior work on the total budget setting.
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Algorithm 1 Naive Approach: One Phase Skip Algorithm
1: Input: Average cost target c, number of rounds T
2: Initialize: Sample each arm once while skipping accordingly so that ∀t ≤ tinit, Sc(t− 1) + 1 ≤ c · t
3: for each round t > tinit do
4: if Sc(t− 1) + 1 > c · t then
5: Skip the round
6: else
7: Solve the following LP: π̃ = argmaxπ⟨µU (t− 1),π⟩

s.t. ⟨ρL(t− 1),π⟩ ≤ Br(t),π ≥ 0
8: Normalize π̃ into a probability distribution and randomly pull an arm
9: end if

10: Update ρL(t),µU (t), Sc(t) and B(t)

11: end for

3 The SUAK Algorithm

3.1 The Naive Approach

Before presenting the SUAK Algorithm, to demonstrate the additional complexities of our problem formulation over
the standard BwK setting, and also to serve as a baseline, we present a naive approach which makes it possible to
convert any BwK algorithm to our BwAK setting. In this trivial approach, in a round t, we first check if it is possible to
violate the anytime constraint, and skip the round if it is the case. Otherwise, we let the BwK algorithm pull an arm.
For this end, we use the One Phase Algorithm in Li et al. [2021], and add skipping such that a round is t skipped if
Sc(t− 1) + 1 > ct. This implementation, which we call the One Phase Skip (OPS) Algorithm, is given in Algorithm 2.

In this algorithm, the initialization phase consists of sampling each arm once while using skips to prevent violation of
the constraint. After this phase, we utilize a skipping mechanism in lines 4 - 6, and if the round is not skipped, the
algorithm proceeds to solving the linear programming problem in line 7. In this LP, µU (t) is the UCB of arm reward at
round t, ρL(t) is the LCB of arm cost at round t, and Br(t) = cT − Sc(t− 1) is the total remaining budget in round t.
Since UCB values are used, the solution of LP gives the optimistically best policy according to the UCB principle. This
policy is normalized to a probability distribution, and the arm is selected using this probability.

To show that this naive approach might suffer a large regret due to large number of skips, we run simulations on the
following problem instance with K + 1 = 4 arms where µ = [0.45, 0.7, 0.8, 0]; and ρ = [0.3, 0.75, 0.8, 0]. Except
for the null arm, the arm reward and cost values are independently sampled from a Beta distribution with parameters
α = 10µ, β = 10(1− µ). The average cost budget per round is c = 0.5. We average results from 10 simulation runs,
each with 500, 000 rounds. We compare the results with results from SUAK which we propose in §3.2. The simulation
results are given in Figure 1. The shaded areas in the plots represent error bars with one standard deviation.

It can be seen that the number of skips of OPS exhibits sublinear growth and it is much higher than those of SUAK,
which results in higher regret compared to SUAK. Hence, this demonstrates that merely adding skips to a BwK
algorithm and treating it as a BwAK algorithm is not a viable solution. In view of this, in the next section, we present
SUAK, an algorithm that strategically under-utilizes the available budget to reduce the number of skips needed, and
achieve smaller regret.

3.2 The SUAK Algorithm

We propose an algorithm called Strategic Under-utilization for Anytime Knapsacks (SUAK) that utilizes upper and
lower confidence bounds of the arm rewards and costs using the UCB principle to upper bound the reward that can be
obtained from a particular base. SUAK also uses skipping a round to satisfy the anytime cost constraint, and targets an
average cost of c− log t/(ω2(t) · t) to limit the number of skips, where ω(t) is defined in (2) and depends on the LCB
of the estimated minimum cost gap of arms at round t. The pseudo-code is provided in Algorithm 3.2.

The algorithm works in two phases. The first phase is the initialization phase, where as long as there is uncertainty on
whether the mean cost of an arm is less than or greater than c, i.e. ∃l : ϱLl (t) ≤ c ≤ ϱUl (t) where

ϱLl (t) := ρ̄l(t)− 7
√

1.5 log t/Nl(t), and

ϱUl (t) := ρ̄l(t) + 7
√

1.5 log t/Nl(t);

then that arm is pulled. This phase is needed for the anytime cost constraint; it ensures whether the mean cost of the arm
is above or below c is correctly known, ensuring that the base SUAK selects in a round t in the second phase includes
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an arm with cost less than c. To prevent satisfying this condition from using more than c cost budget per round on
average, we define Sp(t) as the sum of all the cost incurred from arm pulls under the condition ∃l : ϱLl (t) ≤ c ≤ ϱUl (t)
until round t+ 1, and define Np(t) as the total number of arm pulls under this condition until round t+ 1. The round t
is skipped if Sp(t− 1) + 1 > c ·Np(t− 1). Satisfying this condition is also needed to establish tighter bounds on the
number of times a suboptimal base is selected in the theoretical analysis. Note that Sp(t) and Np(t) are also used with
the same condition in the second phase of SUAK.

Algorithm 2 SUAK: Strategic Under-utilization for Anytime Knapsacks

1: Input: Average cost target c
2: // Phase 1: Initialization Phase
3: while ∃l ∈ [K] : ϱLl (t) ≤ c ≤ ϱUl (t) do
4: if Sp(t− 1) + 1 > c ·Np(t− 1) then
5: Skip round t
6: else
7: Pull arm i(t) = l
8: Sp(t) = Sp(t− 1) + ρi(t)(t)
9: Np(t) = Np(t− 1) + 1

10: end if
11: Update ρL(t) and ρU (t), t← t+ 1
12: end while
13: // Phase 2: Main Algorithm
14: for each round t > tinit do
15: if Sp(t− 1) + 1 > c ·Np(t− 1) then
16: Skip round t
17: else if Sc(t− 1) + 1 > c · t then
18: Skip round t
19: else if ∃l : ϱLl (t) ≤ c ≤ ϱUl (t) then
20: Pull arm i(t) = l, update Sp(t) and Np(t)
21: else

22: Evaluate δLmin(t) and ω(t) using (3) and (2)
23: St={π:π ∈ ∆K+1, ⟨π,ρL(t− 1)⟩≤ c}
24: π(t) = argmaxπ∈St

⟨µU (t− 1),π⟩
25: It = {j(t), k(t) : πj(t)(t) > 0, πk(t)(t) > 0,

ρ̄j(t)(t) > ρ̄k(t)(t)}
26: b(t) = c · t− Sc(t− 1)− log t/ω2(t)
27: if b(t) > ρ̄j(t) then
28: p(t) = 1− ω(t)
29: else if b(t) < ρ̄k(t) then
30: p(t) = ω(t)
31: else
32: p1(t) = max

(
b(t)−ρ̄k(t)(t)

ρ̄j(t)(t)−ρ̄k(t)(t)
, ω(t)

)
33: p(t) = min(p1(t), 1− ω(t))
34: end if

35: i(t) =

{
j(t) with probability p(t),

k(t) otherwise
36: Pull arm i(t), observe ri(t)(t), ρi(t)(t)
37: Update ρL(t) and µU (t)
38: end if
39: end for

The second phase of SUAK, which involves the main algorithm, works as follows. In every round, first, as in phase one,
if there is uncertainty on whether the mean cost of an arm is less than or greater than c, i.e. ∃l : ϱLl (t) ≤ c ≤ ϱUl (t),
then that arm is pulled and SUAK proceeds to the next round. Similar to phase one of SUAK, we utilize Sp(t) and
Np(t); and the round t is skipped if Sp(t− 1) + 1 > c ·Np(t− 1). The main objective of this skipping mechanism is
to decouple the skips needed to satisfy the anytime cost constraint due to regular arm pulls and the skips needed to
satisfy the constraint from this condition for ease of theoretical analysis. Secondly, the anytime budget constraint is
checked. The round is skipped (null arm is pulled) and the algorithm proceeds to the next round if Sc(t− 1) + 1 > c · t,
i.e. if pulling an arm at that round can violate the constraint.

After this, the under-budgeting amount, w(t); and the LCB of the minimum cost gap, δLmin(t), are estimated using

ω(t) := δLmin(t)/(2 + δLmin(t)− c) , (2)

δLmin(t) := min
i
(|ρ̄i(t)− c| −

√
1.5 log t/Ni(t)) . (3)

Then, the constraint set is constructed as St = {π : π ∈ ∆K+1, ⟨π,ρL(t− 1)⟩ ≤ c}; where

µU
i (t) := proj[0,1] (µ̄i(t) + ϵi(t)) ,

ρLi (t) := proj[0,1] (ρ̄i(t)− ϵi(t)) ,

are the UCB and LCB values of arm costs and rewards; and ϵi(t) =
√

3 log T/Ni(t) is the confidence interval.
ρUi (t) and µL

i (t) can be defined similarly. Hence, St includes all policies that have an average cost less than c
using LCB values of arm costs. The empirically best policy at round t is found using a linear program (LP) as
π(t) = argmaxπ∈St⟨µU (t − 1),π⟩. Note that using the UCB of empirical arm rewards along with the LCB of
empirical arm costs in St produces an upper confidence bound on the reward of a base. The arms that have nonzero
πi(t) values are selected as the empirically optimal base arm set for that round, denoted as It = {j(t), k(t)}, where
wlog we assume j(t) is the arm with mean cost above c. Note that if k(t) = ∅, i.e. It consists of a single arm, then that
arm will be pulled and SUAK will proceed to the next round.
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Using ω(t), the available budget at that round is found as b(t) = c · t− Sc(t− 1)− log t/ω2(t). If b(t) is greater than
ρ̄j(t)(t), arm j(t) is pulled with probability 1− ω(t), and arm k(t) is pulled otherwise. If b(t) is less than ρ̄k(t)(t), arm
j(t) is pulled with probability ω(t), and arm k(t) is pulled otherwise. If ρ̄k(t)(t) ≤ b(t) ≤ ρ̄j(t)(t), arm j(t) is pulled

with probability p(t) =
b(t)−ρ̄k(t)(t)

ρ̄j(t)(t)−ρ̄k(t)(t)
clipped at ω(t) from below and 1− ω(t) from above; and arm k(t) is pulled

otherwise. With this design, each arm in a base is pulled with at least ωmin probability where ωmin is defined in Lemma
3.1 to explore all arms in a base.

