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ABSTRACT
Low-Power Wide Area Networks (LP-WANs) are an attractive
emerging platform to connect the Internet-of-things. LP-WANs
enable low-cost devices with a 10-year battery to communicate
at few kbps to a base station, kilometers away. But deploying LP-
WANs in large urban environments is challenging, given the sheer
density of nodes that causes interference, coupled with attenuation
from buildings that limits signal range. Yet, state-of-the-art tech-
niques to address these limitations demand inordinate hardware
complexity at the base stations or clients, increasing their size and
cost.

This paper presents Choir, a system that overcomes challenges
pertaining to density and range of urban LP-WANs despite the lim-
ited capabilities of base station and client hardware. First, Choir pro-
poses a novel technique that aims to disentangle and decode large
numbers of interfering transmissions at a simple, single-antenna
LP-WAN base station. It does so, perhaps counter-intuitively, by
taking the hardware imperfections of low-cost LP-WAN clients
to its advantage. Second, Choir exploits the correlation of sensed
data collected by LP-WAN nodes to collaboratively reach a far-
away base station, even if individual clients are beyond its range.
We implement and evaluate Choir on USRP N210 base stations
serving a 10 square kilometer area surrounding Carnegie Mellon
University campus. Our results reveal that Choir improves network
throughput of commodity LP-WAN clients by 6.84 ⇥ and expands
communication range by 2.65 ⇥.
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1 INTRODUCTION
Recent years have witnessed Low-Power Wide Area Networks (LP-
WANs) emerge as an attractive communication platform for the
Internet of Things (IoT) [37]. LP-WANs enable low-power devices
(milliwatts) to transmit at low data rates (kilobits per second) over
long distances (several kilometers). LP-WANs are an ideal vehicle
for cheap, low-power IoT devices such as sensors that have limited
power budget (e.g. a ten-year lithium ion battery) but also send
few kilobits per second of sensed data to the cloud. Consider future
smart cities where a few LP-WAN towers gather sensor data from
a large number of low-power devices in the city. Such devices can
exploit this reliable infrastructure to communicate, no matter where
they are placed, without ever being charged during their lifetimes.
Several LP-WAN proposals have emerged in the past few years,
including commercial technology for the unlicensed 900 MHz band
(LoRaWAN [28], SigFox [31]) as well as open standards for reusing
cellular infrastructure (LTE-M [25], NB-IoT [34]).

Yet, deploying city-scale LP-WAN networks is challenging for
two reasons: the density of deployment and the nature of urban
environments. First, the sheer density of deployment of LP-WAN
nodes means that transmissions from a large number of radios will
often collide. Such collisions adversely impact LP-WANs, drain-
ing battery life and wasting precious air time and spectrum in a
dense network. Second, deployments in urban areas cause the al-
ready weak signals of low-power nodes to be further attenuated by
buildings and other obstacles before reaching the base station. This
greatly reduces the range of LP-WAN sensors from over 10 km in
rural areas to 1-2 km or less in urban settings [2, 4, 41].

At the root of these challenges is the limited capability of LP-
WAN hardware, both at the base station and clients. On one hand,
the limited power budget and low cost of LP-WAN clients make it
challenging to deploy sophisticatedMAC and PHY-layer schemes to
avoid collisions [12, 13]. On the other hand, LP-WAN base stations
struggle to resolve a large number of such collisions. Indeed, state-
of-the-art techniques such as uplink MU-MIMO [6, 26, 40] can
at best separate as many sensor nodes as there are base station
antennas (atmost 3-4 today due to limits on the size and cost [16, 27,
39]). As a result, there remains a fundamental disconnect between
the vision of dense, city-wide LP-WANs and the capabilities of
state-of-the-art LP-WAN hardware.

This paper aims to bridge this disconnect – it builds Choir, a
solution to overcome the challenges of dense, city-scale LP-WANs
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despite the limited capability of client sensor nodes and base sta-
tions. First, we resolve collided transmissions from dense deploy-
ments of LP-WAN clients at an LP-WAN base station, even if it
is not MIMO-capable. We demonstrate how Choir improves the
throughput, latency and battery life of LP-WAN nodes. Second,
Choir improves the range of teams of low-power LP-WAN sensors
in urban environments. We demonstrate how teams of co-located
sensors can communicate together with an LP-WAN base station,
even if they are individually beyond its reception range. Choir
is fully implemented at the LP-WAN base station without requir-
ing hardware modi�cations to LP-WAN sensors. We integrate and
evaluate Choir with low-power embedded sensing hardware and
demonstrate end-to-end performance in a large neighborhood sur-
rounding Carnegie Mellon University (CMU) campus.

