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Abstract—Complex contagion models have been developed to
understand a wide range of social phenomena such as adoption
of cultural fads, the diffusion of belief, norms, and innovations
in social networks, and the rise of collective action to join a riot.
Most existing works focus on contagions where individuals’ states
are represented by binary variables, and propagation takes place
over a single isolated network. However, characterization of an
individual’s standing on a given matter as a binary state might be
overly simplistic as most of our opinions, feelings, and perceptions
vary over more than two states. Also, most real-world contagions
take place over multiple networks (e.g., Twitter and Facebook) or
involve multiplex networks where individuals engage in different
types of relationships (e.g., co-worker, family, etc.). To this end,
this paper studies multi-stage complex contagions that take place
over multi-layer or multiplex networks. Under a linear threshold
based contagion model, we first give analytic results for the
expected size of global cascades, i.e., cases where a randomly
chosen node can initiate a propagation that eventually reaches a
positive fraction of the whole population. Then, analytic results
are confirmed by an extensive numerical study. In addition, we
demonstrate how the dynamics of complex contagions is affected
by the structural properties of the networks. In particular, we
reveal an interesting connection between the assortativity of a
network and the impact of hyper-active nodes on the cascade
size.

I. INTRODUCTION
Modeling and analysis of dynamical processes in complex

networks has been a very active research field in the past
decade. This has led to many advances in our understanding
and ability to control a wide range of physical and social
phenomena. Examples include adoption of cultural fads, the
diffusion of beliefs, norms, and innovations in social networks
[1], [2], disease contagion in human and animal populations
[3], cascading failures in interdependent infrastructures [4],
insolvency and default cascades in financial networks [5], and
the spread of computer viruses or worms on the Web.

In this work, we focus on complex contagions, a class of
dynamical processes typically used in modeling the propa-
gation of influence in social networks. In particular, complex
contagion models are used when social reinforcement plays an
important role in the propagation process, i.e., when multiple
sources of exposure is needed for an individual to adopt an
activity. Examples include the spread of social movements and
radical behavior, the rise of collective action to join a riot,
or the decision to support one political candidate versus the

Research was sponsored by the Army Research Office and was accom-
plished under Grant Number W911NF-17-1- 0587.

other. This differs from the class of models known as simple
contagions, where propagation often takes place after only a
single copy is received; e.g., spread of diseases, viruses, etc.

Complex contagions have typically been studied in the lit-
erature using a linear threshold model. The original threshold
model, proposed by Watts [1], considers binary-state dynamics
where each node is in one of the two states, inactive or active,
and is initially assigned a threshold τ in (0, 1]. At any point
in time, if an inactive node has d neighbors of which m are
active, we determine if it will be activated by checking the
relationship between m

d and the pre-assigned threshold τ . If
m
d ≥ τ , then the node will turn active. Otherwise, if m

d < τ ,
it stays inactive. Once a node is activated, it is assumed to
remain active forever.

In the Watts threshold model, there are two important
assumptions. First assumption is that all active individuals
exhibit the same amount of influence on their neighbors.
However, individuals’ standings on a given matter could vary
significantly. For example, followers of a radical organization
or a revolutionary movement may have varying levels of
commitment to the cause, or varying desire and ability to
recruit new members. To cope with the multi-state nature
of individuals activity levels, Melnik et al. [6] introduced a
multi-stage contagion model as a generalization of the Watts
threshold model. There, nodes can be inactive or be in one
of several active states with different levels of influence; e.g.,
active, hyper-active, etc.

The second assumption of the Watts model, which is also
used in the multi-stage model by Melnik et al. [6], is that
contagion is taking place over a single network where all
edges have the same impact on spreading the influence.
However, most real-world influence propagation events take
place over multiple networks. For example, individuals may
participate in multiple online social networks (e.g., Facebook,
Twitter, etc.), and may have different levels of influence in
each network. Similarly, within a single network, individuals
may form different types of relationships (e.g., friendship,
colleagueship, etc.), and each relationship type might have a
different impact on the propagation of influence in a given
context. For example, video games might be more likely to
spread among high-school friends rather than parents, while
the opposite might be true for political ideas. That is, if we do
not distinguish different types of relationships, dynamics of
influence propagation may not be accurately captured. Hence,



it is natural to consider complex contagions over multiplex
networks. With this motivation, [2] proposed and studied a
threshold model in multiplex networks. However, [2] still used
the first assumption mentioned above in the sense that their
model is not suitable for multi-stage contagions (where nodes
can belong to a rich set of states).

