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Abstract—We consider random threshold graphs where the 6 : Ny — R : n — #6,, and to investigating the limit
fitness variables are exponentially distributed. Simulatons show iy, , P(n;0,,). We are particularly interested in conditions
that the zero-one law for graph connectivity exhibits a shap under which either
phase transition. We formalize this observation by providing

exact asymptotics for the width of the phase transition in tte lim P(n;6,) =0 (3)
many node regime. n—oo ’
Keywords: Random threshold graphs, Exponential fithessf
Connectivity, Phase transition. lim P(n;0,) = 1. 4)
n—oo
. INTRODUCTION We naturally refer to the convergence statements (3) and (4)

We are concerned with the following class of random gragt® & zero law and a one law, respectively. o
models which have been proposed to describe some sociapuch zero-one laws have been discussed extenswely_ln the
networks: There are: nodes, labelled: = 1,...,n, and to Ccontext of other classe_s of random graphs, e.g., ErdosiRé
each nodé we assign ditnessvariable (or weight, which 9raphs [3], [7], geometric random graphs [1], [13] and rando
measures its importance or rank. The random variables (Y 9raphs [14], [16]. In a recent paper [11], the authors

13 ¢, are assumed to form a collection of i.ifl-valued have considered the issue for random threshold graphs with
rvs, each distributed according to some given probabilisy d non-negativefitness rvs. Distinguishing betw_eemeak and
tribution function? : R — [0, 1].1 For distinctk, ¢ = 1,...,n, Stongzero-one laws, we showed that the existence and type
we declare nodes and/ to be adjacent if of a zero-one law, and the form of the critical scaling are
completely determined by properties bf
Sk +& >0 1) In this short conference paper we continue our investigatio

for somed in R. We refer to the random graph defined by thgvhenF is an exponential distribution: For that special case a

. . Strong zero-one law is known to exist, and simulation rasult
adjacency notion (1) as mndom thresholdgraph on the set suggest that it exhibits a rather sharp transition. Our main
of nodes{1,...,n}, and hereafter we denote it i§(n; 6). gge: o ; P :

. . . result is a formalization of this observation, and takesftinm

These graphs are instances of hidden variable models a . . .

of an exact asymptotics for the width of the phase transition

have been proposed as alternatives to the preferentiaxhatta]_hiS is made possible by leveraging Theorem 3.2, an analog
ment model of Barabasi and Albert [2] to generate scale-fre N

of the well-known double-exponential result (32) for graph

networks, e.g., see the papers [4], [5], [15] (and reference L P
therein). Random threshold graphs have recently been &oennectlwty In Erdos-Renyi graphs. Random thresholtbgs

focus of much activity; see the survey by Diaconis et al. [ nd Erdos-Renyi graphs have very different connectstityc-

- ; res, and so it is not surprising that the width of their ghas
and the bibliography in [11]. For such random threshold gsapt ansitions exhibits vastly F(;if“fer(ga]nt behavior, namély1) VF:1

we are interested in the behavior of the property of gra PN . T
- ) . . (n™") in their natural parameter8 and «, respectively;
connectivity. For convenience, for eaghin R we write . . e
see Section V for details. Yet, by reparametrizing random

P(n;0) :=P[ T(n;0) is connected (2) threshold graphs through their link assignment probabie
_ show that these different results can be somewhat harnthnize
with n = 2,3, ... All statements involving limits, including asymptotic équ

In particular, we seek to understand how these probasilitigiences are always understood withgoing to infinity. The
behave when the number of nodes becomes large andys ynder consideration are all defined on the same probabili

the threshold valud is scaled appropriately. This amount§sipie (), 7, P). All probabilistic statements are made with

to making 6 depend onn. by means ofscaling functions respect to this probability measuPe The notation > n (resp.

1what we call here a probability distribution function is @isalled a =) IS use(_j tO_ S|_gn|f_y convergence m_pro_bablllty (resp.
cumulative distribution function in other literatures. convergence in distribution) with going to infinity.



Il. EARLIER WORK C. Characterizing zero-one laws

In this section we summarize various results obtained inFor eachn = 2,3, ..., the probability (2) can be expressed
[11] concerning zero-one laws for connectivity under thenoin terms of two order statistics associated with the undiegly
negativity fithess assumption. rvs &1, ..., &, Namely their maxima and minima given by
A. Assumptions M, == max (&1, ..., 6n) (8)

The setting of [11] is as follows: Lef&,, £ = 1,2,...} ang
denote a collection of i.i.dR-valued rvs defined on the M :=min (&, ..., &) 9)

probability triple (2, 7, P) — We use¢ to refer to a generic _ _ _
representative for this sequence of i.i.d. rvs. The follayi respectively. In [11] we established the following repreae
assumptions are enforced on their common (cumulative)-prdi®n for the probability of graph connectivity.

ability distribution functionF' : R — [0, 1]. Proposition 2.1: Under Assumption A on the probability
Assumption A:The probability distribution functionF” :  distribution functionF’, we have
R —[0,1] P(n;0) =P [M} + M, > 0], 6>0 (10)

() has support contained . (soF(z) =0 if x < 0);
(i) is continuous ofR, or equivalently, has no atoms (and sdor eachn = 2,3, .. ..

cannot be degenerate at a single point, in particular, theith the help of (10) it is easy to give a complete charac-
origin); terization of strong zero-one laws [11].