At the heart of our approach to disentangle collisions at the
base station is a strategy that exploits hardware imperfections of
low-cost components in LP-WAN radios. Speci�cally, the signals
transmitted by such hardware produces o�sets in time, frequency,
and phase. Choir proposes algorithms that use these o�sets to sepa-
rate and decode collisions from users. It achieves this by leveraging
properties of the physical layer of LoRaWAN LP-WAN radios that
transmits signals in the form of chirps, i.e., signals whose frequency
varies linearly in time. We show how hardware o�sets, whether in
time, frequency or phase manifest as distinct aggregate frequency
shifts in chirps from each transmitter. We then �lter the received
signal using these shifts to separate signals from di�erent transmit-
ters. Choir then overcomes multiple challenges to decode useful
data packets from each �ltered signal component. First, it develops
novel algorithms to separate bits of data from hardware o�sets, both
of which are embedded in frequency shifts of chirps. Second, it uses
the precise values of the o�sets of the separated signals to identify
which bits of decoded data belongs to which client to reconstruct
the packet over time. Given that Choir disentangles sensors in the
time and frequency domain as opposed to the antenna domain (i.e.,
MIMO), it can be implemented on a single-antenna base station. As
a result, Choir directly improves the throughput of dense urban
LP-WANs by decoding transmissions from multiple nodes simulta-
neously with minimal coordination overhead. It further enhances
both latency and battery life of LP-WAN clients by removing the
need for retransmissions.

Beyond dealing with density, we show how hardware o�sets
between transmissions can boost the range of LP-WANs. Speci�-
cally, we consider transmissions from teams of LP-WAN sensors
that are individually beyond the range of the base stations, but
are physically co-located. Such sensors are likely to record similar
readings resulting in overlapping values for the most-signi�cant
bits of sensed data. Choir devises a mechanism for such overlap-
ping most-signi�cant bits to be recovered to help obtain a coarse
view of sensed data in a given area. We propose a simple modi�-
cation of the LP-WAN PHY that allows overlapping chunks of bits
collected by sensor nodes to be transmitted concurrently as overlap-
ping chunks of signals that are received at higher aggregate power.
Choir develops a novel algorithm to achieve this in software with-
out requiring expensive hardware modi�cations at the LP-WAN
clients to tightly synchronize their transmissions. We generalize
our approach to build a system that provides a coarse-grained view

Base Station:
S469AM-915 Antenna
USRP N210
ZX60-0916LN+ LNA
Power Supply
Jacksonlab Fury Clock

LoRaWan Node:
SX1276MB1LAS Client
NUCLEO-L152RE Platform

Figure 1: LP-WAN Setup: Depicts Choir’s USRP N210 based LP-WAN base
station and commodity LoRaWAN clients.

of sensors further away, while improving throughput and providing
a �ne-grained view of sensors near the base station. We further
discuss how the concepts in this paper apply to emerging and future
LP-WAN standards such as NB-IoT [34] and SIGFOX [31].

We implement Choir on a testbed of LoRaWAN LP-WAN radios.
We deploy LP-WAN base stations (see Fig. 1) on the top �oors
of buildings covering a large area spanning 10 square kilometers
around CMU campus. We emulate LP-WAN base stations using
USRP N210 software radios. Our commodity LP-WAN client devices
transmit measured temperature and humidity data, and are spread
across CMU campus. We compare our system with a baseline that
employs uplink MU-MIMO [38] as well as di�erent modes of the
standard LoRaWAN PHY and MAC [28]. Our results reveal the
following:

• Density: For 30 nodes placed over 100 randomly chosen
locations, with as many as 10 nodes transmitting data at any
given time, Choir achieves a throughput gain of 6.84 ⇥ over
standard LoRaWAN. It further achieves a 4.88 ⇥ reduction
in latency and 4.54 ⇥ reduction in number of transmissions
per decoded data packet.

• Range: For a team of up to 30 Choir nodes integrated with
temperature sensors across four �oors in a large building,
we retrieve sensor data from distances as much as 2.65 km
with loss of resolution of 13.2 %, despite the fact that each
sensor can be heard individually no further than 1 km away
(a gain of 2.65 ⇥).