In this paper, we drop both of the aforementioned assump-
tions and study for the first time a multi-stage contagion model
on multiplex networks. For simplicity, we assume that the
network consists of two types of links, red and blue, and
individuals can be in one of three possible states, inactive,
active, and hyper-active. Then, we seek to answer several
important questions: In the cases where a global spreading
event is possible, could we give analytic answers to the final
expected cascade size? Under the newly proposed model, how
do topological properties affect the cascade process?

Our contributions towards answering these questions are
summarized as follows:

• For a class of random networks generated by the colored
configuration model (see Section II-A), we analytically
derive the expected size of global cascades; i.e., cases
where a positive fraction of nodes (in the asymptotic
limit) eventually becomes active or hyper-active when a
randomly selected node is switched to the active state.

• We explore the intricate relationships between the struc-
tural properties of the underlying network and the impact
of hyper-active nodes on the contagion dynamics. For
instance, a particularly interesting scenario is when the
hyper-active state is manifested in only one link type.
This is motivated by the case where people may be more
willing to express their viewpoints to close friends instead
of office-mates, or can reach a hyper-influential state
only in one social network (e.g., Twitter) versus another
(e.g., Facebook). Our main finding is the interesting
connection between the assortativity (i.e., the correlation
among the degree of neighboring nodes) of the network
and the impact of hyper-active nodes on cascade size.
For instance, when the network is highly assortative
(i.e., when high-degree nodes are likely to be connected
with high-degree nodes), the influence exerted by the
hyper-active nodes has a much more significant impact
on the cascade size as opposed to the case when the
network has low assortativity (i.e., when the degrees of
neighboring nodes tend to be uncorrelated). This impact
is best observed when the cascade size is plotted as a
function of the mean degree of the network. There, as
the influence of hyper-active nodes increases, the highly
assortative networks are shown to exhibit changes on not
only the critical transition points (i.e., mean degree values
at which expected cascade size changes from zero to a
positive value, or vice verse), but also the number and
order of transitions.

The rest of the paper is organized as follows. In Section
II, we introduce the network and contagion models. Then,
we describe the problem of interest and our main results

in Section III. In Section IV, we present numerical results
that demonstrate the accuracy of our analysis in the finite
node regime, and discuss the impact of hyper-influencers on
complex contagions under different levels of assortativity. We
conclude the paper in Section V.

II. MODEL DEFINITION:NETWORKS AND DYNAMICS

A. Multi-layer and multiplex network models

A multiplex network is a network model where links are
classified into different types (or, colors), which can capture
the different types of connections between nodes in networks.
For convenience, in the following discussion, we focus on a
multiplex network with two types of links, red and blue, but
the model and results can be easily extended to an arbitrary
number of link types. These two link types can be motivated
by the case where one color accounts for edges in Facebook
while the other for edges in Instagram. Alternatively, one link
color may be representing close friendship links while the
other representing “acquaintances” in a social network. In this
network model, we let N = {1, 2, . . . , n} denote the vertex
set, with n standing for the number of nodes. We let Nr ⊂ N
denote the set of vertices that have red edges and Nb ⊂ N
denote the set of vertices having blue edges. For simplicity, we
assume Nb = N , which means all vertices in the network may
have blue edges. To model the possibility that not everyone
may have red links, we assume that each vertex in N has red
links with probability α ∈ (0, 1]:

P[i ∈ Nr] = α, i = 1, . . . , n. (1)

With this assumption, by the law of large numbers, we can
easily conclude that |Nr|

n a.s.−→ α, where |Nr| denotes the
cardinality of Nr and a.s.−→ indicates almost sure convergence.

