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Abstract— Random key graphs form a class of ran-
dom graphs naturally associated with the random key
predistribution scheme of Eschenauer and Gligor. We
compute the clustering coefficients of random key graphs,
and then compare them with Erdős-Renyi graphs in the
many node regime when the expected average degrees
are asymptotically equivalent. On the parameter range of
practical relevance in wireless sensor networks, random
key graphs are shown to be much more clustered than the
corresponding Erdős-Renyi graphs. We also explore the
suitability of random key graphs as small worlds in the
sense of Watts and Strogatz.
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I. INTRODUCTION

Random key graphs have recently been used by Di Pietro
et al. [4] to model the random key predistribution scheme
of Eschenauer and Gligor [6]. The EG scheme is by now a
widely accepted solution for establishing secure connectivity
in wireless sensor networks (WSNs) and can be summarized
as follows: Before network deployment, each sensor randomly
selects K distinct cryptographic keys from a pool of P keys.
These K keys form the key ring of the node and are inserted
into its memory. Two sensor nodes can then establish a secure
link between them if they are within (wireless) transmission
range of each other and if their key rings have at least one
key in common; see [6] for details.

If we assume that nodes are all within communication range
of each other, a situation referred to as full visibility, then a
secure link can be established between two nodes whenever
their key rings have at least one key in common. It is this
notion of adjacency which defines the class of random key
graphs; see Section II for precise definitions.

In determining the feasibility of the EG scheme for WSNs,
much effort has been focused on connectivity. In [6] Es-
chenauer and Gligor analyzed the connectivity of random
key graphs by matching them to Erdős-Renyi graphs with
identical link probabilities. This approach has served as a
point of departure for conjecturing various zero-one laws for
connectivity in random key graphs [1], [15]; see the papers
[1], [4], [13], [16], [17] for recent developments.

Encouraged by this success, it is natural to wonder whether
this “transfer” from Erdős-Renyi graphs to random key graphs

applies to other graph properties as well. In the affirmative this
would express some form of asymptotic equivalence between
random key graphs and Erdős-Renyi graphs, similar to the one
obtained for a certain family of random intersection graphs in
[7].

We approach this issue by comparing the clustering coeffi-
cients of the two classes of random graphs. We observe that the
clustering coefficient of a random key graph is never smaller
than the clustering coefficient of the corresponding Erdős-
Renyi graph with identical expected average degree. For the
parameter range that is practically relevant for large WSNs,
we show that random key graphs are much more clustered
than Erdős-Renyi graphs when expected average degrees are
asymptotically equivalent. We also show that the asymptotic
equivalence of the two models (in a sense discussed in Section
V-A) is possible only when the size of key rings is comparable
to the network size, a case not very realistic in WSNs where
sensors have limited memory and computational capabilities.
This points to the inadequacy of Erdős-Renyi graphs to capture
some key properties of the EG scheme in realistic WSN
scenarios, and reinforces the call for a direct investigation of
random key graphs.

Random key graphs have also appeared in other application
areas such as clustering and classification analysis [8], [9],
and recommender systems [10], and their study is therefore
of interest beyond the context of WSNs. Moreover, building
on the observation that random key graphs can display high
clustering, we explore whether there are parameter ranges for
which the random key graphs exhibit small world character-
istics in the sense of Watts and Strogatz [14].

The paper is organized as follows: In Section II we formally
introduce the class of random key graphs while in Section
III, we define ways to match random key graphs to Erdős-
Renyi graphs. The main results of the paper, summarized
by Theorems 4.1 and 4.3, are presented in Section IV with
proofs provided in Section VI and Section VII, respectively.
Implications of the results are discussed in Section V.

II. RANDOM KEY GRAPHS

The model is parametrized by the number n of nodes, the
size P of the key pool and the size K of each key ring with
K ≤ P . To lighten the notation we often group the integers
P and K into the ordered pair θ ≡ (P,K).

For each node i = 1, . . . , n, let Ki(θ) denote the random
set of K distinct keys assigned to node i. We can think of
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Ki(θ) as an PK-valued rv where PK denotes the collection
of all subsets of {1, . . . , P} which contain exactly K elements
– Obviously, we have |PK | =

(
P
K

)
. The rvs K1(θ), . . . ,Kn(θ)

are assumed to be i.i.d. rvs, each of which is uniformly
distributed over PK with

P [Ki(θ) = S] =
(

P

K

)−1

, S ∈ PK (1)

for all i = 1, . . . , n. This corresponds to selecting keys ran-
domly and without replacement. Distinct nodes i, j = 1, . . . , n
are said to be adjacent if they share at least one key in their
key rings, namely

Ki(θ) ∩ Kj(θ) �= ∅, (2)

in which case an undirected link is assigned between nodes
i and j. The resulting random graph defines the random key
graph on the vertex set {1, . . . , n}, hereafter denoted K(n; θ).