Note that SUAK is non-stationary as it is adaptive to the available budget at that round. This design is essential as it was
shown in Flajolet and Jaillet [2015, Lemma 2] that a non-adaptive design suffers Ω(

√
T ) regret even if the optimal

solution π∗ is known unless all arms consume the same deterministic cost every round. The main intuition behind this
result is that the fluctuation of the available budget around its mean at round t can be as high as Ω(1/

√
t).

3.3 Analysis of SUAK

We now characterize the performance of the SUAK by providing the theoretical upper bound on the expected cumulative
regret in Theorem 3.2. We first provide some definitions and state one assumption that is needed for Theorem 3.2.
Definition 3.1. The reward gap of an arm is defined as ∆i := µi∗∗ − µi. Further, the reward gap of a base I is defined
as ∆I := r∗ − rI , where rI is the reward of the solution of (1) when only arms in I are allowed.
Definition 3.2. ∆min,i := minI∈Ii\I∗ ∆I is defined as the minimum reward gap of bases that include the arm i.

Definition 3.3. δi := |ρi − c| is defined as the cost gap of an arm, and δmin := mini∈[K] δi is the minimum cost gap.

Note that regret depends on the cost gap δi since the algorithm must correctly identify whether the true mean cost of an
arm is above or below c, and any misidentification might lead to over-consuming the targeted budget.
Assumption 1. We assume δmin > 0.

Note that regret depends on δmin to meet the anytime cost constraint, as we use a cost budget under-utilization of
log t/ω2(t) in SUAK to be able to achieve theoretical guarantees. The dependency of ω(t) on δmin is given in Lemma
3.1 below. Since regret depends on δmin, δmin > 0 is needed so that the regret bound is not unbounded.
Lemma 3.1. When ω(t) is evaluated in a round t, the following relation holds.

2

9
δmin := ωmin ≤ ω(t) ≤ δmin

2 + δmin − c
:= ωmax ≤ δmin .

Proof of this result is provided in §D.3.

Note that in SUAK, we set the minimum fraction of time an arm in a base will be pulled to ω(t) ≥ ωmin. With this use,
ωmin can be understood as the minimum triggering probability (p∗), in the probabilistic triggering literature discussed
in §3.4. Our regret bounds depend on δmin as in the worst case a base needs to be selected 1/ωmin times in expectation
to acquire one sample of each arm in the base.
Theorem 3.2 (Upper Bound on Expected Regret). Under Assumption 1; when SUAK is run with a given 0 < c ≤ 1, its
cumulative expected regret is upper bounded as

RT ≤
K∑
i=1

432r∗( δi+1
δi

)2 log T

δmin∆2
min,i

+
241Kr∗ log T

cδ2min

+
3π2r∗

δ2min
+ 2π2K2= O(K log T ) +O(1) (4)

Recall that ∆min,i is the minimum reward gap among the bases that include the arm i, δmin is the minimum cost gap of
arms, and r∗ is the optimal reward.

Note that the first term in (4) is regret from arm pulls due to selecting a suboptimal base in the round; the second term is
related to arm pulls that are used to learn whether the true mean cost of an arm is greater than or less than c, and also
the regret from under-utilizing the budget; the third term is due to expected number of times the anytime constraint may
be violated; and the last term is regret when the confidence bounds do not hold. The proof of Theorem 3.2 is provided
in §D, and we also provide a brief proof sketch in §3.5.

Note that this problem-dependent upper bound order-wise matches the O(K log T ) instance-dependent bound of prior
work for the regular BwK setting. Further, this is the first instance-dependent regret bound on the BwAK problem, as
prior work can only achieve O(

√
KT ) instance-independent regret bound in our setting.
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Table 1: Comparison of our work with prior work on bandits with knapsacks
Work Model Regret Bound

Our work Average budget O
(

K log T
δmin∆2 + K log T

δ2min

)
+O(1)

Bernasconi et al. [2024c] BwRK with sublinear constraint violations O
(√

T
)

Kumar and Kleinberg [2022] Total budget and drift O
(

Km2 log T
∆2·min{δ2drift,σ

2
min}

)
Li et al. [2021] Total budget O

(
Kd log T
b3∆2 + d4

b2 min{χ2,∆2}min{1,σ2}

)
Flajolet and Jaillet [2015] Total budget O

(
λ2K2 log T

δ3min∆
+ K2σ log T

δ3min

)

3.4 Related Works

In this section, we present some of the works that are relevant to our problem setting. Additional related works are
provided in the Appendix §B due to space constraints.

Bandits with Knapsacks: The BwK problem has been studied before and algorithms that achieve optimal problem-
independent regret bounds of O(

√
K ·OPT ) have already been developed [Agrawal and Devanur, 2014]. However,

deriving a problem-dependent lower bound and developing algorithms that achieve this bound are still open questions.
One notable work in this field is by Flajolet and Jaillet [2015], in which the BwK problem is considered under three
cases with 1, 2; and d constraints. For 2 constraints, a regret bound of O

(
λ2K2 log T/(δ3min∆) +K2σ log T/δ3min

)
is achieved where δmin is the minimum cost gap; σ is the minimum 1/µ value; λ = 1 + 2κ; and κ is a constant
assumed to be known a priori such that |µi − µj | ≤ κ|ρi − ρj | for any i, j. For the d constraint setting, a regret
bound of O(2K+d log T ) is achieved. The 2-constraint setting is similar to our work, as our one-dimensional cost, and
the anytime cost constraint add up to two constraints for the LP. Their O(K2 log T ) regret bound is not optimal as
it depends on K2. In our work, we reduce this dependence to only K while considering the more complex BwAK
problem.

Another notable prior work is by Li et al. [2021], where a d-dimensional cost vector is considered. They propose
a two-phase algorithm where the first phase pulls each arm the same number of times until all the suboptimal arms
are eliminated. In the second phase, the base with the highest UCB index is chosen. They achieve a regret bound of
O(Kd log T/(b3∆2) + d4/(b2 min{χ2,∆2}min{1, σ2})), where ∆ in their setting is defined as the gap between the
reward of the optimal solution per round and the maximum reward that can be obtained per round when one arm is
removed; b is the average cost budget per round; χ is the minimum nonzero value in the optimal policy; σ is a constant
related to the linear dependency between arms. In our work, while we have a similar dependence on ∆ and K, we have
additional dependencies on the δmin term. However, our setting is more complicated and these additional dependencies
on δmin are needed to satisfy the anytime constraint. The BwK setting has also been studied under different settings,
such as in the adversarial setting [Immorlica et al., 2022], under nonstationary distributions [Liu et al., 2022], and in
contextual bandits [Agrawal and Devanur, 2016].

Bandits with Replenishable Knapsacks: In this setting, cost of an arm is allowed to be negative, which allows the
knapsack to be replenished. One notable prior work is by Slivkins et al. [2024], where packing and covering constraints,
as well as negative resource consumption, are considered. Their algorithm works when the initial budget is B = Ω(T ),
or B = o(T ), compared to the prior work which mostly restricts B to B = Ω(T ). This is similar to our setting as
our setting can be reduced to theirs by implementing the budget increase of c by subtracting c from the costs of all
arms including the null arm. However, their algorithm is suboptimal in our setting with B = 0, as they remark in the
discussion of Slivkins et al. [2024, Theorem 3.6], that their proposed algorithm LagrangeCBwLC is suboptimal when
B = o(T ). This is as expected since Lagrange-based algorithms generally require knowing the ratio T/B, which goes
to infinity when B = o(T ).

In Bernasconi et al. [2024a], a more general BwK formulation with long-term constraints is considered, which stipulates
the total consumption of each resource at round T should be less than zero up to small sublinear violations. The costs
can be negative as well as positive. This is again similar to our setting as our setting can be viewed as their setting
where sublinear violations are not allowed. They propose a Primal-Dual algorithm-based framework that also uses
the EXP3-SIX algorithm, and achieve O(

√
KT log(KT )) instance-independent regret bound. They also remark that

initial o(T ) rounds can be skipped to cover the potential violations and implement the long-term constraint as a hard
constraint like in our setting. However, they provide an upper bound of O(

√
KT ) constraint violations in Bernasconi

et al. [2024a, Corollary 8.2], which suggests that the initial O(
√
KT ) rounds would need to be skipped to achieve
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Figure 2: The plots of cumulative empirical regret (First two), number of skips (Third), and average empirical cost
regret (Fourth)

hard constraints, which would lead to O(
√
KT ) gap-independent regret in our problem setting. In our work, we show

that we achieve O(K log T ) instance-dependent regret for the same problem setting. In Bernasconi et al. [2024c], they
improve their prior work Bernasconi et al. [2024a] by using a UCB-based approach which lets them provide O(

√
T )

regret in stochastic settings without assuming Slater’s condition. The upper bound on constraint violations is still
O(
√
KT ), which would again lead to a O(

√
KT ) instance-independent regret in our problem setting.

In Bernasconi et al. [2024b], there exists an arm with a negative expected cost that allows to replenish the budget.
However, this work cannot be used in our setting as their work can only be used when B = Ω(T ), and they only provide
instance-independent bounds of O(

√
KT ), whereas we provide O(K log T ) instance-dependent bounds.

BwK with non-monotonic resource utilization: It is a generalization of the BwK problem where in each round, a
vector of resource drifts that can be positive, negative, or zero is observed along with the reward; and the budget of each
resource is incremented by this drift amount. In Kumar and Kleinberg [2022], a three phase algorithm that combines the
ideas in Flajolet and Jaillet [2015] and Li et al. [2021] is provided. The algorithm uses the phase one of Li et al. [2021]
to identify the optimal arms, then in phase two arms are pulled to shrink the confidence intervals further, and in the
third phase, the optimal arms are exploited by sampling from a perturbed distribution to ensure that the budget of each
resource stays close to a decreasing sequence of thresholds. While the idea of decreasing sequence of thresholds can be
seen as similar to under-budgeting in our algorithm, their setting assumes T to be known, and the threshold decays to
zero over time as uncertainty decreases; however, in our setting, we do not assume knowing T , and we incur regret
from under-budgeting as we always under-budget. Their algorithm achieves O(Km2 log T/(∆2 ·min{δ2drift, σ

2
min})),

where K is the number of arms, m is the dimension of the cost vector, δdrift > 0 is the smallest magnitude of drifts, and
σmin is the smallest singular value of the constraint matrix.