Contributions: This paper presents Choir, a novel system that
exploits the natural hardware o�sets of LP-WAN clients to both
disentangle and decode their collided transmissions using a single-
antenna LP-WAN base station. Choir allows teams of LP-WAN
sensor nodes transmitting correlated data to reach an LP-WAN base
station, despite being individually beyond communication range.
Our system is fully implemented and deployed on a large outdoor
testbed spanning 10 square kilometers.

2 RELATEDWORK
Low-Power Wide-Area Networks: Private enterprises such as
LoRaWAN [28] and SigFox [37] have developed LP-WAN chips that
use extremely narrow bands of unlicensed spectrum for diverse set
of applications. 3GPP has also developed two LP-WAN standards
for cellular base stations, namely, LTE-M [25] and NB-IOT [34].
Common to all LP-WAN technologies is the limited power budget
and bandwidth, hardware simplicity and low cost of client nodes.
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Multiple deployment e�orts recognize the challenge of limited
range of LP-WAN radios in urban environments [2, 8] as well as
collisions in large-scale settings [2, 9, 11, 24].

LoRaWAN in particular uses chirp spread spectrum (CSS) for
transmitting data due to its low power requirements, hardware sim-
plicity, and performance under multipath and narrowband interfer-
ence. However, we emphasize that LoRaWAN, like other CSS-based
technologies [14, 42, 46] in radar or 802.15.4a divides chirps in time
using TDMA, CSMA or Aloha and does not decode collisions [8],
unlike say CDMA1 [43]. This is because decoupling data from col-
lisions of chirps in the presence of frequency and timing o�sets
is fundamentally challenging (we elaborate on these challenges
and our solutions to overcome them in Sec. 4). Indeed, there has
been much work on collision avoidance and MAC protocols [14, 46]
for CSS for precisely this reason. However, our approach aims to
directly leverage hardware o�sets to decode CSS collided transmis-
sions, as well as extend communication range.
Decoding Collisions in Wireless Networks: There has been
much past work on decoding collisions in wireless networks, par-
ticularly for cellular networks [15, 47], RFIDs [44] and wireless
LANs [7, 18, 40]. Much of this work relies on using multiple an-
tennas on wireless nodes be it MU-MIMO on the downlink [6],
uplink [40] or fully distributed MIMO [33]. Unfortunately, the max-
imum gain of these systems is limited by the number of antennas
on the base station (at best 3-4 today due to limits on size and
cost [16, 27, 39]). However, our system is able to separate collisions
even with a single-antenna base station.

Our proposed research perhaps is most closely related to systems
that were designed to decouple collisions across time and frequency.
ZigZag [19] decodes multiple collisions by intelligently separating
them in time. It requires multiple collisions from the same end-user
devices to decode data, unlike our work which strives to separate
data from a single collision. Recent work has also proposed the use
of carrier frequency o�set to count transmissions from active RFID
tags [1]. They require the frequency o�sets to be much larger than
bandwidth to separate simultaneous transmissions from di�erent
narrow-band users, which, while true for active RFIDs, does not
hold for LP-WAN radios [28]. In contrast to these systems, our
approach separates even a single collision of transmissions from
multiple nodes that overlap in both time and frequency. It achieves
this by exploiting both timing and frequency o�sets between the
nodes as well as properties of the LP-WAN PHY-layer.
Wide-Area Wireless Sensor Networks: Several proposals have
been made for better MAC protocols to avoid collisions in sensor
networks, including improved TDMA based methods [22, 36] and
collision-recovery methods [19, 23, 45]. Such schemes utilize either
customized hardware [19, 23] or improved sensor coordination [36,
45] to recover from or avoid collisions.

Our work is also related to systems that exploit correlation of
sensor data to improve performance. Glossy [17] develops hardware
and software at sensors to improve time-synchronization and ex-
ploit constructive interference of sensed data from di�erent 802.15.4
transmitters. Past research has also proposed modi�cations to the
PHY-layer protocols such as the use of compressed sensing [30]
1A LoRaWAN base station can decode collisions occurring between nodes that utilize
di�erent data rates (there are only 4 di�erent data rates in the uplink in the USA).
However, it can not handle collisions occurring on a given data rate.

(a)                                   (b)

Figure 2: LP-WAN PHY: LoRaWAN uses chirps to depict transmitted bits.

to exploit correlation of sensor data and improve performance.
Our work, while building on these systems, di�ers in that it seeks
to exploit correlation of sensor data without requiring hardware
modi�cation to LP-WAN sensor radios or the LP-WAN PHY layer.
In doing so, it achieves the gain of exploiting correlated sensor
data without introducing complexity in PHY-layer hardware and
protocols.