For distinct i, j = 1, . . . , n, it is easy to check that

P [Ki(θ) ∩ Kj(θ) = ∅] = q(θ) (3)

with

q(θ) =

⎧⎪⎨⎪⎩
0 if P < 2K

(P−K
K )

(P
K) if 2K ≤ P ,

(4)

whence the probability of link occurrence between any two
nodes is 1 − q(θ). The expression (3)-(4) is a simple conse-
quence of the fact that

P [S ∩ Ki(θ) = ∅] =

(
P−|S|

K

)(
P
K

) , i = 1, . . . , n (5)

for every subset S of {1, . . . , P} with |S| ≤ P − K. From
(4), it is easy to check that 0 ≤ q(θ) < 1 with q(θ) > 0 if and
only if 2K ≤ P .

For distinct i, j = 1, . . . , n, let Eij(θ) denote the event
where (2) takes place. The degree Dn,i(θ) of node i in K(n; θ)
is then given by

Dn,i(θ) :=
n∑

j=1,j �=i

1 [Eij(θ)], i = 1, . . . , n (6)

while the average degree is defined by

D̄n(θ) :=
1
n

n∑
i=1

Dn,i(θ). (7)

III. MATCHING RANDOM KEY GRAPHS

In what follows we shall compare random key graphs
to related Erdős-Renyi graphs [5]. We first introduce some
notation: For each p in [0, 1] let G(n; p) denote the Erdős-
Renyi graph on the vertex set {1, . . . , n} with link assignment
probability p. In analogy with earlier notation let Eij(p)
denote the event where there is an (undirected) link assigned
between the distinct nodes i and j. Thus, the random graph
G(n; p) is characterized by having the n(n−1)

2 (undirected)
links between the n nodes be independently assigned with
probability p, i.e., the events {Eij(p), 1 ≤ i < j ≤ n} are

mutually independent events, each of probability p – Of course
it is always understood that Eij(p) = Eji(p) for distinct
i, j = 1, . . . , n. In analogy with (6) and (7), the degree Dn,i(p)
of node i in G(n; p) is now defined as

Dn,i(p) :=
n∑

j=1,j �=i

1 [Eij(p)], i = 1, . . . , n (8)

and the average degree is given by

D̄n(p) :=
1
n

n∑
i=1

Dn,i(p). (9)

We can match random key graphs with Erdős-Renyi graphs
in a number of ways. One possibility is to fix the number n
of nodes and then equate their expected average degrees.

Definition 3.1: Fix n = 2, 3, . . .. With p in [0, 1] and positive
integers K and P such that K ≤ P , we say that G(n; p) is
matched to K(n; θ) if E

[
D̄n(p)

]
= E

[
D̄n(θ)

]
.

For each n = 2, 3, . . ., exchangeability yields

E
[
D̄n(θ)

]
= (n − 1)(1 − q(θ)) (10)

and
E
[
D̄n(p)

]
= (n − 1)p (11)

so that G(n; p) is matched to K(n; θ) if p = 1 − q(θ).
When the parameters K and P vary with the number n of

nodes, we modify Definition 3.1 as follows: Let any pair of
functions P,K : N0 → N0 satisfying the natural condition

Kn ≤ Pn n = 1, 2, . . .

define a scaling for random key graphs. Similarly, let any
mapping p : N0 → [0, 1] be a scaling for Erdős-Renyi graphs.
The notion of asymptotic matching can now be introduced
relative to such scalings.

Definition 3.2: The scalings p : N0 → [0, 1] and P,K :
N0 → N0 are asymptotically matched if

E
[
D̄n(pn)

] ∼ E
[
D̄n(θn)

]
. (12)

In view of (10) and (11) this condition is equivalent to

pn ∼ (1 − q(θn)) . (13)

A more compact form of (13) is available when the scal-
ing P,K : N0 → N0 satisfies the additional condition
limn→∞ q(θn) = 1. This is a consequence of the following
result already obtained in [17, Lemma 8.3].

