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Abstract—We consider random threshold graphs where the
fitness variables are exponentially distributed. Simulations show
that the zero-one law for graph connectivity exhibits a sharp
phase transition. We formalize this observation by providing
exact asymptotics for the width of the phase transition in the
many node regime.
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I. I NTRODUCTION

We are concerned with the following class of random graph
models which have been proposed to describe some social
networks: There aren nodes, labelledk = 1, . . . , n, and to
each nodek we assign afitnessvariable (or weight)ξk which
measures its importance or rank. The random variables (rvs)
ξ1, . . . , ξn are assumed to form a collection of i.i.d.R-valued
rvs, each distributed according to some given probability dis-
tribution functionF : R → [0, 1].1 For distinctk, ℓ = 1, . . . , n,
we declare nodesk andℓ to be adjacent if

ξk + ξℓ > θ (1)

for someθ in R. We refer to the random graph defined by the
adjacency notion (1) as arandom thresholdgraph on the set
of nodes{1, . . . , n}, and hereafter we denote it byT(n; θ).

These graphs are instances of hidden variable models and
have been proposed as alternatives to the preferential attach-
ment model of Barabási and Albert [2] to generate scale-free
networks, e.g., see the papers [4], [5], [15] (and references
therein). Random threshold graphs have recently been the
focus of much activity; see the survey by Diaconis et al. [6]
and the bibliography in [11]. For such random threshold graphs
we are interested in the behavior of the property of graph
connectivity. For convenience, for eachθ in R we write

P (n; θ) := P [ T(n; θ) is connected] (2)

with n = 2, 3, . . ..
In particular, we seek to understand how these probabilities

behave when the numbern of nodes becomes large and
the threshold valueθ is scaled appropriately. This amounts
to making θ depend onn by means ofscaling functions

1What we call here a probability distribution function is also called a
cumulative distribution function in other literatures.

θ : N0 → R : n → θn, and to investigating the limit
limn→∞ P (n; θn). We are particularly interested in conditions
under which either

lim
n→∞

P (n; θn) = 0 (3)

or
lim

n→∞
P (n; θn) = 1. (4)

We naturally refer to the convergence statements (3) and (4)
as a zero law and a one law, respectively.

Such zero-one laws have been discussed extensively in the
context of other classes of random graphs, e.g., Erdös-Rényi
graphs [3], [7], geometric random graphs [1], [13] and random
key graphs [14], [16]. In a recent paper [11], the authors
have considered the issue for random threshold graphs with
non-negativefitness rvs. Distinguishing betweenweak and
strong zero-one laws, we showed that the existence and type
of a zero-one law, and the form of the critical scaling are
completely determined by properties ofF .

In this short conference paper we continue our investigation
whenF is an exponential distribution: For that special case a
strong zero-one law is known to exist, and simulation results
suggest that it exhibits a rather sharp transition. Our main
result is a formalization of this observation, and takes theform
of an exact asymptotics for the width of the phase transition.
This is made possible by leveraging Theorem 3.2, an analog
of the well-known double-exponential result (32) for graph
connectivity in Erdős-Rényi graphs. Random threshold graphs
and Erdős-Rényi graphs have very different connectivitystruc-
tures, and so it is not surprising that the width of their phase
transitions exhibits vastly different behavior, namelyΘ(1) vs.
Θ(n−1) in their natural parametersθ and α, respectively;
see Section V for details. Yet, by reparametrizing random
threshold graphs through their link assignment probability, we
show that these different results can be somewhat harmonized.

All statements involving limits, including asymptotic equiv-
alences, are always understood withn going to infinity. The
rvs under consideration are all defined on the same probability
triple (Ω,F , P). All probabilistic statements are made with
respect to this probability measureP. The notation

P
→ n (resp.

=⇒n) is used to signify convergence in probability (resp.
convergence in distribution) withn going to infinity.



II. EARLIER WORK

In this section we summarize various results obtained in
[11] concerning zero-one laws for connectivity under the non-
negativity fitness assumption.

A. Assumptions

The setting of [11] is as follows: Let{ξk, k = 1, 2, . . .}
denote a collection of i.i.d.R+-valued rvs defined on the
probability triple (Ω,F , P) – We useξ to refer to a generic
representative for this sequence of i.i.d. rvs. The following
assumptions are enforced on their common (cumulative) prob-
ability distribution functionF : R → [0, 1].