Comparison of our work with prior work is summarized in Table 1. Due to differences in gap definitions and problem-
dependent parameters, these results are not directly comparable. Additionally, an instance-dependent lower bound does
not exist for either the BwK problem or our BwAK problem. Establishing such a lower bound would be a significant
direction for future research; however, this remains challenging given the diverse set of problem-dependent parameters
that can be used to define each instance.

3.5 Proof Sketch

We now present a brief outline of the regret analysis of SUAK, which is given in §D. Regret is first decomposed as

RT ≤ Ra(T ) +Rb(T ) +Rc(T ) +Rd(T ) +Re(T )

where Ra(T ) is the regret from skips that are used to satisfy the anytime constraint in line 18 of Algorithm 3.2. Rb(T )
is due to pulls needed to reduce the confidence intervals of the arm costs under the condition in lines 5 and 16 of
Algorithm 3.2, and Rc(T ) is the regret from skips that are needed so that the average cost of pulls under this condition
is below c. Rd(T ) is due to pulls of arms after selecting a base (pulls from line 36 of Algorithm 3.2); which includes
the selection of suboptimal bases and regret from under-utilization of the cost budget. Re(T ) is due to the probability
of confidence bounds not holding, and can be upper bounded as 5π2K2/3.

To upper bound Ra(T ), we define te as the time SUAK exceeds the targeted cost of c−log t/t, and we define tf+1 as the
time instant where SUAK skips. Due to the design of SUAK, the arm with the lower cost will be pulled with probability
at least 1 − ω(t) ≥ 1 − ωmax between rounds te ≤ t ≤ tf , and the total incurred cost between rounds te ≤ t ≤ tf
needs to exceed the c by at least log(te). We upper bound the probability of this event using standard concentration
bounds, and apply a union bound over all possible te and tf values to establish that Ra(T ) ≤ 3π2r∗/(δ2min). We upper
bound Rb(T ) and Rc(T ) using standard techniques in bandit literature, and show that an arm i will be sampled at most
96 log T/δ2i times to reduce the uncertainty in its cost estimate, and the expected regret per round will be r∗ − µi. Note
that µi can be greater than r∗ for some arms, but this is balanced by skips. For arms with cost larger than c, we derive
104 log T/(cδi) skips are needed.

8



We upper bound Rd(T ) as follows. For selections of a suboptimal base, since arms are sufficiently sampled by line 20 of
Algorithm 3.2, we show that a suboptimal base I = (i, j) can be selected at most

∑K
i=1 48(

δi+1
δi

)2 log T/(∆2
i,j) times if

selection of the base yields a sample of both arms in it. Due to partial observability, it will take 1/ωmin rounds in expec-
tation to obtain a sample for both arms. Considering this, we show that at most

∑K
i=1 432(

δi+1
δi

)2 log T/(δmin∆
2
min,i)

pulls of arm i will occur to satisfy the upper bound on the number of pulls of all bases that include arm i. Using
the technique in Kveton et al. [2015], we derive the worst case regret from this upper bound on the samples of arms.
Further, we derive an upper bound for the regret due to cost under-utilization as 41r∗ log T/(cδ2min) by showing that
the probability of the under-utilized amount exceeding 41 log T/(δ2min) at round T is on the order of T−2 using an
approach similar to the analysis in Ra(T ).

4 Simulations

We now evaluate the performance of the proposed SUAK Algorithm through simulations. For comparison, we have
included the Primal Dual and One Phase Algorithms in Li et al. [2021]; and the UCB Simplex Algorithm in Flajolet
and Jaillet [2015]. We would like to note that while the authors of Li et al. [2021] believe that the One Phase Algorithm
would be optimal, they leave providing theoretical regret bounds for that algorithm as an open question claiming it
would be challenging to do so. Instead, they provide theoretical guarantees for the Primal Dual Algorithm, which is
similar yet expected to have worse empirical performance. We implement their skip versions as described in §3.1, and
refer to them by appending ’_skip’ to their names. We perform simulations on a setting with K + 1 = 9 arms where
µ = [0.35, 0.45, 0.52, 0.72, 0.84, 0.9, 0.92, 0.9], ρ = [0.25, 0.3, 0.4, 0.6, 0.7, 0.75, 0.8, 0.85], and c = 0.5. Except for
the null arm, the arm reward and cost values are independently sampled from a Beta distribution with parameters
α = 10µ, β = 10(1− µ), where µ represents the mean of the distribution. We perform the simulations for 2.5 million
rounds, and average over 10 different trials. The simulation results are given in Figure 2. The shaded areas represent
error bars with one standard deviation. The second plot in Figure 2 is a version of the first plot zoomed in to only SUAK
and One Phase Skip (OPS) algorithms.

It can be seen that the Primal Dual Skip Algorithm (PDS) performs the worst. This is as expected since the PDS is
designed for theoretical performance, and pulls every arm the same number of times until finding the optimal solution.
The UCB Simplex Skip (USS) also performs poorly as the algorithm assumes knowledge of a constant κ a priori such
that |µi − µj | ≤ κ|ρi − ρj | for any i, j; and the confidence intervals for the arm rewards are multiplied by a factor of
λ = 1 + 2κ. In the simulation setting, λ = 9; which increases the number of samples needed for exploration.

It can be seen that SUAK performs better compared to PDS or USS, and exceeds the performance of OPS after around
round 1.4× 106. This is since the regret of SUAK concentrates mostly on the initialization phase. Pulls during this
phase are used to reduce the uncertainty in the -+mean costs of arms, but are also helpful in determining the optimal
base in the main algorithm, hence this reduces the regret suboptimal pulls while searching for the optimal base during
the main algorithm. After this initialization phase, SUAK can catch up to and eventually surpass the performance of
OPS due to the higher regret of OPS from its high number of skips, verifying the practical utility of SUAK.

It can be seen from the third plot in Figure 2 that the number of skips is sublinear for all algorithms, and both USS
and SUAK have a very small number of skips. This demonstrates the effectiveness of SUAK in reducing the number
of skips by under-utilizing the available budget. Note that pulls of the null arm originating from lines 5, 16 and 18 of
Algorithm 3.2 are counted as skips, yet pulls of the null arm when it is in the selected base is not counted as a skip.
The last plot of Figure 2 shows the average c− c̄(t) plot. As expected, SUAK uses an average cost of around c during
phase 1 by utilizing skips. After the initialization phase, the average empirical cost first falls to around 0.49 due to
under-budgeting in phase 2, and then, it approaches the per round cost budget of 0.5 over time as the under-utilization
term log t/(ω2(t) · t) approaches zero. The average empirical cost of other algorithms are very close to the constraint,
and except USS, need to utilize skips to avoid exceeding c.

5 Concluding Remarks

In this paper, we introduce a previously unexplored setting for the BwK problem, which we call the bandits with anytime
knapsacks (BwAK) problem; where we employ a stricter anytime cost constraint instead of a total cost budget. We
provide SUAK, a novel algorithm that under-utilizes the available cost budget, utilizes skipping to limit the probability
of violating the anytime constraint, and uses upper confidence bounds to balance exploration and exploitation. SUAK
achieves an instance-dependent regret upper bound of O(K log T ). This bound is the first instance-dependent regret
bound for this problem setting as only O(

√
KT ) instance-independent bounds were derived on prior work. We provide

simulation results to demonstrate the empirical performance of SUAK. Our work opens multiple directions for future
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research. One interesting future direction is to extend our results to d-dimensional costs. This is a challenging problem
as the anytime constraint needs to be satisfied in every dimension, which can introduce additional skips. Another
interesting open direction is when the rewards and costs of arms are stochastic. In this case, satisfying the anytime
cost constraint would be challenging but we conjecture it may be accomplished using a more conservative cost budget
under-utilization.
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A Table of Notations

Below, we provide the notations of some of the terms commonly used throughout the paper.

Table 2: Notations

K number of arms
[K + 1] set of arms including the null arm
ρ mean cost vector of the arm set [K + 1]
µ mean reward vector of the arm set [K + 1]
V the set of all possible valid bases
ci(t) cost of pulling arm i in round t
ρi mean cost of arm i
ρ̄i(t) empirical average cost of arm i in round t

ϵi(t) ϵi(t) =
√

3 log t
Ni(t)

, the confidence interval of arm i in round t

ρLi (t) ρLi (t) = ρ̄i(t)− ϵi(t), the lower confidence bound (LCB) of the cost of arm i in round
t

µU
i (t) ρLi (t) = µ̄i(t) + ϵi(t), the upper confidence bound (UCB) of the reward of arm i in

round t

ϱLl (t) ϱLl (t) := ρ̄l(t)− 7
√
1.5 log t/Nl(t)

ϱUl (t) ϱUl (t) := ρ̄l(t) + 7
√
1.5 log t/Nl(t)

ω(t) ω(t) := δLmin(t)/(2 + δLmin(t)− c), the under-budgeting amount at round t

δLmin(t) δLmin(t) := mini(|ρ̄i(t)− c| −
√
1.5 log t/Ni(t)), LCB of minimum cost gap

ri(t) reward obtained from pulling arm i in round t
rI reward of base I
rUI (t) upper confidence bound of the reward of base I
µi mean reward of arm i
π∗ optimal solution of the problem under the linear relaxation
i∗ i∗ := argmaxi∈[K]

µi

ρi

i∗∗ i∗∗ := argmaxi∈[K] µi

Sc(t) Sc(t) :=
∑t

s=1 c(s) cumulative cost amassed until round t
c̄(t) c̄(t) = Sc(t)/t average cost obtained at round t
Ni(t) Total number of times arm i is pulled until round t+ 1
N(i,j)(t) The number of times base (i, j) is selected until round t+ 1
∆i ∆i := µi∗∗ − µi, the reward gap of an arm
δi δi := |ρi − c|, the cost gap of an arm
δmin δmin := mini δi, the minimum cost gap
∆min,i ∆min,i := minI∈V\I∗ s.t. i∈I (∆I)

B Additional Related Works

Conservative and safe bandits: Conservative bandits is a framework where an action is considered safe at round t if it
keeps the cumulative reward up to round t above a given fraction of a baseline policy. In Wu et al. [2016], a baseline
safe arm is given, and they provide an algorithm that utilizes the UCB principle where the baseline arm is pulled if the
arm chosen by the UCB principle is not safe. In Moradipari et al. [2020], an anytime constraint is used instead of a
constraint on cumulative reward that demands the expected reward of the pulled arm to be greater than a given threshold
with high probability. They provide an algorithm that starts with a safe baseline and utilizes confidence regions to
explore the other safe arms. Safe bandits is a similar framework to conservative bandits where in each round, the agent
is required to select an arm with a given property no less than a predetermined (safe) threshold with high probability.
For example, in Hou et al. [2023], the agent needs to choose at most K items from a set of L items; and with probability
at least 1− δ, the sum of variances of the selected items should not exceed a given threshold, which they call as the
anytime-safe constraint. They propose a two step approach where first a set of arms is selected according to the UCB
principle, and if this selection exceeds the threshold, the selected arms are split and pulled over multiple rounds. Our
work is also similar in the sense that we also implement constraint checking as an additional separate step in SUAK.