Assumption A-(ii) impliesF(0) = 0, and is most easily ‘Theorem 2.2:Assumption A is enforced on the probability
satisfied by takingF' to be absolutely continuous, say withdistribution functionf”. If 6* : No — (0, 00) is a scaling which
density functionf : R — R, (so f(z) = 0 for z < 0 by Satisfies

Assumption A-(i)). Jim 6y, = oo, (11)

B. Weak vs. strong zero-one laws then the strong zero-one law (6) holds for graph connegtivit
Under Assumption A we haveP(n;0) = 1 for all with critical scalingd™ : No — (0, c) if and only if

n = 2,3,... wheneverf < 0. Hence, in order to avoid M, L (12)

uninteresting situations, we restrict the definition afcaling 0 n

to be any mappingg : Ny — R,;. Recall that we are
interested in finding conditions on such scalings to ensureA characterization of weak zero-one laws is also available
either lim,, .o P(n;6,,) = 1 or lim,_.o P(n;6,) = 0. but will not be used here; see [11] for details.
Typically there exist scalings, deemedtical, which act as
boundary in the space of scalings between these two extremes
The terminology of McColm [12, p. 376], adapted here to the From now on we focus on the special case wlitels
class of random threshold graphs, formalizes this idea ineaponentially distributed with paramet&r> 0, i.e.,
number of different ways. -

A strong zero-one Ia\B//v is said to hold witbritical scaling Plg<a]=1-e? 20 (13)
0* : No — (0, 00) if for any scalingf : No — R satisfying  This case was considered in [5], [15] to show that even non-

I1l. EXPONENTIAL FITNESS

0 scale free distributions can generate scale-free networks
lim % =c (5) N
n—oo A. Classical limiting results
for somec > 0, we have Of particular interest for what follows is the Gumbel distri
1 if 0<ectd butionG : R — R, given by
lim P(n;6,) = _ (6) Glz)=e*", zeR. (14)
0 if 1<e.

Any rv A distributed according to the Gumbel distribution is

Any scalingd* : No — (0, 00) appearing in (5)-(6) is called 4jled a Gumbel rv. i.e.

a strongcritical scaling.

On the other hand, weakzero-one law is said to hold with PA<z]=G(z), z€R. (15)
itical ling6* : i i : S
Svrglzzvzca ingo” : No — (0, 00) if for scaling 6 : No — R The following limiting results from Extreme Value Theory
. are well known [8, Example 3.2.7, p. 125].
Loif limy oo z—: =0 Proposition 3.1: We have
lim P(n;0,) = (7) MM, p
e 0 if lim,_ o z—z = 0. ] —nl (16)
n ogn

Any scaling6* : Ny — (0,00) appearing in (7) is called a and
weakecritical scaling. AM, —logn =, A. a7)



for any scalingd : Ny — Ry written in the form (19) with

R——— sequence : Ny — R satisfying
o9 — n=5x107] lim A, =T (21)
0.8+ == n=5x10%| nee
for somel in R.

. 0.7 ’ The proof given in [11] can be easily summarized: For a
& o6l 1 scalingd : Ng — R4 put in the form (19), use the expression
© (10) to evaluateP(n;6,,) for eachn = 2,3,.... Under (21)
£ 05 1 the conclusion is readily obtained by combining (17) with th
i | fact thatlim,, ... M} =0 a.s.