Lemma 3.3: For any scaling P,K : N0 → N0, we have

lim
n→∞ q(θn) = 1 if and only if lim

n→∞
K2

n

Pn
= 0, (14)

and under either condition the asymptotic equivalence

1 − q(θn) ∼ K2
n

Pn
(15)

holds.
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Under (14) the scaling p : N0 → [0, 1] is asymptotically
matched to the scaling P,K : N0 → N0 if and only if

pn ∼ Kn
2

Pn
. (16)

Since 1 ≤ Kn ≤ Kn
2 for all n = 1, 2, . . ., the condition (14)

also implies

lim
n→∞

Kn

Pn
= 0. (17)

IV. MAIN RESULTS

A. Computing clustering coefficients

There are several possible definitions for clustering coeffi-
cients in graphs [12], and the following definition is a popular
one: The clustering coefficient of an undirected graph G with
vertex set {1, . . . , n} is often defined as the “fraction of
transitive triples” given by

C�(G) :=
3 × number of triangles in G

1
2

∑n
i=1 di(di − 1)

(18)

where di is the degree of node i in G. Related but simpler
definitions are possible when considering random graphs with
exchangeable link assignments (as is the case for the random
graphs of interest here), e.g., [3]. Here we define the clustering
coefficients of the random key graph K(n; θ) and of the Erdős-
Renyi graph G(n; p) by

C(θ) = P [E12(θ) | E13(θ) ∩ E23(θ)] (19)

and
C(p) = P [E12(p) | E13(p) ∩ E23(p)] , (20)

respectively. These quantities are expected to provide a good
approximation for (18) when n is large with

lim
n→∞C�(K(n; θ)) = C(θ) a.s. (21)

and
lim

n→∞C�(G(n; p)) = C(p) a.s. (22)

Although the authors are not aware of arguments formally
validating (21) and (22), simulation results do support both
claims; see Table I in Section IV-B. As a result, throughout we
shall use instead the simpler definitions (19)-(20) for reasons
of analytical tractability.

B. Fixed parameters θ and p

The case of fixed parameters is presented first.
Theorem 4.1: For positive integers K,P such that K ≤ P ,

we have
C(θ)

C(p(θ))
= 1 +

q(θ)2 − r(θ)
(1 − q(θ))3

· q(θ) (23)

with p(θ) := 1 − q(θ) and

r(θ) :=

⎧⎪⎨⎪⎩
0 if P < 3K

(P−2K
K )

(P
K) if 3K ≤ P .

(24)

K P C(θ) Ĉ�
n(θ) C(p) Ĉ�

n(p)

4 103 0.2590 0.2587 0.0160 0.0159
8 5 × 103 0.1348 0.1349 0.0127 0.0128
16 2 × 104 0.0737 0.0736 0.0127 0.0128
20 4 × 104 0.0590 0.0590 0.0100 0.0100
24 105 0.0469 0.0468 0.0057 0.0057
32 105 0.0408 0.0408 0.0102 0.0102
40 5 × 105 0.0280 0.0280 0.0032 0.0031
64 106 0.0196 0.0196 0.0041 0.0041

TABLE I

CLUSTERING COEFFICIENTS FOR FIXED θ AND p = 1 − q(θ)

The proof of Theorem 4.1 is given in Section VI. Since
r(θ) ≤ q2(θ) by direct inspection, we conclude from (23) that

C(θ)
C(p(θ))

≥ 1. (25)

Thus, the clustering coefficient of a random key graph is at
least as large as that of the Erdős-Renyi graph matched to it. In
fact, the lower bound in (25) is achieved only when P < 2K,
i.e., from (4) we get

C(θ)
C(p(θ))

= 1, P < 2K.

It is a simple matter to check that for K = 1, (23) reads

C(1, P )
C(p(θ))

= P, P = 1, 2, . . . ,

while for K = 2 we have

C(2, P )
C(p(θ))

=
P

2
· 2P 3 − 4P 2 − P + 3

(2P − 3)3
≥ P

8
, P = 2, 3, . . . .

It is also straightforward to show that

1 ≤ C(θ)
C(p(θ))

≤ P.