Relation to Probabilistic Triggering in Combinatorial Bandits: The feedback obtained from the selected mixture of
arms in BwAK problem resembles the feedback model in combinatorial bandits with probabilistically triggered arms.
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Probabilistic triggering is a special feedback model where when an action is played, a random subset of arms is triggered
according to a triggering probability distribution, and the rewards of triggered arms are observed [Wang and Chen,
2017]. Since the rewards of arms in a chosen super arm are only observed when that arm is triggered p∗ > 0 is defined
as the minimum probability that an arm is triggered by any action; it is shown in Wang and Chen [2017, Theorem 3] that
the regret lower bound scales with the factor 1

p∗ for the general combinatorial bandits with probabilistically triggered
arms, unless some additional assumptions are made. One such additional assumption is the triggering probability
modulated bounded smoothness assumption that is used in Wang and Chen [2017]. The main rationale behind this
assumption is that an arm with a low triggering probability does not have a significant weight on the overall reward of
an action, and perturbing its expected mean by a small amount would only cause a marginal change in the expected
reward of an action. Leveraging this assumption, they prove regret bounds that are independent of p∗; but are dependent
on B, the bounded smoothness constant. This assumption is also used in many other subsequent work, such as in
Hüyük and Tekin [2020]. We also have partial observability of arms in our work since the frequency with which an arm
is pulled within a given base is contingent upon the costs associated with each arm, such that the average cost of the
base converges to c. However, we cannot use the triggering probability modulated bounded smoothness assumption in
our work, as triggering probabilities of arms are dependent on empirical costs of arms, and subject to change every
round. As a result of this, while the actual triggering probabilities are unknown, we have added the additional condition
of pulling an arm in a base with at least ωmin probability in SUAK, and as such, our regret bounds depend on δmin

as the triggering probability. While time-varying triggering probabilities are considered in Liu et al. [2023] to derive
instance-independent bounds that do not depend on the triggering probability, these results are not directly applicable to
the instance-dependent bounds that we consider here.

C Preliminaries and Auxiliary Results

The following well known properties are used throughout the proofs:

Fact C.1 (Hoeffding’s Inequality). Let Z1, Z2, · · · , Zn be independent random variables bounded between ai ≤ Zi ≤
bi, then for any δ > 0, we have

P
(∑n

i=1 Zi

n
− E[Z] ≥ δ

)
≤ e

− 2n2δ2∑n
i=1

(bi−ai)
2
.

Fact C.2 (Conditional Probabilities). The probability of an event A can be upper bounded by conditioning on an event
B as follows

P (A) = P (A,B) + P (A,Bc) = P (A|B)P (B) + P (A|Bc)P (Bc) ≤ P (A|B) + P (Bc) .

Upper bounds of similar form are used throughout the proof.

C.1 Optimal Base of the Optimization Problem

The constrained optimization version of our problem that ignores the anytime cost budget constraint is expressed as
follows:

OPT = max
π

µTπ

s.t. ρTπ < c,

K+1∑
i=1

πi = 1

πi ≥ 0,∀i ∈ [K + 1].

Letting i∗∗ := argmaxi∈[K] µi, and i∗ := argmaxi∈[K]
µi

ρi
, the solution of the problem can be found under three

different cases as follows.

Case 1: If ρi∗∗ ≤ c, then I∗ = {i∗∗}. Since the cost of the arm with the highest mean reward is less than the cost
constraint c, a mixture strategy is not needed and the optimal base includes only this arm.

Case 2: If ρi∗∗ > c, ρi∗ > c, then the optimal solution is mixing the arm with the highest mean reward per cost with
the null arm. Hence, I∗ = {i∗,K + 1}, and the optimal solution is π∗

i∗ = c
ρi∗

, and π∗
K+1 = 1 − c

ρi∗
. The optimal

reward per round is r∗ = cµi∗
ρi∗

.
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Case 3: If ρi∗∗ > c, ρi∗ < c, then the optimal base will be of the form I∗ = (i, j) where ρi > c > ρj ; and can be
found as:

I∗ = arg max
i,j∈[K+1],i̸=j

r(i,j)

where

r(i,j) = max
πi,πj

µiπi + µjπj

s.t. ρiπi + ρjπj < c,

πi + πj = 1

πi ≥ 0, πj ≥ 0.

is the mean reward of base (i, j). Note that the optimal base might or might not include i∗ or i∗∗.

C.2 Concentration Inequalities for the Confidence Intervals

In this section, we derive concentration inequalities for the confidence intervals that we use throughout the paper.
Lemma C.3. For an arm i that is sampled u times up to round t, the following results hold:

P
(
µL
i (t, u) ≥ µi

)
≤ t−6

P
(
µU
i (t, u) ≤ µi

)
≤ t−6

P
(
ρLi (t, u) ≥ ρi

)
≤ t−6

P
(
ρUi (t, u) ≤ ρi

)
≤ t−6

P
(
ρ̄i(t, u) ≥ ρi +

√
1.5 log t/u

)
≤ t−3

P
(
ρ̄i(t, u) ≤ ρi −

√
1.5 log t/u

)
≤ t−3.

where µL
i (t, u) is the lower confidence bound of arm i at round t when arm i is sampled u times up to round t; and

other variables are defined similarly.

Proof.

P
(
µL
i (t, u) ≥ µi

)
= P

(∑u
s=1 ri(ti,s)

u
−
√

3 log t

u
≥ µi

)

where ti,s denotes the round in which sth sample of arm i is obtained. Since the samples of arm i are independent across
time, this expression can also be written independent of the time instant the sample from arm i was obtained as:

P
(
µL
i (t, u) ≥ µi

)
= P

(∑u
s=1 µi,s

u
− µi ≥

√
3 log t

u

)

where µi,s is the sth sample of arm i. The result follows using Fact C.1:

P
(
µL
i (t, u) ≥ µi

)
= P

(∑u
s=1 µi,s

u
− µi ≥

√
3 log t

u

)
≤ e−

2u2
(√

3 log t
u

)2

u = t−6

The other results are proved similarly.

Lemma C.4. For a base I = (i, j) if the arm i is sampled r times; and arm j is sampled s times up to round t, the
following results hold:

P
(
rLI (t, r, s) > rI

)
≤ 4t−6

14



P
(
rUI (t, r, s) < rI

)
≤ 4t−6.

where we define r(i,j)(t, r, s) as the empirical mean of the base I = (i, j) at round t when arm i has been sampled
r times, and arm j has been sampled s times up to round t; rU(i,j)(t, r, s) as the upper confidence bound of the base
I = (i, j) at round t when arm i has been sampled r times, and arm j has been sampled s times up to round t; and
rL(i,j)(t, r, s) as the lower confidence bound of the base I = (i, j) at round t when arm i has been sampled r times, and
arm j has been sampled s times up to round t.

Proof. Recall that r(i,j) is the optimal LP solution when only arms in the base I = (i, j); i.e. i and j; are allowed.
Hence, r(i,j) can be found as:

r(i,j) = max
πi,πj

µiπi + µjπj

s.t. ρiπi + ρjπj < c,

πi + πj = 1

πi ≥ 0, πj ≥ 0.

Similar to this, rUI (t, r, s) is the solution to the equation below.

rU(i,j)(t, r, s) = max
βi,βj

µU
i (t, r) · βi + µU

j (t, s) · βj

s.t. ρLi (t, r) · βi + ρLj (t, s) · βj < c,

βi + βj = 1

βi ≥ 0, βj ≥ 0.

Using the fact that P
(
µU
i (t, r) ≥ µi ∧ µU

j (t, s) ≥ µj

)
≥ 1− 2t−6 from Lemma C.3, the following holds with at least

1− 2t−6 probability:

rU(i,j)(t, r, s) = µU
i (t, r) · βi + µU

j (t, s) · βj

≥ µiβi + µjβj

Using the fact that P
(
ρLi (t, r) ≤ ρi ∧ ρLj (t, s) ≤ ρj

)
≥ 1− 2t−6 from Lemma C.3, it can be seen that with probability

at least 1 − 2t−6, {πi, πj : ρiπi + ρjπj < c} ⊂ {βi, βj : ρiβi + ρjβj < c}; i.e. the constraint on πi and πj is
more restrictive than the constraint on βi and βj . Hence, it holds that P (µiβi + µjβj ≥ µiπi + µjπj) ≥ 1 − 2t−6.

Combining this with the fact that P
(
rU(i,j)(t, r, s) ≥ µiβi + µjβj

)
≥ 1− 2t−6, the result follows. Note that the same

result also follows if the base I contains only one arm. This is since a base with only one arm can be viewed as a base
with that arm and the null arm where the null arm is never pulled.

D Proof of Theorem 3.2

Proof. To prove Theorem 3.2, we start by defining the events where the confidence bounds hold, which are also known
as the good events in the bandit literature. First, define

GI(t) :=
{

min
r≤t,s≤t

rUI∗(t, r, s) ≥ r∗ ∧ max
u≤t,v≤t

rLI (t, u, v) ≤ rI

}
as the good event for base I at round t. Hence, GI(t) denotes the event where the confidence intervals of both base I
and the optimal base I∗ hold. The events G(t) and GT are defined as

G(t) := ∩I∈VGI(t),
GT := ∩Tt=1G(t).
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Further, define

Fi(t) :=

{
min
r≤t

(
ρ̄i(t, r) +

√
1.5 log t/r

)
≥ ρi ∧max

r≤t

(
ρ̄i(t, r)−

√
1.5 log t/r

)
≤ ρi

}
,

F(t) := ∩Ki=1Fi(t), and

FT := ∩Tt=1F(t)

as the good events for determining the confidence bounds of arm costs for line 20 of Algorithm 3.2. Using these events,
the regret of SUAK can be decomposed as follows.