3 A PRIMER ON LP-WANS
This section provides a brief primer on the LoRaWAN LP-WAN
protocol. LoRaWANs operate in the unlicensed 900 MHz band with
bandwidths of up to 500 kHz. LoRaWAN base stations transmit at
powers up to 1 Watt while clients transmit few milliwatts at best.
The PHY and MAC layers are designed with this power asymmetry
in mind.
Physical Layer: The LP-WAN PHY encodes information in the
form of multiple “chirps” that are signals whose frequency varies
linearly in time over the available bandwidth. Fig. 2(a)-(b) illustrate
two such chirps depicting bits “0” and “1” in the time domain and
the corresponding spectrogram. Di�erent bits are encoded by initi-
ating the chirps at di�erent frequencies, for instance “0” at �62.5
kHz and “1” at 0 kHz over a bandwidth of 125 kHz. LoRaWAN
uses chirps, as they occupy limited instantaneous bandwidth and
therefore consume very little power in communicating bits over
long distances. Further, they are robust to narrowband interferers.
Rate Adaptation: While Fig 2 encodes one bit per chirp, Lo-
RaWAN supports larger data rates by increasing the number of
possible starting frequencies of a chirp to pack in more bits. For
instance, a transmission with 3-bits per chirp would choose from
one of 23 possible starting frequencies. The LoRaWAN standard
allows as many as 12-bits encoded in a chirp. LoRaWAN base sta-
tions program each clients to operate on a suitable data rate based
on its received signal-quality.
MACLayer: As described in Sec. 2, the LoRaWANMAC is designed
to avoid collisions and divide air time between competing users.
LoRaWAN typically employs two modes to do this for low-power
nodes [28]: (1) An Aloha MAC that allows nodes to transmit as
soon as they wake up and apply random exponential back-o�, when
faced with a collision. While simple, Aloha scales poorly in dense
networks due to frequent collisions [32]. (2) A TDMA scheduler
where the base station allots predetermined slots to clients. The
choice of scheme depends on the application (e.g. whether sensed
data is bursty) and client power constraints.
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(a)                           (b)

(c)                           (d)

Figure 3: Decoding collisions: Spectrogram of two collided chirps, and the
corresponding Fourier transform peaks.

4 CHOIR IN A NUTSHELL
In this section, we provide a brief overview of Choir’s core algo-
rithm. At a high level, our goal is to disentangle wireless signal
measurements from colliding commodity LP-WAN transmitters
with a single-antenna LP-WAN base station.

The core concepts behind Choir are best understood with an
example. Consider two LP-WAN radios, both transmitting the same
sequence of n bits to an LP-WAN base station. We assume these n
bits are encoded in a single chirp as in Fig. 2 by each transmitter.
Suppose the two transmissions are aligned perfectly in time, induc-
ing a collision between their chirps. Given that the two LP-WAN
radios encode their bits in the exact same way, the resulting chirps
would be identical. At �rst blush, one would assume that these
chirps would combine either constructively or destructively upon
colliding. This would be problematic for two reasons: First, the
combined signal would be indistinguishable from a single trans-
mitter with higher power, rendering the two chirps from the two
transmitters impossible to be separated. Second, if the signals add
up destructively, one would not be able to recover either of their
transmissions.

Choir recognizes that in practice, however, the two signals can be
separated by exploiting the natural hardware imperfections of the
two radios. Speci�cally, signals from the two transmitters are likely
to experience a small frequency o�set, due to a di�erence in the
frequency of their oscillators. This would result in the two chirps
being slightly o�set in frequency. Fig. 3 depicts the spectrogram of
two collided chirps from two commodity LP-WAN radios gathered
by a software radio. Note that one can observe two distinct chirps
that are shifted in frequency, despite the fact that they both convey
the same information. At this point, we can separate the two chirps
using a simple process: (1) We �rst multiply the received signal by
a down-chirp2 that would result in two tones at two frequencies.
(2) We then apply a Fourier transform of size 2n, which results in
two peaks corresponding to the two transmissions. In Fig. 3(c), we
observe two peaks at two distinct bins, corresponding to the two
transmissions. One can then repeat this process for subsequent
received chirps to disentangle transmissions from the two users.