In WSNs the size of the key pool P is expected to be
in the range 217 − 220 [6]. Thus, as P can be made very
large, the parameters can be selected so that the corresponding
random key graph has a much larger clustering coefficient
than the Erdős-Renyi graph matched to it. In Table I we
compare the clustering coefficients of random key graphs and
Erdős-Renyi graphs for several realistic parameter values. The
numerical values of C(p) and C(θ) are obtained directly
from the expressions (33) and (44), respectively. On the other
hand, Ĉ�

n(θ) and Ĉ�
n(p) stand for the clustering coefficient of

K(n; θ) and G(n; p), respectively, calculated through (18) and
averaged over 1000 realizations; the number of nodes is set to
n = 1000 in all simulations. The data support the claim that
the definitions (18) and (19)-(20) capture essentially the same
feature, i.e., the results given in Table I can be taken as an
indication of the validity of (21)-(22).

C. Zero-one laws for connectivity

Before dealing in Section IV-D with the situation where the
parameters vary with n, we summarize the relevant zero-one
laws for connectivity in the two classes of random graphs. The
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following zero-one law for Erdős-Renyi graphs is well known
[5]: For any scaling p : N0 → [0, 1] satisfying

pn ∼ c · log n

n
(26)

for some c > 0, it holds that

lim
n→∞ P [G(n; pn) is connected] =

⎧⎨⎩ 0 if 0 < c < 1

1 if 1 < c.

Analogous results are available for random key graphs; see
the recent papers [1], [4], [13], [17].

Theorem 4.2: For any scaling K,P : N0 → N0 satisfying

K2
n

Pn
∼ c · log n

n
(27)

for some c > 0, it holds that

lim
n→∞ P [K(n; θn) is connected] =

⎧⎨⎩ 0 if 0 < c < 1

1 if 1 < c.

The version given in Theorem 4.2 is not the strongest to
be found in the literature – For instance, it has nothing to
say when Pn = O(nδ) for some 0 < δ < 1; see [1] for
an alternative formulation covering this situation. However
the form of the condition (27) has the advantage of naturally
suggesting a formal similarity between the zero-one laws for
graph connectivity in random key graphs and in Erdős-Renyi
graphs. Indeed one easily passes from one to the other with
the help of the following observation: In random key graphs
the term K2

n

Pn
can be interpreted as a proxy for the probability

of link assignment,1 and therefore plays a role analogous to
that of pn in Erdős-Renyi graphs.

D. Parameters θ and p varying with n

It is now natural to wonder if the transfer above can also
be used in studying other (if not all) graph properties. In
the affirmative this would suggest some form of asymptotic
equivalence between random key graphs and Erdős-Renyi
graphs whenever the asymptotic matching condition (13) is
satisfied. A similar situation was encountered for the family
of random intersection graphs discussed in [7]. However, this
possibility is already dispelled here by observations made
in [1] and [4] that random key graphs are likely to have
many more triangles than Erdős-Renyi graphs. The next result
formally shows that the clustering coefficients of the two
random graphs can indeed be quite different, especially for the
parameter range of practical interest in the context of WSNs.
A proof is given in Section VII.

Theorem 4.3: Consider a scaling p : N0 → [0, 1] that is
asymptotically matched to the scaling P,K : N0 → N0. Under
condition (14) we have

C(θn)
C(pn)

∼ 1 +
Pn

K3
n

. (28)

1This is indeed the case under the conditions of Lemma 3.3.

In particular, under the assumptions of Theorem 4.3, we find

lim
n→∞

C(θn)
C(pn)

= 1 if lim
n→∞

K3
n

Pn
= ∞ (29)

and

lim
n→∞

C(θn)
C(pn)

= ∞ if lim
n→∞

K3
n

Pn
= 0 (30)

Thus, asymptotically matched random key graphs and Erdős-
Renyi graphs can have vastly different clustering coefficients.

V. DISCUSSION

A. Behaving like Erdős-Renyi graphs?

As seen at the end of Section VII, the arguments for
Theorem 4.3 can easily be modified to yield

lim
n→∞

P [E12(θn) | E13(θn) ∩ E23(θn)]
P [E12(θn)]

= 1 (31)

for any scaling P,K : N0 → N0 which satisfies (14) provided
the condition (29) holds. This is equivalent to

P [E12(θn) | E13(θn) ∩ E23(θn)] ∼ P [E12(θn)] .

Thus, in the parameter range characterized by (29), the two
events E12(θn) and E13(θn) ∩ E23(θn) are nearly inde-
pendent. Given that the events E13(θn) and E23(θn) are
always independent by virtue of (5), the three events E12(θn),
E13(θn) and E23(θn) are now nearly mutually independent.
This situation is reminiscent of what happens in Erdős-Renyi
graphs where the corresponding events are always mutually
independent. This suggests that any parameter range where
random key graphs behave asymptotically like Erdős-Renyi
graphs should satisfy (29).