RT = OPTLP − E [F (T )]

= T · µTπ∗ − E

[
T∑

t=1

r(t)

]

= E

[
T∑

t=1

r∗ − r(t)

]

≤ E

[
T∑

t=1

r∗ − r(t)
∣∣∣GT ,FT

]
+

T∑
t=1

(P (Gc(t)) + P (Fc(t)))

We define the following four events based on the behaviour of SUAK:

E1(t): The round is skipped to satisfy the anytime constraint in line 18 of Algorithm 3.2
E2(t): An arm is pulled to reduce the confidence interval of the arm cost in line 20 of Algorithm 3.2
E3(t): Round is skipped so that the average cost incurred during pulls that are needed to reduce the confidence interval
of the arm cost stay below c in lines 5 and 16 of Algorithm 3.2
E4(t): A base is selected and an arm from this base is pulled in line 36 of Algorithm 3.2.

Using these events, regret can be decomposed as
RT ≤ Ra(T ) +Rb(T ) +Rc(T ) +Rd(T ) +Re(T )

where

Ra(T ) :=E

[
T∑

t=tinit+1

1 {E1(t)} · (r∗ − r(t))
∣∣∣GT ,FT

]

Rb(T ) :=E

[
T∑

t=tinit+1

1 {E2(t)} · (r∗ − r(t))
∣∣∣GT ,FT

]

Rc(T ) :=E

[
T∑

t=tinit+1

1 {E3(t)} · (r∗ − r(t))
∣∣∣GT ,FT

]

Rd(T ) :=E

[
T∑

t=tinit+1

1 {E4(t), Ec3(t)} · (r∗ − r(t))
∣∣∣GT ,FT

]

Re(T ) :=

T∑
t=1

(P (Gc(t)) + P (Fc(t)))

Note that these four events E1(t), · · · , E4(t) are mutually exclusive, any pair of these events cannot happen at the same
time. Also note that in the definition of Rd(T ), we explicitly define the event as 1 {E4(t), Ec3(t)} to highlight that E4(t)
can happen only under Ec3(t), i.e. when the confidence intervals of arm costs have been reduced enough that whether the
cost of an arm is greater or less than c is correctly known. This property is essential in satisfying the anytime constraint
as it enables to pull an arm whose true mean cost is less than c if the targeted cost budget is exceeded.

Each term in the regret can be upper bounded as below.

Lemma D.1. It holds that
T∑

t=tinit+1

P (Gc(t)) ≤ 4π2K2

3
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Proof of this result is provided in §D.1

Lemma D.2. It holds that
T∑

t=tinit+1

P (Fc(t)) ≤ π2K

3

Proof of this result is provided in §D.2.

Lemma D.3. Whenever δLmin(t) is estimated in SUAK, the following relations hold:

2

3
δmin ≤ δLmin(t) ≤ δmin

2

9
δmin := ωmin ≤ ω(t) ≤ δmin

2 + δmin − c
:= ωmax ≤ δmin .

Proof of this result is provided in §D.3.

Lemma D.4. The regret from skips needed to prevent violating the anytime constraint can be upper bounded as

Ra(T ) ≤
3π2r∗

δ2min

.

Proof of this result is provided in §D.6.

Lemma D.5. The regret from pulls needed to reduce the confidence intervals of arm costs can be upper bounded as

Rb(T ) +Rc(T ) ≤
K∑
i=1

96(r∗ − µi) log T

δ2i
+
∑

i:ρi>c

104r∗ log T

cδi
+K ≤ 200Kr∗ log T

cδ2min

+K

Proof of this result is provided in §D.5.

Lemma D.6. The regret from arm pulls due to line 36 of Algorithm 3.2, i.e. regret from pulls of an arm in a selected
base, can be upper bounded as

Rd(T ) ≤
K∑
i=1

432r∗ log T

δmin∆2
min,i

·
(
1 +

1

δi

)2

+
41r∗ log T

cδ2min

Proof of this result is provided in §D.4.

Note that to present the main result in a simpler way, we define RK as

T∑
t=tinit+1

P (Gc(t)) +
T∑

t=tinit+1

P (Fc(t)) +K ≤ π2K

3
+

4π2K2

3
+K ≤ RK := 2π2K2

Combining all these results, it can be seen that

RT ≤
K∑
i=1

432( δi+1
δi

)2 log T

δmin∆min,i
+

200Kr∗ log T

cδ2min

+
41r∗ log T

cδ2min

+
3π2r∗

δ2min

+RK

≤
K∑
i=1

432( δi+1
δi

)2 log T

ω∆min,i
+

241Kr∗ log T

cδ2min

+
3π2r∗

δ2min

+RK

= O(K log T ) +O(1)
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D.1 Proof of Lemma D.1

Proof.
T∑

t=1

1 {GcI(t)} =
T∑

t=1

1

{
min

r≤t,s≤t
rUI∗(t, r, s) < r∗ ∨ max

u≤t,v≤t
rLI (t, u, v) > rI

}

≤
T∑

t=1

t∑
r=1

t∑
s=1

t∑
u=1

t∑
v=1

1
{
rUI∗(t, r, s) < r∗ ∨ rLI (t, u, v) > rI

}
By the monotonicity of expectation, it holds that

T∑
t=1

GcI(t) ≤
T∑

t=1

t∑
r=1

t∑
s=1

t∑
u=1

t∑
v=1

P
(
rUI∗(t, r, s) < r∗ ∨ rLI (t, u, v) > rI

)
≤

T∑
t=1

t∑
r=1

t∑
s=1

t∑
u=1

t∑
v=1

8t−6 (5)

≤
T∑

t=1

8t−2 ≤ 4π2

3

where we used Lemma C.4 in (5). The result follows using G(t) = ∩I∈VGI(t).
T∑

t=1

G(t) =
T∑

t=1

⋃
I∈V
GcI(t)

≤
∑
I∈V

T∑
t=1

GcI(t) =
4π2K2

3

D.2 Proof of Lemma D.2

Proof.
T∑

t=1

1 {Fc
i (t)} =

T∑
t=1

1

{
min
r≤t

(
ρ̄i(t, r) +

√
1.5 log t/r

)
< ρi ∨max

r≤t

(
ρ̄i(t, r)−

√
1.5 log t/r

)
> ρi

}

≤
T∑

t=1

t∑
r=1

1
{(

ρ̄i(t, r) +
√

1.5 log t/r
)
< ρi ∨

(
ρ̄i(t, r)−

√
1.5 log t/r

)
> ρi

}
By the monotonicity of expectation, it holds that

T∑
t=1

1 {Fc
i (t)} ≤

T∑
t=1

t∑
r=1

P
((

ρ̄i(t, r) +
√

1.5 log t/r
)
< ρi ∨

(
ρ̄i(t, r)−

√
1.5 log t/r

)
> ρi

)
≤

T∑
t=1

t∑
r=1

2t−3 (6)

≤
T∑

t=1

2t−2 ≤ π2

3

where we used Lemma C.4 in (6). The result follows using F(t) = ∩Ki=1Fi(t).
T∑

t=1

F(t) =
T∑

t=1

K⋃
i=1

Fc
i (t)

≤
K∑
i=1

T∑
t=1

Fc
i (t) =

π2K

3
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D.3 Proof of Lemma 3.1 and Lemma D.3

Proof. Note that we present Lemma 3.1 in the main paper as a shortened version of Lemma D.3 in the Appendix.

Under the condition in SUAK where if ∃l : ϱLl (t) ≤ c ≤ ϱUl (t) during phase 1 or phase 2, then arm l is pulled
and SUAK does not proceed to next round, hence δLmin(t) or ω(t) is not estimated in that round. Hence, when
δLmin(t) is estimated in a round, ∄l : ϱLl (t) ≤ c ≤ ϱUl (t) for an arm l, and either ρ̂l(t) + 7

√
1.5 log t/Nl(t) < c or

ρ̂l(t)− 7
√

1.5 log t/Nl(t) > c holds true.

If ρ̂l(t) + 7
√
1.5 log t/Nl(t) < c, then it will be the case that ρl < c, since

ρl ≤ ρUl (t) ≤ ρ̂l(t) +
√
1.5 log t/Nl(t) ≤ ρ̂l(t) + 7

√
1.5 log t/Nl(t) < c .

Further, using the fact that ρl ≤ ρ̂l(t) +
√

1.5 log t/Nl(t),

ρl + 6
√

1.5 log t/Nl(t) ≤ ρ̂l(t) + 7
√
1.5 log t/Nl(t) < c

6
√
1.5 log t/Nl(t) < c− ρl = δl√

1.5 log t/Nl(t) < δl/6

Similarly, if ρ̂l(t)− 7
√
1.5 log t/Nl(t) > c, then it will be the case that ρl > c, since

ρl ≥ ρLl (t) ≥ ρ̂l(t)−
√
1.5 log t/Nl(t) ≥ ρ̂l(t)− 7

√
1.5 log t/Nl(t) > c .

With similar proof, the relation
√

1.5 log t/Nl(t) < δl/6 will also hold in this case.

Recall that δLmin(t) = mini(|ρ̄i(t) − c| −
√
1.5 log t/Ni(t)) . We will now derive an upper and a lower bound for

δLmin(t). Under the event that the confidence bounds hold, ρLi (t)− c ≤ ρ̄i(t)− c ≤ ρUi (t)− c. Using this,

ρi −
√

1.5 log t/Ni(t)− c ≤ ρLi (t)− c ≤ ρ̄i(t)− c ≤ ρUi (t)− c ≤ ρi +
√
1.5 log t/Ni(t)− c

Using the fact that |ρi − c| = δi, it can be seen that

δi −
√

1.5 log t/Ni(t) ≤ |ρ̄i(t)− c| ≤ δi +
√

1.5 log t/Ni(t)

Hence, the whole expression can be lower and upper bounded as

δi − 2
√
1.5 log t/Ni(t) ≤ |ρ̄i(t)− c| −

√
1.5 log t/Ni(t) ≤ δi

Using the fact that
√
1.5 log t/Ni(t) < δi/6,

δi − 2δi/6 ≤ |ρ̄i(t)− c| −
√
1.5 log t/Ni(t) ≤ δi

2

3
δi ≤ |ρ̄i(t)− c| −

√
1.5 log t/Ni(t) ≤ δi

Taking the minimum across all arms i,
2

3
δmin ≤ δLmin(t) = min

i
(|ρ̄i(t)− c| −

√
1.5 log t/Ni(t)) ≤ δmin .