This network model can be interpreted in two different
ways. The first one is a multi-layer network where each
network layer is generated by the widely used configuration
model [7]–[9]. In particular, we use P (dr) (resp. P (db)) as
the degree distribution to determine the number of red (resp.
blue) edges that will be assigned to each node inNr (resp.Nb).
Once the degree of each node is determined, we generate the
networks R and B by selecting a graph uniformly at random
from among all possible graphs that have the same degree
sequence; see [7], [8] for more details. Next, we take a union
of the edges in R and B to create a network H. Equivalently,
we can consider a multiplex network model generated by the
colored configuration model [10]. Let d = (dr, db) denote
the colored degree of a node, where dr and db stand for the
number of red edges and blue edges incident on it. Each of
the n nodes in the network is assigned a colored degree by
independently drawing from the distribution Pd. Then, pairs
of edges of the same color are randomly chosen and connected
together until none is left; see [10] for details.

B. Multi-stage content-dependent linear threshold model for
complex contagions

We first introduce the single-stage content-dependent linear
threshold model [2] which is a generalization of the vanilla



threshold model [1]. In the content-dependent linear threshold
model, links are classified into r types. For a given content
(a rumor, product, etc.), scalars ci, i = 1, . . . , r represent the
weight of type-i edges on spreading this particular content.
Nodes belong to either one of the two states, active or inactive,
and each node is assigned a threshold τ in (0, 1] drawn from a
distribution P (τ). Given an inactive node with mi active and
di −mi inactive neighbors for each link type-i, i = 1, . . . , r,
an inactive node will turn active if

∑
i cimi∑
i cidi

≥ τ . Namely, an
inactive node with m = (m1, . . . ,mr) and d = (d1, . . . , dr)
will turn active with probability

F [m,d] , P
[∑r

i=1 cimi∑r
i=1 cidi

≥ τ
]
. (2)

Throughout, F [m,d] is referred to as the response function.
If we do not distinguish the edge types or simply set ci = 1
for all i = 1, . . . , r, then this model reduces to the Watts’
threshold model [1]. The content-dependent threshold model
enables modeling the case where people’s influence on others
vary according to their relationship type, or the social network
that they are interacting through.

Different from the single-stage threshold model where nodes
can be only in two states, the multi-stage linear threshold
model [6] allows nodes to be in a richer set of active states.
In this work, we assume that nodes can belong to three
states, inactive, active, and hyper-active. In the following
discussion, we use state-0, state-1, and state-2 to represent the
inactive, active, and hyper-active state, respectively. Let τ1 and
τ2 denote the thresholds associated with transitioning to the
active and hyper-active states, respectively. The hyper-active
individuals are assumed to be β-times more influential than
active nodes in the propagation process (where β ≥ 1). For
example, given an individual with d neighbors of which m1

are active and m2 are hyper-active, the probability of switching
to state-i from the inactive state (i.e., state-0) is given by:

Fi[m, d] , P
[
τi ≤

m1 + βm2

d
≤ τi+1

]
, i = 0, 1, 2, (3)

where m = (m1,m2), τ0 = 0, τ3 =∞, and β ≥ 1. Although
we assume there are three states in the contagion process, our
analysis can be extended to an arbitrary number of states.

Finally, we introduce the multi-stage content-dependent lin-
ear threshold model. In the content-dependent linear threshold
model, links are classified into r types. For a given content (a
view, rumor, product, etc.), there are r scalars ci, i = 1, . . . , r
represent the weight (i.e., relative importance) of type-i edges
on spreading this particular content. Assume that there are two
types of links in the network, red and blue, and that nodes can
be in three states, inactive, active, and hyper-active. We let cr
and cb denote the weight of red and blue edges, respectively,
and set c = cr

cb
. With this notation, the probability of an

inactive node switching to state-i is given by:

Fi[m,d] (4)

, P
[
τi ≤

c(mr,1 + βmr,2) +mb,1 + βmb,2

cdr + db
≤ τi+1

]
,

where m = (mr,1,mr,2,mb,1,mb,2), d = (dr, db), mr,1 and
mr,2 (resp. mb,1 and mb,2) denote the number of active and
hyper-active neighbors connected through a red (resp. blue)
edge, and dr and db denote the number of red and blue
neighbors, respectively.