Theorem 3.2 is in the spirit of the celebrated double-
03¢ 1 exponential result for graph connectivity in Erdés-Rieny
02l | graphs; see discussion in Section V. In particular, if in)(21

Exponential distribution we takey, =T foralln =1,2,..., then (20) becomes
01f | F(z)=1—¢e* >0
o T Ssa nli{rolop (n; At (logn + F)+) =1-e° . (22)
0.5 1 15

¢ IV. WIDTH OF THE PHASE TRANSITION

' S _ Fix n = 3,4, . ... the mapping — P(n;0) is easily seen to
Fig. 1. Exponential distribution (13) with = 1. be continuous and strictly decreasing Bn. Thus, for each
p in (0, 1), there exists a unique solution to the equation

. ) P(n;0)=p, 6>0.
Note that (16) is an easy consequence of (17), and this last

convergence can be obtained by elementary arguments. With 6,,(p) denoting this unique solution, we obviously have
Theorem 2.2 can now be applied in the exponential case
(13): From (16) we conclude that a strong zero-one law exists P(n;0,(p)) = p. (23)

with critical scalingf;, : No — (0,00) given by Note also that there exists a unique scdldn R such that

0r =X"tlogn, n=12,... (18) -r

Thus, for any scaling : Ng — R, such that

logn This unique scalar, denoted bYp), is given by

A I(p) = —log (—log(1 —p)).

for somec¢ > 0, we havelim,_.. P(n;0,) = 1 (resp. . . . L
limy, o P(n:6,) — 0) if 0 < ¢ < 1 (resp.1 < ¢). This The next result constitutes the main technical contriloutd

state of affairs is confirmed through the simulation resulfge paper, and provides an explicit approximatiodigp) for

displayed in Figure 1 where, = 1 so that the critical ‘29" .
b'ay 9 With Theorem 4.1:For eactp in (0, 1) we have

0, ~c

scaling (18) is nowd; = logn for eachn = 1,2, ..
c > 0 we estimateP(n; cf,) by theempirical probabilitythat 0,.(p) = A~ (logn + T'(p)) + o(1). (24)
the random threshold graph is connected under the scaling

n — cfy; this quantity is obtained by averaging ov&00

independent realizations.

B. Sharper results for the exponential distribution Proof. P.K.:kp in (0,1). We selects > 0 and > 0 so that
the conditions

As should be apparent already from Figure 1, this strong
zero-one law exhibits a rather sharp transition. The remain n+e<min(p,1—p) and 3n<e (25)

der of the paper is devoted to formalizing this observation. - . .
Throughoutpwg writer+ — max(0, z) for an;g/] scalarr in R. &€ both satisfied. This ensures that the three interfyals

Write any scaling : Ny — R in the form e—mp—e+n), (p—np+n),and(p+e—np+e+n)
N are non-overlapping intervals, each contained0nl).
0 =A""(logn+7,)", n=12,... (19) By virtue of (22) (withT' = I'(p+¢)), there exists a positive

for some sequence: Ny, — R — There is no loss of generality Nt€gern(e,7) such that the conditions

in doing so. In [11] we established the following result. logn+T(pLe) >0 (26)
Theorem 3.2:If the distribution functionF’ : R — [0,1] is N

the exponential distribution (13) with parameker 0, then and

lim P (n; A1 (logn + 'yn)+) —1—e° " (20) ‘P (n; A t(logn +T(p+ 5))+) —(px 5)‘ < g (27)

n—oo



all hold whenevemn > n(e,n). On this range it follows from where
(26) and (27) that both inequalities C(p) = log ( log p ) 0. (30)
log(1 —p)

P(nA~ (logn+T(p—¢))) < (p—2) + 3
and V. DISCUSSION
(p+e¢)— g <P (A (logn+T(p+e))) A. Phase transition in Eifis-Renyi graphs
hold. Making use of (23) and of the non-overlapping conditio Results similar to Theorem 4.1 and Corollary 4.2 are
(25) we conclude that available for other classes of random graphs, e.g., EREs/i
graphs (see below) and geometric random graphs (as discusse
P(n;A"' (logn+T(p —¢))) < P(n;0,(p)) in [10] in one dimension).
and For instance, withe in [0,1] andn = 2,3,..., consider
the Erd6s-Rényi graplz(n; «) on the vertex se{l,...,n}
P (n;0,(p)) < P (n; A" (logn+T(p+¢))). with link assignment probabilityr. Let Pgg (n; o) denote the

t probability that G(n;«) is connected. The mapping —
Prr(n; ) is continuous and strictly increasing fn 1]. Given
0,(p) < X (logn +T(p—¢)) pin (0,1), there exists a unique solutien,(p) to the equation

Since the mapping — P (n;0) is decreasing, it follows tha

and Per(n;a) =p, a€(0,1).
A (logn+T(p+e)) < 0n(p). _ .