Now, we prove the relation for ω(t). Recall that ω(t) = δLmin(t)/(2+ δLmin(t)− c). Using the fact that 0 ≤ δLmin(t) ≤ 1,
ω(t) can be bounded as

ω(t) =
δLmin(t)

2 + δLmin(t)− c
≥ δLmin(t)

3− c
≥ 1

3
δLmin(t) ≥

2

9
δmin

Similarly,

ω(t) =
δLmin(t)

2 + δLmin(t)− c
≤ δmin

2 + δmin − c
≤ δmin

2− c
≤ δmin ≤ δmin

Hence, it holds that
2

9
δmin ≤ ω(t) ≤ δmin

2 + δmin − c
≤ δmin
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D.4 Proof of Lemma D.6

Regret will be incurred in Rd(T ) under two different ways; one is selecting a suboptimal base; and the other is the
under-utilization of the cost budget. Under-utilization causes regret since even if the selected base is optimal, less
reward can be obtained when the targeted average budget is less than c. First, we start by ignoring under-utilization
(assume we target an anytime cost budget of ct), the regret from under-utilization will be added separately.

For SUAK to select a suboptimal base I = (i, j) in round t, the following needs to hold.

rUI (t) ≥ rUI∗(t)

Under the good event G(t), r∗ ≤ rUI∗(t); rI ≥ rLI (t); and hence rUI (t) ≤ rU,U
I (t) holds where

rU,U
I (t) = max

βi(t),βj(t)
(µi + 2ϵi(t))βi(t) + (µj + 2ϵj(t))βj(t)

s.t. (ρi − 2ϵi(t))βi(t) + (ρj − 2ϵj(t))βj(t) < c,

βi(t) + βj(t) = 1

βi(t) ≥ 0, βj(t) ≥ 0.

Hence, the condition for SUAK to select a suboptimal base I = (i, j) in round t can be written as:

r∗ ≤ rUI∗(t) ≤ rUI (t) ≤ rU,U
I (t)

This means that the suboptimal base I = (i, j) would not be selected in round t if rU,U
I (t) ≤ r∗. To analyze this, we

note that when ρi − 4ϵi(t) > c > ρj , the value of rU,U
(i,j)(t) can be written as:

rU,U
(i,j)(t) = (µi + 2ϵi(t))βi(t) + (µj + 2ϵj(t))βj(t)

where

βi(t) =
c− ρj + 2ϵj(t)

ρi − ρj + 2(ϵj(t)− ϵi(t))
, βj(t) =

ρi − c− 2ϵi(t)

ρi − ρj + 2(ϵj(t)− ϵi(t))

Note that given Fi(t), ρi − 4ϵi(t) > c holds whenever SUAK selects a base due to the design of SUAK. If this was not
the case, SUAK would pull arm i due to condition in line 20 and would not select a base at that round. Also note that
we only consider the case where the arms i, j in the base satisfy ρi > c > ρj . The proof for the case where I contains
a single arm i with ρi < c is much simpler and can be done similarly. Furthermore, under the event Fi(t) ∧ Fj(t), it is
not possible for SUAK to select a base I = (i, j), where ρi > c, ρj > c.

rU,U
(i,j)(t) can be written in terms of r(i,j) as follows:

rU,U
(i,j)(t) = (µi + 2ϵi(t))βi(t) + (µj + 2ϵj(t))βj(t)

= µiβi(t) + 2ϵi(t)βi(t) + µjβj(t) + 2ϵj(t)βj(t)

= µiβi(t) + µjβj(t) + 2ϵi(t)βi(t) + 2ϵj(t)βj(t)

= µiπi + µjπj + µi(βi(t)− πi) + µj(βj(t)− πj) + 2ϵi(t)βi(t) + 2ϵj(t)βj(t)

= µiπi + µjπj + µi(βi(t)− πi) + µj(1− βi(t)− 1 + πi) + 2ϵi(t)βi(t) + 2ϵj(t)βj(t)

= r(i,j) + (µi − µj) · (βi(t)− πi) + 2ϵi(t)βi(t) + 2ϵj(t)βj(t)

The expression βi(t)− πi can be written as

βi(t)− πi =
c− ρj + 2ϵj(t)

ρi − ρj + 2(ϵj(t)− ϵi(t))
− c− ρj

ρi − ρj

=
2ϵj(t) · (ρi − c) + 2ϵi(t) · (c− ρj)

(ρi − ρj + 2ϵj(t)− 2ϵi(t)) · (ρi − ρj)

Hence,

rU,U
(i,j)(t) = r(i,j) + (µi − µj) ·

2ϵj(t) · (ρi − c) + 2ϵi(t) · (c− ρj)

(ρi − ρj + 2ϵj(t)− 2ϵi(t)) · (ρi − ρj)
+ 2ϵi(t) + 2ϵj(t).
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Hence, the base I = (i, j) can be selected in round t if

r∗ − r(i,j) = ∆(i,j) ≤ (µi − µj) ·
2ϵj(t) · (ρi − c) + 2ϵi(t) · (c− ρj)

(ρi − ρj + 2ϵj(t)− 2ϵi(t)) · (ρi − ρj)
+ 2ϵi(t) + 2ϵj(t)

=
(2ϵj(t) · δi + 2ϵi(t) · δj) · (µi − µj)

(δi + δj + 2ϵj(t)− 2ϵi(t)) · (δi + δj)
+ 2ϵi(t) + 2ϵj(t)

where we used the cost gaps δi = |ρi − c|. Under the event Fi(t), it is known that ϵi(t) < δi/4 holds due to the design
of SUAK. Hence, the condition can be written as

∆(i,j) ≤ 2
(2ϵj(t) · δi + 2ϵi(t) · δj) · (µi − µj)

(δj + δi) · (δi + δj)
+ 2ϵi(t) + 2ϵj(t)

Define N(i,j)(t) as the number of times the base I = (i, j) is selected by SUAK up to round t. Since we know from
Lemma D.3 that SUAK selects an arm in a base with at least ω(t) ≥ 2

9δmin probability in a round t if SUAK pulls an
arm from a base, an individual arm in a base I = (i, j) will be pulled at least 2

9δmin ·N(i,j)(t) times in expectation
(greater than is used as an arm can also be pulled if through other bases that include that arm), hence

E [Ni(t)] ≥
2

9
δmin ·N(i,j)(t)

E [Nj(t)] ≥
2

9
δmin ·N(i,j)(t)

Defining

ϵ(i,j)(t) :=

√
3 log t

N(i,j)(t)
,

it can be seen that
√

2
9δmin · ϵi(t) ≤ ϵ(i,j)(t), and

√
2
9δmin · ϵj(t) ≤ ϵ(i,j)(t). Using this√

2

9
δmin ·∆(i,j) ≤ 2

2ϵ(i,j)(t) · (δi + δj) · (µi − µj)

(δj + δi) · (δi + δj)
+ 4ϵ(i,j)(t)

≤
4ϵ(i,j)(t) · (µi − µj)

δj + δi
+ 4ϵ(i,j)(t)

= 4ϵ(i,j)(t) ·
(
1 +

µi − µj

δi + δj

)
= 4

√
3 log t

N(i,j)(t)

(
1 +

µi − µj

δi + δj

)
Using this, under the method described above, it can be seen that a suboptimal base I = (i, j) can be pulled at most

N(i,j)(T ) ≤
216 log T

δmin∆2
(i,j)

·
(
1 +

µi − µj

δi + δj

)2

times in T rounds under the good event ∩Tt=1G(t). Using the inequality above, it can also be seen that the following
two inequalities hold.

N(i,j)(T ) ≤
216 log T

δmin∆2
(i,j)

·
(
1 +

1

δi

)2

N(i,j)(T ) ≤
216 log T

δmin∆2
(i,j)

·
(
1 +

1

δj

)2
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Note that information on an individual arm i can be obtained from any base I : i ∈ I, not just the base I = (i, j).
As selecting and pulling arms from one base might reduce the need to pull the other base, simply summing the upper
bounds of N(i,j)(T ) values of all bases to find the total number of arm pulls needed would lead to an over-count. To
prevent this kind of over-count, we consider an upper bound on the number of pulls of individual arms; and for this
regard, we define the following event.

Bt = {It ∈ V \ I∗} ∩

{
∃i ∈ It : Ni(t) ≤

216 log t

δmin∆2
(i,j)

·
(
1 +

1

δi

)2
}

It can be seen that the base It ∈ V \ I∗ cannot be chosen under the event Bct . Further, define

Bi,t := Bt ∩

{
i ∈ It, Ni(t) ≤

216 log t

δmin∆2
(i,j)

·
(
1 +

1

δi

)2
}

as the event that the arm i is not observed sufficiently often under event Bt. Then, it can be seen that

1 {Bt,∆It
> 0} ≤

K∑
i=1

1 {Bi,t,∆It
> 0}.

Using this, regret can be bounded as:

Rd(T ) = E

[
T∑

t=tinit+1

1 {E4(t), Ec3(t)} · (r∗ − r(t))
∣∣∣GT ,FT

]

≤ E

 T∑
t=tinit+1

∑
I∈V\I∗

1 {It = I} · r∗
∣∣∣∣G(T )


+ E

[
T∑

t=tinit+1

1 {E4(t), Ec3(t)} · 1 {It = I∗} · (r∗ − r(t))
∣∣∣GT ,FT

]
:= Rd,1(T ) +Rd,2(T )

where Rd,1(T ) is the gap from selecting a suboptimal base, and Rd,2(T ) is the regret due to under-budgeting. Starting
with Rd,1(T ),

Rd,1(T ) = E

 T∑
t=tinit+1

∑
I∈V\I∗

1 {It = I} · r∗
∣∣∣∣G(T )

 ≤ E

[
T∑

t=tinit+1

K∑
i=1

1 {Bi,t} · r∗
∣∣∣∣G(T )

]

where the gap is taken as r∗. Let Si := {∆I : I ∈ V \ {I∗}, i ∈ I} be the set of gaps of suboptimal bases that include
arm i. Also let σi,1 ≥ · · · ≥ σi,|Si| be the gaps of the bases in Si ordered from the one with largest gap to the smallest
one. Note that |Si| is the number of valid bases that contain the arm i; and since two arms that have mean costs larger
than c do not form a valid base, |Si| ≤ K will hold.