III. MAIN RESULTS

Assume that all nodes are initially inactive and the contagion
process starts by randomly choosing a node and setting it
as active. The influence might then propagate in the network
according to (4) and other nodes might turn active, and so on.
Since the contagion process is monotone (i.e., an active node
can never switch back to inactive), it will eventually stop, i.e.,
a steady-state will be reached. A global cascade is said to take
place if the fraction of nodes that are activated is positive in
the limit of large network sizes. Our main goal is calculating
the expected size of global cascades when they are possible.

We start the analysis with computing the expected size of
global cascades when they occur. Consider a random variable
S defined as

S ,
# of active and hyper-active nodes at steady-state

n
,

where n is the number of nodes in the network. Then, a global
cascade is said to take place if S > 0 in the limit n → ∞,
and our main goal is to derive

lim
n→∞

E [S | S > 0] ,

which gives the expected size of global cascades when they
exist. For simplicity, in our analysis we omit self-loops, i.e.,
the possibility of having more than one edge between two
nodes. It is a simple matter to show that such self-loops occur
very rarely in the construction of the configuration model and
they have negligible impact on the cascade dynamics; e.g., see
[11]. In fact, our experiments also confirm that the impact of
this omission is negligible.

According to our definition, the expected cascade size stands
for the final fraction of active and hyper-active individuals in
the network. Therefore, we can compute it by computing the
probability that an arbitrary node is active or hyper-active at
the steady-state. We will compute this probability recursively
using the “tree-approximation” approach [2], [6], which is
a mean-field treatment of the zero-temperature random-field
Ising model on Bethe lattices [12]. The tree-approximation
approach assumes that the network has a locally tree-like struc-
ture, which is valid under the configuration model considered
here [7]. Labeling the tree structure from the bottom to the top,
it is assumed that the node states are updated starting from the
bottom, and continuing to the top, one level at a time. In other
words, the nodes at level ` will not update their states until
the nodes at levels 0, 1, . . . , `− 1 have finished updating. We
define qr,1,` (resp. qb,1,`) as the probability that a node at level
` who is connected to its only parent at level ` + 1 by a red
(resp. blue) edge turns active. Similarly, we define qr,2,` (resp.
qb,2,`) as the probability that a node at level ` that is attached
to its only parent via a red (resp. blue) edge turns hyper-active.



Given our assumption that nodes in the tree update their states
one level at a time, these probabilities will be computed under
the condition that the parent nodes at level `+ 1 are inactive.

In the interest of brevity, we only explain the derivation
of qr,1,`+1 in details. The derivations of qr,2,`+1, qb,1,`+1,
and qb,2,`+1 can be explained very similarly. Since qr,1,`+1

cannot be expressed explicitly, we derive a recursive relation
in terms of qr,1,`, qr,2,`, qb,1,`, and qb,2,`; see (6) - (9). The
validity of the expression (6) for qr,1,`+1 can be explained as
follows. Consider an inactive node at level `+1 with colored
degree d = (dr, db) that is connected to its unique parent at
level `+ 2 via a red edge. The probability that this node has
i active children connected via red edges, s active children
connected via blue edges, j hyper-active children connected
via red edges, and t hyper-active children connected via blue
edges, and that it turns active is given by(
dr − 1

i

)(
dr − 1− i

j

)
qir,1,`q

j
r,2,`(1− qr,1,` − qr,2,`)

dr−1−i−j

×
(
db
s

)(
db − s
t

)
qsb,1,`q

t
b,2,`(1− qb,1,` − qb,2,`)db−s−t

× F1 [(i, j, s, t),d] , (5)

where F1 [(i, j, s, t),d] is as defined in (4); i.e., it denotes
the probability that an inactive node with a colored degree
d and a group of active and hyper-active neighbors for each
color represented by m = (i, j, s, t) switches to state-1. To
simplify the notation, we use F1 [(i, j, s, t), (x, y)] as defined
at (10), so the term given in (5) becomes equivalent to
F1 [(i, j, s, t), (dr − 1, db), `].