(logn (b+2) 2 Its behavior for large: is given by
_logn+T'(1—p)
B n
This a consequence of the double-exponential result fqrgra
connectivity in Erdés-Rényi graphs [3, Thm. 7.3, p. 147],
Thm. 3.10, p. 42], namely

Rearranging terms in these inequalities and then letting
go to infinity we find an(p)

limsup (6, (p) — A" 'logn) < A7'T(p—e)

n—oo

+o0 (n_l) . (32)

and
AT (p+€) < liminf (6,(p) — A" 'logn),

+
inequalities whose left and right handsides, respectivady lim Pggr <n; (w> ) —e ¢ " (32)
not depend omr. Let ¢ go to zero in the last two inequalities e n

and observe that whenever the sequenee Ny — R satisfieslim,, ... ¢, = ¢

limT(p+¢) =lmD(p—¢) = [(p). for somec in R — Co_ntr_ast this with (20)-(21_). The arguments
€lo €10 leading to (31) are similar to the ones used in [9], [10] foeon
It is now plain that dimensional geometric random graphs. This time, in analogy

with (28), we need to consider
lim (60,,(p) — A" 'logn) = A"'T'(p), (28)

nmee n=3,4,...

or equivalently, Oer.n(p) = an(l —p) = an(p), pelo,d)
0,,(p) — A" tlogn = A7 (p) + o(1). so that )
The conclusion (24) follows. m Ser.n(p) = Tp +o(n") (33)

by virtue of (31) withC(p) given by (30). Details are left to
The phase transition already apparent in Figure 1 hashe interested reader,
width which we characterize through the quantity

np 6?641'):' (28)  Connectivity in both random threshold graphs and Erdés-
'2 Rényi graphs exhibit a phase transition, the width of which

Note thatp in [0, 5) is equivalent top < 1—p, so thatf,,(1— given by (29) and (33), respectively. The asymptotic beravi

p) < On(p), henced,(p) < 0. The transition widths,(p) are quite different: Whilelim,, ... Sgr.n(p) = 0, we note

measures the decrease in the threshold v&lneeded in the that lim,,—. 6,(p) = —A~'C(p) < 0 on the range0, 1).

n node network to drive the probability of connectivity fronThis suggests that for large, the probability P(n;6) (as a

level p to level 1 — p. The more slowly|d, (p)| grows as a function of ) decreases from — p to p somewhatinearly

function of n, the sharper the phase transition. This rate @ler a nearly constant range of positive sixe'C(p) and

decay is available as a direct colnsequence of Theorem 4.1with negative slope

Corollary 4.2: For eactp in (0, 5) we have 1-p)—p  A1-2p)

n(p) = —=A"'C(p) + o(1) (29) -A"1C(p)  C(p)

B. Reparametrization
n(p) = On(1—p) — bn(p),




On the other hand, for large, the probabilityPsr (n; o) (as so that

a function of @) jumps in astep-likemanner (with infinite
slope) fromp to 1 — p.

One might possibly argue that the observed difference in
behavior is misleading becaugdives in the unbounded half-
line (0,00) while o ranges over the compact intervl, 1).

dprn(p) G +o(nh)
a; - logn
C(p) +o(1)
logn

Therefore, one approach to render the results comparabhaus, in spite of very different connectivity structures have

would be to reparametrize random threshold graphs in terms

On OBR,n
of their probability of link assignment. To that end, we defin Hip) ~ EP;*(p).
BO)=P&+& >0, 0>0. One may wonder wether the absolute value of this ratio
indeed provides some form of invariant across many classes
For eachn = 2,3,..., as the probability of link assignmentof random graphs. To be continued!

in T(n; ), the paramete(d) is akin to the link assignment
probability « in the Erd8s-Rényi grapli(n; ). Under the
exponential distribution (13), we get
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mapping given by

hz)=(14x)e ™, x>0. 1
Sincef and 3(#) are in one-to-one correspondence with each
other, we can think ofl (n; 6) asT(n; 3) wheres = h(\0)
Note that 53, (p) h(M\0,(p)) is simply the probability
of link assignment in then node random threshold graph
that ensures connectivity with probablify, of course its |,
counterpart in Erdés-Rényi graphsds (p). We easily check

that

(31

(5]

Ba(p) = (1+logn+T(p)+o(1)) e toentr@re@)
<1ogn ;r I'(p) n @(n—1)> o T(®) go(1) -

whence (8]
Pn(p) ~ (w + @(nl)) log (ﬁ) S CONS

While the similarity of (34) with (31) is encouraging, a finer
asymptotic analysis is required to conclude that the ttimsi [10]
width 3, (1—p)—0.(p) (expressed in thé parameter) behaves
like (33).

[11]
C. Normalization to the critical scaling

Another possibility to harmonize the two sets of results) (29
and (33) is to normalize the transition width to the criticati2]
scaling. For simplicity consider the case whgnis in the
interval [0, ). For random threshold graphs this idea leadss;
to

dn(p) _ —A"'C(p) +o(1) _ —C(p) +o(1) [14]
0x A llogn N logn '
15
For Erd6s-Rényi graphs, the critical scaling : Ny — [0, 1] (3]
for graph connectivity is given by 116}

1
r = Og”, n=12 ...

n

«
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