Assumption A:The probability distribution functionF :
R → [0, 1]

(i) has support contained inR+ (soF (x) = 0 if x < 0);
(ii) is continuous onR, or equivalently, has no atoms (and so

cannot be degenerate at a single point, in particular, the
origin);

Assumption A-(ii) impliesF (0) = 0, and is most easily
satisfied by takingF to be absolutely continuous, say with
density functionf : R → R+ (so f(x) = 0 for x < 0 by
Assumption A-(i)).

B. Weak vs. strong zero-one laws

Under Assumption A we haveP (n; θ) = 1 for all
n = 2, 3, . . . wheneverθ ≤ 0. Hence, in order to avoid
uninteresting situations, we restrict the definition of ascaling
to be any mappingθ : N0 → R+. Recall that we are
interested in finding conditions on such scalings to ensure
either limn→∞ P (n; θn) = 1 or limn→∞ P (n; θn) = 0.
Typically there exist scalings, deemedcritical, which act as
boundary in the space of scalings between these two extremes.
The terminology of McColm [12, p. 376], adapted here to the
class of random threshold graphs, formalizes this idea in a
number of different ways.

A strong zero-one law is said to hold withcritical scaling
θ⋆ : N0 → (0,∞) if for any scalingθ : N0 → R+ satisfying

lim
n→∞

θn

θ⋆
n

= c (5)

for somec > 0, we have

lim
n→∞

P (n; θn) =







1 if 0 < c < 1

0 if 1 < c.

(6)

Any scalingθ⋆ : N0 → (0,∞) appearing in (5)-(6) is called
a strongcritical scaling.

On the other hand, aweakzero-one law is said to hold with
critical scalingθ⋆ : N0 → (0,∞) if for scaling θ : N0 → R+

we have

lim
n→∞

P (n; θn) =











1 if limn→∞
θn

θ⋆

n

= 0

0 if limn→∞
θn

θ⋆

n

= ∞.

(7)

Any scaling θ⋆ : N0 → (0,∞) appearing in (7) is called a
weakcritical scaling.

C. Characterizing zero-one laws

For eachn = 2, 3, . . ., the probability (2) can be expressed
in terms of two order statistics associated with the underlying
rvs ξ1, . . . , ξn, namely their maxima and minima given by

Mn := max (ξ1, . . . , ξn) (8)

and
M⋆

n := min (ξ1, . . . , ξn) , (9)

respectively. In [11] we established the following representa-
tion for the probability of graph connectivity.

Proposition 2.1:Under Assumption A on the probability
distribution functionF , we have

P (n; θ) = P [M⋆
n + Mn > θ] , θ > 0 (10)

for eachn = 2, 3, . . ..
With the help of (10) it is easy to give a complete charac-

terization of strong zero-one laws [11].
Theorem 2.2:Assumption A is enforced on the probability

distribution functionF . If θ⋆ : N0 → (0,∞) is a scaling which
satisfies

lim
n→∞

θ⋆
n = ∞, (11)

then the strong zero-one law (6) holds for graph connectivity
with critical scalingθ⋆ : N0 → (0,∞) if and only if

Mn

θ⋆
n

P
→ n 1. (12)

A characterization of weak zero-one laws is also available
but will not be used here; see [11] for details.

III. E XPONENTIAL FITNESS

From now on we focus on the special case whenξ is
exponentially distributed with parameterλ > 0, i.e.,

P [ξ ≤ x] = 1 − e−λx, x ≥ 0. (13)

This case was considered in [5], [15] to show that even non-
scale free distributions can generate scale-free networks.

A. Classical limiting results

Of particular interest for what follows is the Gumbel distri-
bution G : R → R+ given by

G(x) = e−e−x

, x ∈ R. (14)

Any rv Λ distributed according to the Gumbel distribution is
called a Gumbel rv, i.e.,

P [Λ ≤ x] = G(x), x ∈ R. (15)

The following limiting results from Extreme Value Theory
are well known [8, Example 3.2.7, p. 125].

Proposition 3.1:We have

λMn

log n

P
→ n 1 (16)

and
λMn − log n =⇒n Λ. (17)
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Fig. 1. Exponential distribution (13) withλ = 1.