Rd,1(T ) ≤ E

 T∑
t=tinit+1

K∑
i=1

|Si|∑
j=1

1 {Bi,t,∆It = σi,j} · r∗
∣∣∣∣E(T )


≤ E

 T∑
t=tinit+1

 K∑
i=1

|Si|∑
j=1

1

{
i ∈ It, Ni(t) ≤

216 log t

δmin∆2
(i,j)

·
(
1 +

1

δi

)2
}
· r∗
∣∣∣∣E(T )


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To proceed, as in Kveton et al. [2015], we consider the worst case, i.e. the way with which the samples of arm i are
obtained with the highest regret possible. The key idea is that this worst case occurs when first the base with highest
gap is repeatedly selected to obtain samples of arm i until this base can no longer be selected, and then selecting the
base with the highest gap among the remaining bases, and then repeatedly selecting that base, and so on. Since all bases
have the same regret per sample, it can be seen that regret from samples for arm i will be bounded by

Rd,1,i(T ) ≤
432r∗ log T

δmin∆2
min,i

·
(
1 +

1

δi

)2

Note that the term Rd,1(T ) is the regret when arms in a base are assumed to be pulled so that the expected cost of
these pulls is equal to the mean of the base. Due to under-budgeting, the pulls of arms in a base in SUAK might not be
equal to the mean cost of the base (mean cost of a base is c for valid bases with two arms, for valid bases with one arm
it is equal to the mean cost of that arm). To upper bound this regret, we now upper bound Rd,2(T ), the regret from
under-utilizing the cost budget. Note that the under-budgeting regret is not applicable to valid bases with only one arm
as it is not possible to make a decision over which arm in the base to pull and change the expected cost of these pulls.
Therefore, we only consider valid bases with two arms for under-budgeting regret. To upper bound Rd,2(T ), we will
use the following result.
Lemma D.7. The probability that the empirical average cost of pulling arms from valid bases with two arms being less
than c− log T

(2δmin/9)2·T is upper bounded by

P (ST ) ≤
1

T

where ST := ∩Te=1Ste,T , and Ste,tf , where tf ≥ te +
log te

(2δmin/9)2·c is defined as the event given Zte,tf , the empirical

average cost starts to go lower than the targeted average cost at round te, and goes lower than c − log tf
(2δmin/9)2·tf at

round tf . The event Zte,tf is defined as Zte,tf := ∩tfs=teZs, where Zt := {∃i ∈ It : ρi > c}. Proof of this result is
provided in §D.7

From this result, it can be seen that the regret from empirical average cost being less than c− log T
(2δmin/9)2·T at round T is

upper bounded by 1
T · T = 1 . Now, we can consider the regret from under-utilization of the cost budget when this

under-utilization is upper bounded by 2 log T
(2δmin/9)2·T . Hence,

Rd,2(T ) ≤
2r∗ log T

c(2δmin/9)2
+ 1 =

81r∗ log T

2cδ2min

+ 1 ≤= 41r∗ log T

cδ2min

.

This is since the playing the optimal action could have obtained 41r∗ log T
cδ2min

reward with the unspent budget of

41 log T/δ2min as the optimal reward per unit cost is r∗/c.

Combining Rd,1(T ) and Rd,2(T ), the regret Rd(T ) can be upper bounded as

Rd(T ) = Rd,1(T ) +Rd,2(T )

≤
K∑
i=1

432r∗ log T

δmin∆2
min,i

·
(
1 +

1

δi

)2

+
41r∗ log T

cδ2min

D.5 Proof of Lemma D.5

In round t, arm i might be pulled due to line 20 of Algorithm 3.2 if ϱLl (t) ≤ c and c ≤ ϱUl (t). Without loss of generality,
we consider the case where ρi > c. The case where ρi < c can be derived similarly. Under the good event F(t);
ρi ≤ ρ̄i(t) +

√
1.5 log t/Ni(t), and ρi ≥ ρ̄i(t)−

√
1.5 log t/Ni(t) holds. Hence, c ≤ ϱUl (t) will always hold under

F(t) since

ϱUi (t) = ρ̄i(t) + 7

√
1.5 log t

Ni(t)
≥ ρ̄i(t) +

√
1.5 log t

Ni(t)
≥ ρi ≥ c.
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Therefore, arm i will be pulled in round t if ϱLl (t) ≤ c. This condition can be written as

ρ̄i(t)− 7

√
1.5 log t

Ni(t)
≤ c

Using ρi −
√

1.5 log t/Ni(t) ≤ ρ̄i(t), the following will hold under F(t).

ρi − 8

√
1.5 log t

Ni(t)
≤ ρ̄i(t)− 7

√
1.5 log t

Ni(t)
≤ c

Hence, arm i will be pulled in round t if

ρi − c = δi ≤ 8

√
1.5 log t

Ni(t)

It can be concluded from here that the arm i can be pulled at most

Ni(T ) ≤
96 log T

δ2i
(7)

times in T rounds under the good event ∩Tt=1F(t). Also note that when

ρ̄i(t)− 7

√
1.5 log t

Ni(t)
≥ c

holds, using ρi +
√

1.5 log t
Ni(t)

≥ ρ̄i(t), it can be seen that

ρi − 6

√
1.5 log t

Ni(t)
≥ ρ̄i(t)− 7

√
1.5 log t

Ni(t)
≥ c

holds. Hence, the following holds at any round t under the event ∩Tt=1F(t).

δi
6
≥

√
1.5 log t

Ni(t)

Thus, it can be seen that δi
4 ≥ ϵi(t) at any round t. This outcome is used in the proof of Lemma D.6 in §D.4.

Using (7), the regret Rb(T ) can be upper bounded as

Rb(T ) =E

[
T∑

t=1

1 {E2(t)} · (r∗ − r(t))
∣∣∣GT ,FT

]

≤
K∑
i=1

96 log T

δ2i
· (r∗ − µi)

Note that for some arms ρi > c, this regret term might be negative if r∗ ≤ µi holds. However, these arms will also
cause skips, and the overall regret of these pulls will be reflected in Rb(T ) +Rc(T ).

Now, we upper bound Rc(T ). It can be seen that on expectation only pulls from arms ρi > c can lead to skips due to
exceeding the average budget c. Note that arms with ρi < c can help accumulate budget, and in practice, prioritizing to
pull these arms first can reduce the number of skips needed to pull arms with ρi > c, hence reducing Rb(T ). However,
we consider the worst-case for the upper bound, and ignore arms with ρi < c.

First, the total cost incurred from pulling arm an i : ρi > c can be expressed as
∑T

s=1 ci(s) · 1 {i(t) = i}. Skipping is
used to reduce the average cost incurred from these pulls to c. The number of skips needed to reduce the empirical
average cost of an arm i to c, which we denote as Ns

i (T ), can be found through the following relation
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c =

∑T
s=1 ci(s) · 1 {i(t) = i}
Ni(T ) +Ns

i (T )

To proceed, note that Ni(T ) ≤ 96 log T
δ2i

by (7). If Ni(T ) =
96 log T

δ2i
, using Hoeffding’s Inequality (Fact C.1); we can

upper bound

P

(
T∑

s=1

ci(s) · 1 {i(t) = i} ≤ Ni(T ) · (ρi + δi/12)

)
≤ e

−2 96 log T

δ2
i

(
δi
12

)2

≤ 1

T

Hence, for the case where Ni(T ) =
96 log T

δ2i
,

c · (Ni(T ) +Ns
i (T )) =

T∑
s=1

ci(s) · 1 {i(t) = i} ≤
(
ρi +

δi
12

)
·Ni(T )

c ·Ns
i (T ) ≤

(
ρi +

δi
12
− c

)
·Ni(T ) =

13δi
12
·Ni(T )

From this equation, it can be concluded that

Ns
i (T ) ≤

104 log T

cδi
+ 1

Note that we while used Ni(T ) =
96 log T

δ2i
to derive this result, the upper bound still holds for the case Ni(T ) ≤ 96 log T

δ2i
as well since if Ni(T ) is decreased, it will also cause Ns

i (T ) to decrease. Also note that the term 1 is for the case where
the Hoeffding’s Inequality does not hold (with probability upper bounded by 1/T ).

To derive the upper bound on regret, we multiply the upper bound on the number of skips with r∗, hence

Rc(T ) ≤
∑

i:ρi>c

(r∗ ·Ns
i (T ) + 1) ≤

∑
i:ρi>c

104r∗ log T

cδi
+K

And the total regret Rb(T ) +Rc(T ) can be upper bounded as

Rb(T ) +Rc(T ) ≤
∑

i:ρi>c

104r∗ log T

cδi
+

K∑
i=1

96 log T

δ2i
· (r∗ − µi) +K

D.6 Proof of Lemma D.4

Define Zt := {∃i ∈ It : ρi < c} as the event that the selected base is correctly identified, i.e. there exists an arm
that has a cost less than c in the base. Assume that tf is the round where c̄(tf ) + 1/(tf + 1) > c, which means
that round tf + 1 will be skipped due to the condition in the algorithm. Also define te as the latest round te < tf
where c̄(te) ≤ c− log te

ω2(te)·te . Using the fact that ω(t) ≤ δmin

2+δmin−c from Lemma D.3, define ωmax := δmin

2+δmin−c as the

maximum possible ω(t) value. Given Zte,tf := ∩tfs=teZs, the algorithm will pull the arm with cost less than c in the
base for all rounds te < t < tf , and it can be seen that tf − te ≥ log te

ω2
max·(1−c) . This is since accumulated cost at round

tf is ctf , and in round te, it is cte − log te/ω
2(te). Also using the fact that cost observed in a round is upper bounded

by 1, it holds that c(tf − te) +
log te
ω2(te)