The intuition behind (5) is as follows. Since we assume that
the network is tree-like, the state of each child node at level `
is independent from other children at the same level. Thus, we
multiply together the probability of being at a specific state
for each child node to get the whole expression (5) using
a simple combinatorial argument. The reason behind using
dr − 1 rather than dr in (5) is the fact that the node under
consideration is attached to its unique parent at level ` + 2
through a red edge, and by assumption this parent node is
inactive; recall that a node at level ` + 2 can not update its
state until all nodes in level ` + 1 finish updating. A node
that is known to have at least one red edge can be seen to
have colored degree d = (dr, db) with probability drpd

〈dr〉 ; e.g.,
see [2], [7] for a discussion on the excess degree distribution.
Finally, we get the detailed expressions of qr,1,`+1 (6) after
taking the expectation of (5) over the degree of the node at
level `+1. We can use similar arguments to derive expressions
for qr,2,`+1, qb,1,`+1, and qb,2,`+1. The expressions of all four
probabilities are shown in (6) - (9).

Equations (6) - (9) form a non-linear system. Since our
goal is to compute the expected size of global cascades given
that they exist, we can initialize this dynamical system with
qr,1,0, qr,2,0, qb,1,0, qb,2,0 > 0 to obtain the steady-state values
(i.e., fixed points), qr,1,∞, qr,2,∞, qb,1,∞, and qb,2,∞. These
fixed points account for the probability of being in a corre-
sponding state for the children of the node chosen uniformly

at random. We can use them to calculate the expected size of
global cascades.

qr,1,`+1 =
∑
d

drpd
〈dr〉

dr−1∑
i=0

dr−1−i∑
j=0

db∑
s=0

db−s∑
t=0

F1 [(i, j, s, t), (dr − 1, db), `] (6)

qr,2,`+1 =
∑
d

drpd
〈dr〉

dr−1∑
i=0

dr−1−i∑
j=0

db∑
s=0

db−s∑
t=0

F2 [(i, j, s, t), (dr − 1, db), `] (7)

qb,1,`+1 =
∑
d

dbpd
〈db〉

dr∑
i=0

dr−i∑
j=0

db−1∑
s=0

db−1−s∑
t=0

F1 [(i, j, s, t), (dr, db − 1), `] (8)

qb,2,`+1 =
∑
d

dbpd
〈db〉

dr∑
i=0

dr−i∑
j=0

db−1∑
s=0

db−1−s∑
t=0

F2 [(i, j, s, t), (dr, db − 1), `] , (9)

where for k = 1, 2, we define

Fk [(i, j, s, t), (x, y), `] = Fk [(i, j, s, t) , (x, y)]

×
(
x

i

)(
x− i
j

)
qir,1,`q

j
r,2,`(1− qr,1,` − qr,2,`)

x−i−j

×
(
y

s

)(
y − s
t

)
qsb,1,`q

t
b,2,`(1− qb,1,` − qb,2,`)y−s−t.

(10)

lim
n→∞

E [S | S > 0] =
∑
d

pd

dr∑
i=0

dr−i∑
j=0

db∑
s=0

db−s∑
t=0

{F1 [(i, j, s, t), (dr, db),∞] + F2 [(i, j, s, t), (dr, db),∞]} .
(11)

We give the expected size of the cascades (given that they
exist) in (11). The validity of (11) can be seen as follows:
First, we randomly choose a node, whose colored degree is
d = (dr, db), with probability pd. The probability that each
of its dr neighbors (via red links) is active (resp. hyper-active)
is given by qr,1,∞ (resp. qr,2,∞). Similarly, each of the db
neighbors (connected via blue links) of this randomly chosen
node is active with probability qb,1,∞ and hyper-active with
probability qb,2,∞, independently from each other. Then, with
each possible combination of numbers of active and hyper-
active neighbors, we can calculate the probability of being
active or hyper-active for the node by the response function
(4). Taking the expectation with respect to the degree d yields
(11). As discussed in details in [2], [6], this method, based
on the tree-approximation technique, gives precise results in
the asymptotic limit n → ∞, when the underlying network
is generated according to the configuration model. We present
extensive numerical studies in Section IV that supports our
results even in the finite node regime.