Note that (16) is an easy consequence of (17), and this last
convergence can be obtained by elementary arguments.

Theorem 2.2 can now be applied in the exponential case
(13): From (16) we conclude that a strong zero-one law exists
with critical scalingθ⋆

n : N0 → (0,∞) given by

θ⋆
n = λ−1 log n, n = 1, 2, . . . (18)

Thus, for any scalingθ : N0 → R+ such that

θn ∼ c ·
log n

λ

for some c > 0, we have limn→∞ P (n; θn) = 1 (resp.
limn→∞ P (n; θn) = 0) if 0 < c < 1 (resp. 1 < c). This
state of affairs is confirmed through the simulation results
displayed in Figure 1 whereλ = 1 so that the critical
scaling (18) is nowθ⋆

n = log n for eachn = 1, 2, . . .. With
c > 0 we estimateP (n; cθ⋆

n) by theempirical probabilitythat
the random threshold graph is connected under the scaling
n → cθ⋆

n; this quantity is obtained by averaging over5000
independent realizations.

B. Sharper results for the exponential distribution

As should be apparent already from Figure 1, this strong
zero-one law exhibits a rather sharp transition. The remain-
der of the paper is devoted to formalizing this observation.
Throughout we writex+ = max(0, x) for any scalarx in R.

Write any scalingθ : N0 → R+ in the form

θn = λ−1 (log n + γn)
+

, n = 1, 2, . . . (19)

for some sequenceγ : N0 → R – There is no loss of generality
in doing so. In [11] we established the following result.

Theorem 3.2:If the distribution functionF : R → [0, 1] is
the exponential distribution (13) with parameterλ > 0, then

lim
n→∞

P
(

n; λ−1 (log n + γn)
+
)

= 1 − e−e−Γ

(20)

for any scalingθ : N0 → R+ written in the form (19) with
sequenceγ : N0 → R satisfying

lim
n→∞

γn = Γ (21)

for someΓ in R.
The proof given in [11] can be easily summarized: For a

scalingθ : N0 → R+ put in the form (19), use the expression
(10) to evaluateP (n; θn) for eachn = 2, 3, . . .. Under (21)
the conclusion is readily obtained by combining (17) with the
fact thatlimn→∞ M⋆

n = 0 a.s.
Theorem 3.2 is in the spirit of the celebrated double-

exponential result for graph connectivity in Erdős-Rényi
graphs; see discussion in Section V. In particular, if in (21)
we takeγn ≡ Γ for all n = 1, 2, . . ., then (20) becomes

lim
n→∞

P
(

n; λ−1 (log n + Γ)
+
)

= 1 − e−e−Γ

. (22)

IV. W IDTH OF THE PHASE TRANSITION

Fix n = 3, 4, . . .. the mappingθ → P (n; θ) is easily seen to
be continuous and strictly decreasing onR+. Thus, for each
p in (0, 1), there exists a unique solution to the equation

P (n; θ) = p, θ > 0.

With θn(p) denoting this unique solution, we obviously have

P (n; θn(p)) = p. (23)

Note also that there exists a unique scalarΓ in R such that

1 − e−e−Γ

= p.

This unique scalar, denoted byΓ(p), is given by

Γ(p) = − log (− log(1 − p)) .

The next result constitutes the main technical contribution of
the paper, and provides an explicit approximation toθn(p) for
largen.

Theorem 4.1:For eachp in (0, 1) we have

θn(p) = λ−1 (log n + Γ(p)) + o(1). (24)

Proof. Pick p in (0, 1). We selectε > 0 and η > 0 so that
the conditions

η + ε < min(p, 1 − p) and 3η < ε (25)

are both satisfied. This ensures that the three intervals(p −
ε − η, p − ε + η), (p − η, p + η), and(p + ε − η, p + ε + η)
are non-overlapping intervals, each contained in(0, 1).