The tradeoff between connectivity and security in WSNs
[4] makes it desirable to keep K2

n

Pn
as close as possible to

the critical connectivity threshold log n
n given in Theorem 4.2.

Thus, under (27) with c > 1 (but close to one), condition (29)
requires

Kn � n

log n
. (32)

Given the limited memory and computational power of the
sensor nodes, such key ring sizes are impractical. They would
also lead to high node degrees, which in turn would decrease
the resiliency of the network against node capture attacks.
As (32) is not likely to hold in a WSN, Erdős-Renyi graphs
may not adequately capture some of the properties of the EG
scheme in realistic settings, and random key graphs need to
be employed in order to get a fuller picture!

B. Small worlds

Since random key graphs can be highly clustered, a natural
question arises as to their suitability to model the small
world effect. This notion is linked to a well-known series of
experiments conducted by Milgram [11] in the late sixties. The
results, commonly known as six degrees of separation, suggest
that the social network of people in the United States is small
in the sense that the path lengths between pairs of individuals
are short. As a way to capture Milgram’s experiments, Watts
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and Strogatz [14] defined small worlds as network models that
are highly clustered and yet have a small average path length.
More precisely, a random graph is considered to be a small
world if its average path length is of the same order as that of
an Erdős-Renyi graph with the same expected average degree,
but with a much larger clustering coefficient.

The results of this paper already show that random key
graphs can satisfy the high clustering coefficient requirement
of a small world. Recently Rybarczyk [13] has shown under
(27) that

diam[K(n; θn)] ∼ log n

log log n

with high probability where K(n; θn) is the largest connected
component of K(n; θn). This suggests that the diameter, hence
the average path length, in random key graphs is small as
was the case with Erdős-Renyi graphs [2]. We also note [18,
Corollary 5.2] that random key graphs have very small (≤ 2)
diameter under certain parameter ranges. Therefore, random
key graphs may indeed be considered as good candidate
models for small worlds!

VI. A PROOF OF THEOREM 4.1

Recall the definitions (19) and (20). Obviously, by indepen-
dence we have

C(p) = p, p ∈ [0, 1] (33)

while exchangeability gives

C(θ) =
P [E12(θ) ∩ E13(θ) ∩ E23(θ)]

P [E13(θ) ∩ E23(θ)]
. (34)

The events E12(θ), E13(θ) and E23(θ) are not mutually
independent, and calculating the probability terms in (34) will
require some care. For this purpose we define the events

A(θ) := E13(θ) ∩ E23(θ) (35)

and
B(θ) := E12(θ) ∩ E13(θ) ∩ E23(θ). (36)

In the forthcoming computations we omit the explicit depen-
dence on θ when no confusion arises from doing so.

Lemma 6.1: The probability of the event A(θ) is given by

P [A(θ)] = (1 − q(θ))2. (37)

Proof. Under the enforced independence assumptions we find

P [A(θ)]

=
∑

|S|=K

P [K3 = S, S ∩ K1 �= ∅, S ∩ K2 �= ∅]

=
∑

|S|=K

P [K3 = S] P [S ∩ K1 �= ∅] P [S ∩ K2 �= ∅]

= (1 − q(θ))2 (38)

as we make use of (5) with
∑

|S|=K P [K3 = S] = 1.

In what follows we make repeated use of the elementary
fact that for any pair of events, say E and F , we have

P [E ∩ F ] = P [E] − P [E ∩ F c] . (39)

In particular, we conclude from Lemma 6.1 that

P [K1(θ) ∩ K3(θ) = ∅, K2(θ) ∩ K3(θ) �= ∅]
= P [K1(θ) ∩ K3(θ) �= ∅, K2(θ) ∩ K3(θ) = ∅]
= q(θ)(1 − q(θ)) (40)

and

P [K1(θ) ∩ K3(θ) = ∅, K2(θ) ∩ K3(θ) = ∅] = q(θ)2. (41)

These facts are now used in computing the probability of B(θ).
Lemma 6.2: We have

P[B(θ)] = (1 − q(θ))3 + q(θ)3 − q(θ)r(θ). (42)

Proof. We find

P [B(θ)]
= P [K1 ∩ K2 �= ∅, K1 ∩ K3 �= ∅, K2 ∩ K3 �= ∅]
= P [K1 ∩ K3 �= ∅, K2 ∩ K3 �= ∅]