IV. NUMERICAL RESULTS

In this section, we first present numerical results to support
our analysis on the expected size of global cascades. We are
particularly interested in checking the accuracy of our asymp-
totic results when the number of nodes is finite. Due to the
page limit, we include the results in supplementary materials.
Supplementary materials are at https://bit.ly/2vtD2aD.

Next, we will investigate the impact of hyper-influencers
(i.e., the additional influence exerted by them) on the contagion
dynamics. In particular, we aim at exploring if structural
properties of networks will change the impact of hyper-
influencers. We consider a case where hyper-active nodes are
restricted to appear only through one type of edges, red or
blue, rather than allowing them to exert additional influence
through both types of edges. This setting is motivated by
cases where people can reach a more active/influential state
only in one network, or one relationship type. For example,
some people may be reluctant to express their opinions freely
in person (e.g., physical networks), but may be much more
active on online networks (e.g., Twitter) due to anonymity.
This raises an interesting question: which network or edge
type would facilitate the influence propagation process most
when hyper-influencers are allowed there. In what follows,
we conduct several experiments to answer this question: 1)
we only allow hyper-activity in red edges, i.e., hyper-active
neighbors connected by blue edges will be counted as merely
active when checking the response function; 2) we only allow
hyper-activity in blue edges. As discussed in some previous
studies [13], [14], assortativity is one of the most important
structural properties on multiplex networks. Assortativity is
defined as the Pearson correlation coefficient between the
degree of nodes that are connected by a link [15]. If a network
is assortative, then nodes of high degree in the network tend
to attach to high degree nodes; it was noted in [15] that
social networks tend to have high assortativity. Therefore, it is
interesting to see if assortativity has any impact on the answer
to the above question.

In the following experiments, we conduct these experiments
on a network with low assortativity and then a network with
high assortativity We use the degree distributions (12) and (13)
to assign red and blue degrees. Namely, with prk (resp. pbk)
denoting the probability that a node is assigned k red (resp.
blue) edges, we let

pbk = e−λb
(λb)

k

k!
, k = 0, 1, . . . , (12)

prk = αe−λr
(λr)

k

k!
+ (1− α)δk,0, k = 0, 1, . . . . (13)

Here, λr (resp. λb) denotes the mean number of red (resp.
blue) edges assigned per node, α denotes the fraction of nodes
that have red edges (i.e., the relative size of the red network
R), and δ denotes the Kronecker delta.

To be able to control the assortativity of networks without
changing the first moment of degree, we set αλr = λb rather
than λr = λb. With this setting, when α is large, e.g., 0.99,
nearly all of the nodes will have a similar number of red and

blue edges, which leads to networks with limited assortativity.
On the contrary, when α is low, e.g., 0.1, only 10% of the
nodes will have extra red edges. In addition, these nodes will
have a significantly larger number of edges, since λr is ten
times larger than λb. The nodes with extra red edges will tend
to be connected together, which results in the network to have
high assortativity. See [14] for a more detailed discussion.

We start with the limited assortativity case, i.e., α = 0.99.
As shown in Figure 1(a), we observe that regardless of which
network hyper-influencers are constrained to exist, there are
two phase transitions as in the case of single-stage complex
contagions. However, we see that the existence of hyper-
influencers delays the second phase transitions to higher mean
degrees. The reason behind this delay can be explained as
follows. As mentioned before, the second phase transition
occurs due to high local stability of nodes making their states
hard to change by only few active neighbors. However, hyper-
influencers help increase the value of the perceived influence,
i.e., c(mr,1+βmr,2)+mb,1+βmb,2

cdr+db
, so that the response function

could be exceeded even with few active and hyper-active
neighbors, in the high mean degree region. Besides, allowing
hyper-activity in blue edges leads to a larger region where
global cascades take place, in comparison with the case where
hyper-activity exists only in red edges. This can be explained
as follows. When α = 0.99, there are more nodes connected by
blue edges in the network than red edges. That is, the impact
of blue edges on impeding global cascades is more than that
of red edges. Thus, allowing hyper-influence to be exerted in
blue edges delays the second phase transition further.