By virtue of (22) (withΓ = Γ(p±ε)), there exists a positive
integern(ε, η) such that the conditions

log n + Γ(p ± ε) ≥ 0 (26)

and
∣

∣

∣
P
(

n; λ−1 (log n + Γ(p ± ε))+
)

− (p ± ε)
∣

∣

∣
<

η

2
(27)



all hold whenevern ≥ n(ε, η). On this range it follows from
(26) and (27) that both inequalities

P
(

n; λ−1 (log n + Γ(p − ε))
)

< (p − ε) +
η

2

and

(p + ε) −
η

2
< P

(

n; λ−1 (log n + Γ(p + ε))
)

hold. Making use of (23) and of the non-overlapping condition
(25) we conclude that

P
(

n; λ−1 (log n + Γ(p − ε))
)

< P (n; θn(p))

and

P (n; θn(p)) < P
(

n; λ−1 (log n + Γ(p + ε))
)

.

Since the mappingθ → P (n; θ) is decreasing, it follows that

θn(p) < λ−1 (log n + Γ(p − ε))

and
λ−1 (log n + Γ(p + ε)) < θn(p).

Rearranging terms in these inequalities and then lettingn

go to infinity we find

lim sup
n→∞

(

θn(p) − λ−1 log n
)

≤ λ−1Γ(p − ε)

and
λ−1Γ(p + ε) ≤ lim inf

n→∞

(

θn(p) − λ−1 log n
)

,

inequalities whose left and right handsides, respectively, do
not depend onε. Let ε go to zero in the last two inequalities
and observe that

lim
ε↓0

Γ(p + ε) = lim
ε↓0

Γ(p − ε) = Γ(p).

It is now plain that

lim
n→∞

(

θn(p) − λ−1 log n
)

= λ−1Γ(p),

or equivalently,

θn(p) − λ−1 log n = λ−1Γ(p) + o(1).

The conclusion (24) follows.

The phase transition already apparent in Figure 1 has a
width which we characterize through the quantity

δn(p) = θn(1 − p) − θn(p),
n = 3, 4, . . .

p ∈ [0, 1
2 ).

(28)

Note thatp in [0, 1
2 ) is equivalent top < 1−p, so thatθn(1−

p) < θn(p), henceδn(p) < 0. The transition widthδn(p)
measures the decrease in the threshold valueθ needed in the
n node network to drive the probability of connectivity from
level p to level 1 − p. The more slowly|δn(p)| grows as a
function of n, the sharper the phase transition. This rate of
decay is available as a direct consequence of Theorem 4.1.

Corollary 4.2: For eachp in (0, 1
2 ) we have

δn(p) = −λ−1C(p) + o(1) (29)

where

C(p) = log

(

log p

log(1 − p)

)

> 0. (30)

V. D ISCUSSION

A. Phase transition in Erd̋os-Ŕenyi graphs

Results similar to Theorem 4.1 and Corollary 4.2 are
available for other classes of random graphs, e.g., Erdős-Rényi
graphs (see below) and geometric random graphs (as discussed
in [10] in one dimension).

For instance, withα in [0, 1] and n = 2, 3, . . ., consider
the Erdős-Rényi graphG(n; α) on the vertex set{1, . . . , n}
with link assignment probabilityα. Let PER(n; α) denote the
probability that G(n; α) is connected. The mappingα →
PER(n; α) is continuous and strictly increasing on[0, 1]. Given
p in (0, 1), there exists a unique solutionαn(p) to the equation

PER(n; α) = p, α ∈ (0, 1).

Its behavior for largen is given by

αn(p) =
log n + Γ(1 − p)

n
+ o

(

n−1
)

. (31)

This a consequence of the double-exponential result for graph
connectivity in Erdős-Rényi graphs [3, Thm. 7.3, p. 164],[7,
Thm. 3.10, p. 42], namely

lim
n→∞

PER

(

n;

(

log n + cn

n

)+
)

= e−e−c

(32)

whenever the sequencec : N0 → R satisfieslimn→∞ cn = c

for somec in R – Contrast this with (20)-(21). The arguments
leading to (31) are similar to the ones used in [9], [10] for one-
dimensional geometric random graphs. This time, in analogy
with (28), we need to consider

δER,n(p) = αn(1 − p) − αn(p),
n = 3, 4, . . .

p ∈ [0, 1
2 )

so that

δER,n(p) =
C(p)

n
+ o

(

n−1
)

(33)

by virtue of (31) withC(p) given by (30). Details are left to
the interested reader,

B. Reparametrization

Connectivity in both random threshold graphs and Erdős-
Rényi graphs exhibit a phase transition, the width of whichis
given by (29) and (33), respectively. The asymptotic behaviors
are quite different: Whilelimn→∞ δER,n(p) = 0, we note
that limn→∞ δn(p) = −λ−1C(p) < 0 on the range(0, 1

2 ).
This suggests that for largen, the probabilityP (n; θ) (as a
function of θ) decreases from1 − p to p somewhatlinearly
over a nearly constant range of positive sizeλ−1C(p) and
with negative slope

(1 − p) − p

−λ−1C(p)
= −

λ(1 − 2p)

C(p)
.