≤ tf − te. Note that we ignore the pulls without selecting a base (phase 1 of
SUAK and lines 19 - 20 in phase 2 of SUAK) since that part has its own skipping rule to limit the average cost attained
from these pulls to c.
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We define Zt as the cost observed in round t where te < t ≤ tf given the event Zt. This means that E [Z] ≤ c− δmin

since under these circumstances, the algorithm will pull the arm with empirical average cost lower than c in the base
with probability 1 − ω(t) ≥ 1 − ωmax; and given the event Ec3(t), the true mean cost of this arm will be less than
c − δmin. Further, with probability ω(t) ≤ ωmax, the arm with the higher cost will be pulled whose mean cost is
bounded by 1. Defining Ste,tf , where tf ≥ te +

log te
ω2

max·(1−c) as the event that round tf is skipped when the target budget
started to be exceeded at round te, its probability can be upper bounded as:

P
(
Ste,tf

)
≤ P

( tf∑
s=te

Zs ≥ (tf − te) · c+ log(te)

)

= P

( tf∑
s=te

Zs − (tf − te) · E [Z] ≥ (tf − te) · (c− E [Z]) + log(te)

)

≤ P

( tf∑
s=te

Zs − (tf − te) · E [Z] ≥ (tf − te) · (c− E [Z])

)

Since only arms whose cost is less than or equal to c− δmin are pulled with probability 1− ω ≥ 1− ωmax, and with
probability ω ≤ ωmax the cost is bounded by 1; the expected mean of the random variable Zi will be less than or equal
to (c− δmin) · (1− ωmax) + ωmax, i.e. E [Z] ≤ c− δmin + ωmax(1 + δmin − c). Hence,

P
(
Stf
)
≤ P

( tf∑
s=te

Zs − (tf − te) · E [Z] ≥ (tf − te) · (δmin − ωmax · (1 + δmin − c))

)
≤ e−2(δmin−ωmax·(1+δmin−c))2(tf−te)

Then, the total expected number of skips can be upper bounded as:

S(T ) ≤ E


T∑

te=1

T∑
tf=te+

⌈
log te

ω2
max(1−c)

⌉1
{
Ste,tf

}
 (8)

=

T∑
te=1

T∑
tf=te+

⌈
log te

ω2
max(1−c)

⌉P
(
Ste,tf

)

≤
T∑

te=1

∞∑
r=

⌈
log te

ω2
max(1−c)

⌉ e−2(δmin−ωmax·(1+δmin−c))2r (9)

≤
T∑

te=1

e
−2(δmin−ωmax·(1+δmin−c))2· log te

ω2
max(1−c)

1− e−2(δmin/(2+δmin))2

≤
T∑

te=1

2(2 + δmin)
2

δ2min

e
−2(δmin−ωmax·(1+δmin−c))2· log te

ω2
max(1−c) (10)

The inequality in (8) is due to the fact that the upper limit of the summation over te is upper bounded by T . Fact C.1 is
used in (9), and the fact that e−2x ≤ 1−x/2, ∀ 0 ≤ x ≤ 1 is used in (10). Using ωmax = δmin

2+δmin−c , it can be seen that

S(T ) ≤
T∑

te=1

18

δ2min

e−2·log te
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≤ 18

δ2min

T∑
te=1

1

t2e
≤ 3π2

δ2min

Using this, the result follows.

Ra(T ) =E

[
T∑

t=1

1 {E1(t)} · (r∗ − r(t))
∣∣∣GT ,FT

]

≤r∗ · E

[
T∑

t=1

1 {E1(t)}
∣∣∣GT ,FT

]

≤r∗ · S(T ) ≤ 3π2r∗

δ2min

D.7 Proof of Lemma D.7

The analysis in this section is similar to §D.6, except the fact that we now try to find the probability that the empirical
average cost falls below a certain value due to under-budgeting instead of finding the probability that the empirical
average cost crosses above c.

Similar to §D.6, define Zt := {∃i ∈ It : ρi > c} as the event that the selected base contains an arm that has a cost
greater than c. Assume that tf is the round where c̄(tf ) + 1/(tf + 1) < c − log tf

(2δmin/9)2·tf , which means that the

average empirical cost will fall below c − log tf
(2δmin/9)2·tf in round tf + 1 of SUAK. Also define te as the latest round

te < tf where c̄(te) ≥ c− log te
ω2(te)·te . Using the fact that ω(t) ≤ δmin

2+δmin−c and ω(t) ≥ 2
9δmin from Lemma D.3, define

ωmax := δmin

2+δmin−c as the maximum possible ω(t) value, and ωmin := 2
9δmin as the minimum possible ω(t) value.

Given Zte,tf := ∩tfs=teZs, the algorithm will pull the arm with cost greater than c in the base for all rounds te < t < tf ,
and it can be seen that tf − te ≥ log tf

(2δmin/9)2·c . This is since accumulated cost at round tf is ctf − log tf
(2δmin/9)2

, and in
round te, it is cte − log te/ω

2(te). Also using the fact that cost observed in a round is lower bounded by 0, it holds
that c(tf − te) ≥ 2 log tf

(2δmin/9)2
− log te

ω2(te)
≥ log tf

(2δmin/9)2
. Note that we ignore the pulls without selecting a base (phase 1 of

SUAK and lines 19 - 20 in phase 2 of SUAK) since that part has its own skipping rule to limit the average cost attained
from these pulls to c.

We define Zt as the cost observed in round t where te < t ≤ tf given the event Zt. This means that E [Z] ≥ c+ δmin

since under these circumstances, the algorithm will pull the arm with empirical average cost higher than c in the base
with probability 1− ω(t) ≥ 1− ωmax; and given the event Ec3(t), the true mean cost of this arm will be greater than or
equal to c+ δmin. Further, with probability ω(t) ≤ ωmax, the arm with the lower cost will be pulled whose mean cost
is lower bounded by 0. Define Ste,tf , where tf ≥ te +

log te
(2δmin/9)2·c as the event given Zte,tf , the empirical average cost

starts to go lower than the targeted average cost at round te, and goes lower than c − log tf
(2δmin/9)2·tf at round tf . The

probability of event Ste,tf can be upper bounded as:

P
(
Ste,tf

)
≤ P

( tf∑
s=te

Zs ≤ (tf − te) · c−
log tf

(2δmin/9)2 · c

)

= P

( tf∑
s=te

Zs − (tf − te) · E [Z] ≤ (tf − te) · (c− E [Z])− log tf
(2δmin/9)2 · c

)

Since only arms whose mean cost is greater than or equal to c+ δmin are pulled with probability 1− ω ≥ 1− ωmax,
and with probability ω ≤ ωmax the cost is lower bounded by 0; the expected mean of the random variable Zi will be
greater than or equal to (c + δmin) · (1 − ωmax) + ωmax · 0, i.e. E [Z] ≥ c + δmin − ωmax · c − ωmax · δmin. Also,
contrary to §D.6, under-budgeting does not cause skips, and hence tf = T as we are only interested in the effect of
under-budgeting at the final round T . Hence,

P (Ste,T ) ≤ P

(
T∑

s=te

Zs − (T − te) · E [Z] ≤ −(T − te) · (δmin − ωmax · c− ωmax · δmin)−
log T

(2δmin/9)2 · c

)
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To proceed, note that

δmin − ωmax · c− ωmax · δmin = δmin − ωmax(c+ δmin)

= δmin −
δmin

2 + δmin − c
· (c+ δmin)

=
2δmin + δ2min − cδmin − δmin(c+ δmin)

2 + δmin − c
=

2δmin(1− c)

2 + δmin − c

Using this,

P (Ste,T ) ≤ P

(
T∑

s=te

Zs − (T − te) · E [Z] ≤ −(T − te) ·
2δmin(1− c)

2 + δmin − c
− log T

(2δmin/9)2 · c

)

≤ e
−2

(
2δmin(1−c)

2+δmin−c + log T

(2δmin/9)2·c(T−te)

)2
(T−te)

= e
−2

[(
2δmin(1−c)

2+δmin−c

)2
·(T−te)+2

(
2δmin(1−c)

2+δmin−c · log T

(2δmin/9)2·c

)
+
(

log T

(2δmin/9)2·c(T−te)

)2
(T−te)

]

= e
−2

[(
2δmin(1−c)

2+δmin−c

)2
·(T−te)+2

(
81(1−c)

2+δmin−c ·
log T

2cδmin

)
+
(

log T

(2δmin/9)2·c(T−te)

)2
(T−te)

]

≤ e
−2

[(
2δmin(1−c)

2+δmin−c

)2
·(T−te)+2

(
81(1−c)

2+δmin−c ·
log T

2cδmin

)]

≤ e
−2

[(
2δmin(1−c)

2+δmin−c

)2
·(T−te)+

(
81 log T

c(2+δmin−c)

)]

where the last step is due to the fact that 1− c ≤ δmin as there needs to be at least one arm with mean cost c+ δmin.

To find the probability that the empirical average cost is less than c− log T
(2δmin/9)2·T , P (Ste,T ) values need to be summed

over all possible te values. Note that T − te ≥ log T
(2δmin/9)2·c , hence te ≤ T − log T

(2δmin/9)2·c . Defining ST := ∩Te=1Ste,T ,
P (ST ) can be upper bounded as:

P (ST ) ≤ E

[
T∑

te=1

1 {Ste,T }

]

≤
T−

⌊
log T

(2δmin/9)2·c

⌋∑
te=1

P (Ste,T )

≤
T−

⌊
log T

(2δmin/9)2·c

⌋∑
te=1

e
−2

[(
2δmin(1−c)

2+δmin−c

)2
·(T−te)+

(
81 log T

c(2+δmin−c)

)]

≤
T∑

r=
⌈

log T

(2δmin/9)2·c

⌉ e
−2

[(
2δmin(1−c)

2+δmin−c

)2
·r+

(
81 log T

c(2+δmin−c)

)]

≤
T∑

r=
⌈

log T

(2δmin/9)2·c

⌉ e
−2

[(
2δmin(1−c)

2+δmin−c

)2
·r
]
· e−2

(
81 log T

c(2+δmin−c)

)

≤
T∑

r=
⌈

log T

(2δmin/9)2·c

⌉ e
−2

(
81 log T

c(2+δmin−c)

)

28



≤
T∑

r=
⌈

log T

(2δmin/9)2·c

⌉
1

T 2
≤ 1

T
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