Next, we discuss the case where α = 0.1 that leads to a
highly assortative network [14]. In Figure 1(b), we present
numerical results for the first setting where the hyper-active
state is manifested in only red edges. When β = 1, i.e.,
when there are no hyper-influencers in the network, four
phase transitions take place. However, if we increase β from
one to three, then only two phase transitions are observed.
This can be explained as follows. When β = 1, multi-
stage complex contagions is reduced to single-stage complex
contagions, in which case four phase transitions might occur
when assortativity is high [14]. As explained in [14], the first
pair of phase transitions are mainly due to the red edges. When
λb is small, there are too few blue edges to trigger a global
cascade. However, since we have λr = 10λb, there are still
enough red edges to have global cascades. As we increase
λb, we observe a parameter interval where red edges are too
many while blue edges are too few to have a global cascade. If
we keep increasing λb further, global cascades start appearing
again when the network has enough connectivity in blue edges
to propagate the influence. However, further increasing in λb
leads to high local stability of nodes w.r.t. both blue and red
edges and global cascades become impossible again. A more
detailed discussion can be found in [14].

The reason why increasing β changes the number of phase
transitions is as follows. From the definition (4) of the response
function, we observe that it is monotonically increasing with
respect to β. Thus, when β is higher, an inactive node is easier
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Fig. 1. We fix τ1 = 0.18 and τ2 = 0.32, then vary the mean degree. (a) Hyper-activity only appears in either red or blue edges. When α = 0.99, the assortativity
is negligible. (b) Hyper-activity only appears in red edges. When α = 0.1, the assortativity of the network is around 0.8. (c) Hyper-activity only appears in blue
edges. When α = 0.1, the assortativity is high (be up to 0.8).

to be activated by a hyper-active node, which makes it possible
to have global cascades at higher levels of connectivity; i.e.,
the second phase transition tends to appear at larger λ. This
leads to the second and the third phase transitions seen in
Figure 1(c) disappear when β = 1 ; i.e., the interval where we
have too many red and too few blue edges disappears.

Next, we focus on the second setting where hyper-activity is
only manifested in blue edges. The results are shown in Figure
1(c). Allowing hyper-activity in blue edges does not change the
connectivity of the network, so the first and the second phase
transitions caused by the connectivity w.r.t. red edges remain
the same. However, the gap between the second and third
transitions still exists, which results from the second transition
w.r.t. red and the first transition w.r.t. blue edges. A high β
only shifts the second transition to the right but does not affect
the first transition much. Thus, the gap disappears quickly
with increasing β when we allow it in red edges, but remains
when we only allow it in blue edges. Besides, compared with
the case β = 1, the fourth transition is significantly delayed
when β = 3. The reason behind the delay of the fourth phase
transition is similar to the previous discussion: A higher β
makes it easier to exceed the threshold even when the degree
parameter is at a high level, so the original fourth phase
transition has been extended to a larger mean degree.

From these experiments, we conclude that depending on
the assortativity of the network, the impact of hyper-activity
in red or blue edges on complex contagions are different:
when the network is highly assortative, the additional influence
exerted by the hyper-active nodes may change not only the
critical transition points, but also the number and order of
phase transitions, while for networks that have little or no
assortativity, the additional influence mainly enlarge global
cascade regions.
and supported by a numerical study. An interesting finding

V. CONCLUSION AND FUTURE WORK

In this work, we study the propagation of influence in mul-
tiplex networks under a multi-stage complex contagion model.
We derive recursive relations characterizing the dynamics of
influence propagation to compute the expected size of global
cascades, i.e., cases where a single individual can initiate
a propagation that eventually influences a positive fraction
of the population. The analytic results are also confirmed

is that depending on the assortativity of the network, the
existence of hyper-influencers affect the expected size of
global cascades differently. For instance, when the network
is highly assortative, the additional influence exerted by the
hyper-active nodes may change not only the critical transition
points, but also the number and order of phase transitions;
while the effect is much more limited in networks with low
assortativity.
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