On the other hand, for largen, the probabilityPER(n; α) (as
a function of α) jumps in astep-likemanner (with infinite
slope) fromp to 1 − p.

One might possibly argue that the observed difference in
behavior is misleading becauseθ lives in the unbounded half-
line (0,∞) while α ranges over the compact interval(0, 1).
Therefore, one approach to render the results comparable
would be to reparametrize random threshold graphs in terms
of their probability of link assignment. To that end, we define

β(θ) = P [ξ1 + ξ2 > θ] , θ > 0.

For eachn = 2, 3, . . ., as the probability of link assignment
in T(n; θ), the parameterβ(θ) is akin to the link assignment
probability α in the Erdős-Rényi graphG(n; α). Under the
exponential distribution (13), we get

β(θ) = h(λθ)

whereh : R+ → [0, 1] is the continuous and strictly decreasing
mapping given by

h(x) = (1 + x) e−x, x ≥ 0.

Sinceθ andβ(θ) are in one-to-one correspondence with each
other, we can think ofT(n; θ) asT(n; β) whereβ = h(λθ)

Note that βn(p) = h(λθn(p)) is simply the probability
of link assignment in then node random threshold graph
that ensures connectivity with probablityp; of course its
counterpart in Erdős-Rényi graphs isαn(p). We easily check
that

βn(p) = (1 + log n + Γ(p) + o(1)) e−(log n+Γ(p)+o(1))

=

(

log n + Γ(p)

n
+ Θ(n−1)

)

e−Γ(p)eo(1)

whence

βn(p) ∼

(

log n + Γ(p)

n
+ Θ(n−1)

)

· log

(

1

1 − p

)

. (34)

While the similarity of (34) with (31) is encouraging, a finer
asymptotic analysis is required to conclude that the transition
width βn(1−p)−βn(p) (expressed in theβ parameter) behaves
like (33).

C. Normalization to the critical scaling

Another possibility to harmonize the two sets of results (29)
and (33) is to normalize the transition width to the critical
scaling. For simplicity consider the case whenp is in the
interval [0, 1

2 ). For random threshold graphs this idea leads
to

δn(p)

θ⋆
n

=
−λ−1C(p) + o(1)

λ−1 log n
=

−C(p) + o(1)

log n
.

For Erdős-Rényi graphs, the critical scalingα⋆ : N0 → [0, 1]
for graph connectivity is given by

α⋆
n =

log n

n
, n = 1, 2, . . .

so that

δER,n(p)

α⋆
n

=
C(p)

n
+ o(n−1)
log n

n

=
C(p) + o(1)

log n
.

Thus, in spite of very different connectivity structures, we have
∣

∣

∣

∣

δn(p)

θ⋆
n

∣

∣

∣

∣

∼
δER,n(p)

α⋆
n

.

One may wonder wether the absolute value of this ratio
indeed provides some form of invariant across many classes
of random graphs. To be continued!

ACKNOWLEDGMENT

This work was partially supported by NSF Grants CCF-
0830702 and CCF-1217997. The first author also acknowl-
edges the hospitality and support of the Basque Center for
Applied Mathematics (BCAM) in Bilbao (Spain) for month-
long stays in June 2010, June 2011 and May 2012.

REFERENCES

[1] M.J.B. Appel and R.P. Russo, “The connectivity of a graphon uniform
points on[0, 1]d,” Statistics & Probability Letters60 (2002), pp. 351-
357.

[2] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science286 (1999), pp. 509-512.

[3] B. Bollobás, Random Graphs, Second Edition, Cambridge Studies in
Advanced Mathematics, Cambridge University Press, Cambridge (UK),
2001.
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