− P [K1 ∩ K2 = ∅, K1 ∩ K3 �= ∅, K2 ∩ K3 �= ∅]
= P [A(θ)] − P [K1 ∩ K2 = ∅, K2 ∩ K3 �= ∅]

+ P [K1 ∩ K2 = ∅, K1 ∩ K3 = ∅, K2 ∩ K3 �= ∅]
= P [A(θ)] − P [K1 ∩ K2 = ∅, K2 ∩ K3 �= ∅]

+ P [K1 ∩ K2 = ∅, K1 ∩ K3 = ∅]
− P [K1 ∩ K2 = ∅, K1 ∩ K3 = ∅, K2 ∩ K3 = ∅]

= (1 − q(θ))2 − q(θ)(1 − q(θ)) + q(θ)2 (43)

− q(θ)P [K1 ∩ (K2 ∪ K3) = ∅ | K2 ∩ K3 = ∅]
= (1 − q(θ))2 − q(θ)(1 − q(θ)) + q(θ)2 − q(θ)r(θ)
= (1 − q(θ))3 + q(θ)3 − q(θ)r(θ)

upon using (37), (40) and (41) in (43).

Substituting (37) and (42) into (34), we now obtain

C(θ) =
P [B(θ)]
P [A(θ)]

= 1 − q(θ) +
q(θ)2 − r(θ)
(1 − q(θ))2

· q(θ) (44)

and (23) follows directly from (33) and (44).

VII. A PROOF OF THEOREM 4.3

Pick a scaling P,K : N0 → N0 which satisfies (14) and
replace θ by θn in (44) according to this scaling. We find

C(θn) = 1 − q(θn) +
(

1 − r(θn)
q(θn)2

)
· q(θn)3

(1 − q(θn))2
(45)

for all n = 2, 3, . . ..
Lemma 7.1: For any scaling P,K : N0 → N0 that satisfies

(14), we have

1 − r(θn)
q(θn)2

∼ Kn
3

Pn
2 . (46)
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Proof. With positive integers K,P such that 3K ≤ P , we
can write

r(θ)
q(θ)2

=
K−1∏
�=0

(
1 −

(
K

P − K − �

)2
)

and an elementary bounding argument yields(
1 −

(
K

P − 2K

)2
)K

≤ r(θ)
q(θ)2

≤
(

1 −
(

K

P − K

)2
)K

.

Pick a scaling P,K : N0 → N0 satisfying (14) and note
from (17) that 3Kn ≤ Pn for all n = 1, 2, . . . sufficiently
large. On that range, use this scaling to replace θ by θn in the
inequalities above. This yields

1 −
(

1 −
(

Kn

Pn − Kn

)2
)Kn

≤ 1 − r(θn)
q(θn)2

(47)

and

1 − r(θn)
q(θn)2

≤ 1 −
(

1 −
(

Kn

Pn − 2Kn

)2
)Kn

. (48)

For each c = 1, 2, we obtain(
Kn

Pn − cKn

)2

=
K2

n

P 2
n

(
1 − c

Kn

Pn

)−2

,

whence

lim
n→∞Kn

(
Kn

Pn − cKn

)2

= 0

by virtue of (14) and (17). Finally, let n go to infinity in (47)
and (48), and use the elementary convergence relation

(1 − a)b ∼ 1 − ab if ab → 0

with

a =
(

Kn

Pn − cKn

)2

, and b = Kn.

Noting that

Kn

(
Kn

Pn − cKn

)2

∼ K3
n

P 2
n

,

we immediately obtain (46) by a sandwich argument.

Using (14), (15) and (46) in (45), we find

C(θn) ∼ Kn
2

Pn
+

1
Kn

. (49)

Pick a scaling p : N0 → [0, 1] that is asymptotically matched to
the scaling P,K : N0 → N0. From (16) and (33) we conclude

C(pn) = pn ∼ Kn
2

Pn
, (50)

and (28) follows directly from (49) and (50). This completes
the proof of Theorem 4.3.

With the help of (19) we conclude that (45) also implies

P [E12(θn) | E13(θn) ∩ E23(θn)]
P [E12(θn)]

= 1 +
(

1 − r(θn)
q(θn)2

)
· q(θn)3

(1 − q(θn))3
(51)

for all n = 2, 3, . . .. Let n go to infinity in this last expression:
Using (14) and (15) we readily get (31) under the condition
(29).
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[16] O. Yağan and A. M. Makowski, “Connectivity results for random key
graphs,” Proceedings of the ISIT 2009, Seoul (Korea), June 2009.
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