While the above approach succeeds in separating the two trans-
mitters, it fails to decode useful data. To see why, recall that Lo-
RaWAN encodes data by shifting chirps in frequency. Speci�cally,
2A down-chirp, i.e., a chirp whose frequency decreases with time, is merely the complex
conjugate of the corresponding up-chirp that was used for CSS modulation.

n bits are encoded as 2n distinct chirps, each starting at a unique
frequency. Consequently, the location of the peak corresponding
to each transmitter is given by the sum of this frequency o�set
and the underlying data transmitted by the user. To illustrate the
problem, observe that Fig. 3, has two peaks at bins 207 and 257.
Such a collision could both be interpreted as identical data and a
frequency o�set of 50 bins, or zero frequency o�set and encoded
data di�ering by 50 bins, or any of the many options in between.

Choir overcomes this problem by relying on the fact that while
frequency o�set remains constant over a packet between chirps,
data does not. To see how this is useful, consider two packets
consisting of three symbols (i.e., three chirps) that collide from two
users. We assume that the �rst symbol is a known preamble shared
by all users, while the second and third carry useful data. As a
result, peak locations from the �rst symbol can be used to estimate
the frequency o�set of the �rst and second user respectively. These
frequency o�sets can now be subtracted from peaks in subsequent
users to capture data corresponding to the �rst and second user
respectively.

An important question still remains – How do we know who
is the �rst and second user in each data symbol? Knowing this is
necessary to map the correct frequency o�set to the correct peak.
More importantly, it is required to avoid mixing up the data bits of
the two transmitters when reporting the decoded data.

Our solution to resolve this challenge relies on the fact that data
bits occur on integer peak locations in the Fourier transform, while
frequency o�sets need not. Put di�erently, frequency o�set is a
physical phenomenon and does not need to be a perfect multiple
of the size of a Fourier transform bin. As a result, the peak loca-
tions can be an arbitrary fraction of a Fourier transform bin. To
illustrate, suppose we observe two data symbols where the peaks
are at 207.2, 257.6 for the �rst symbol and 81.6, 200.2 for the second
symbol. While the integer parts of these peak locations depend on
both data and frequency o�set, the fractional part depends only on
frequency o�set, which remains consistent across symbols. Conse-
quently 207.2 and 200.2 must map to one user while 257.6 and 81.6
belong to the other. Choir therefore can use the fractional part of
peak locations to distinguish between peaks corresponding to the
di�erent users in each symbol, prior to decoding their data bits.

The rest of this paper focuses on achieving three important
objectives to realize the above design:

• Separating Multiple Users: First, we must estimate frequency
o�sets accurately to within a fraction of each bin of the
Fourier transform. In doing so, we must account for and
actively leverage leakage between peaks that is produced
due to the frequency o�sets that are non-integer multiples of
a Fourier transform bin. We then use these frequency o�sets
to separate collisions of multiple users. Sec. 5 describes our
approach in greater detail.

• Tracking Users using Time and Frequency O�sets: While our
discussion so far assumes that signals collide in a perfectly
synchronized manner in time, collisions can occur with ar-
bitrary timing o�sets in practice. We overcome this by ex-
ploiting the duality between time and frequency in chirps:
an o�set in time manifests as an equivalent o�set in fre-
quency. Our approach in Sec. 6 describes how we exploit this
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property to account for timing o�sets. We also explain how
tracking timing o�set, frequency o�set as well as channels
across symbols help us identify which user is which between
collisions.

• Exploiting Correlated Data: Our discussion thus far has fo-
cused on decoding uncorrelated data bits transmitted by two
users. However, sensor data is often correlated resulting in
nodes transmitting identical chunks of bits. In Sec. 7 we de-
sign algorithms to recognize and exploit such scenarios to
boost the range of sensors that are otherwise beyond the
communication range of the base station.

5 SEPARATING COLLISIONS
This section describes how Choir can separate transmissions from
multiple client nodes that utilize the same spreading factor3 (we
discuss the case of di�erent spreading factors in the concluding
remarks of Sec. 5.2) and whose transmissions are synchronized
perfectly in time (we discuss the e�ect of timing o�set in Sec. 6) .
As explained earlier, our approach relies on accurately estimating
and exploiting the frequency o�set of individual clients. However,
estimating frequency o�sets accurately in the presence of noise
remains a challenge. To illustrate the need for this, we revisit our
example from Sec. 4. As shown in Fig. 3(c), signals from the two
transmitters manifest as two distinct peaks shifted owing to fre-
quency o�set. At this point, we can directly read-o� the locations
of the peaks to estimate the respective frequency o�set of the two
nodes. Further, we can �lter out the signals around each of the two
peaks to obtain the signals from the respective transmitters.

While the above approach is simple, it is prone to inaccuracies
and vulnerable to interference. To see why, recall that the estimate
of frequency o�sets from peak locations is only accurate to within
one FFT bin. However, frequency o�set is a physical phenomenon
that need not be an integer multiple of an FFT bin. This means that
the above method loses any information pertaining to frequency
o�set that is a fraction of one FFT bin. Failing to account for frac-
tional frequency o�sets has two important implications: (1) First,
as explained in Sec. 4, the fractional part of the frequency o�set
is extremely useful in identifying which user is which across sym-
bols; without this, the data corresponding to a single user cannot
be tracked over time. (2) Second and more fundamentally, having
an inaccurate estimate of frequency o�set leads to an inaccurate
estimate of wireless channels and thus, of the decoded data. Specif-
ically, it causes peaks corresponding to one transmitter to “leak”
into others, causing interference. Indeed, this leakage is particularly
acute when one transmitter is signi�cantly closer to the receiver
compared to the other. This causes one peak to be buried due to
noise stemming from another (the so-called near-far e�ect [20]).
Below, we detail our solution to both of these challenges to estimate
frequency o�sets as well as separate and decode data.

5.1 Measuring Accurate Frequency O�set
Our solution to accurately measure the fractional part of the fre-
quency o�set is based on exploiting the leakage of one peak to the

3The spreading factor denotes the number of bits that can be encoded per symbol. Each
spreading factor maps to a particular chirp used for CSS modulation and demodulation
and it determines the data rate.

other. In order to illustrate this with an example, let us revisit the
scenario in Fig. 3 where the two transmitters are separated by a
fractional value of frequency o�set corresponding to 50.4 bins. The
�gure however depicts two clear peaks separated by exactly 50 bins.
Indeed the remaining separation of “0.4” is encoded in the smaller
peaks that leak around the surrounding bins. To better understand
and analyze this leakage, let us perform a Fourier transform of
the collision between the two transmitters over a wider window
(10⇥ larger) by zero-padding the signal. Fig. 3(d) plots the resulting
Fourier transform output. Observe that we now have “sinc” func-
tions centered around each peak, a property that stems from the
Nyquist sampling theorem. We now observe that the smaller peaks
around the main two peaks are produced due to the side-lobes of
these sinc functions. Notice that these side lobes are periodic, at
an interval of exactly one FFT bin. Indeed, if the two main peaks
were apart by an integer multiple, the zeros of the side lobes would
overlap perfectly with the main peaks, ensuring zero leakage. In
contrast, a fractional separation between peaks causes the side lobes
of one peak to interfere with the main lobe of another peak, distort-
ing its shape and location. Consequently, identifying the location
of the maxima of the two sinc main peaks provides only a coarse
estimate of the frequency o�set. In the above example, we observe
the two peaks separated by 50.3 bins – an improvement over the
previous estimate of “50” bins, but a value that is still erroneous.

To obtain a more �ne-grained estimate of the frequency o�set,
we explicitly model the leakage of the sinc function of one client’s
signal into the other. First, we estimate the wireless channels of
each transmitter, given our coarse estimate of its frequency o�set.
We then re-construct the received signal using the obtained wireless
channels and our frequency o�sets. We subtract the reconstructed
wireless signal from the actual one to obtain the residual signal. The
power of this residual function is an estimate of the goodness of
our current frequency o�set estimates. We then jitter our estimates
of frequency o�set and repeat the process, until the power of the
residual is minimized. We show that the power of residuals across
frequency o�set values is locally convex, allowing us to search over
the space of frequency o�sets e�ciently.
Analysis: We now illustrate our approach to mathematically esti-
mate frequency o�sets from the collision of two transmitters send-
ing an identical symbol, e.g. a preamble sequence. Let h1 and h2
denote the wireless channels and f1 and f2 denote the frequency o�-
sets of two transmitters whose chirps collide in time. Let C denote
the chirp in the preamble transmitted by both clients that spans a
bandwidth of B. Then, we can write the time domain representation
of the collision as:

y(t) = h1ej2� f1tC + h2ej2� f2tC ) yC�1 = h1ej2� f1t + h2ej2� f2t , (1)

where C�1 denotes the down-chirp corresponding to the up-chirp
C. Ideally, the frequency domain representation of the above signal
(obtained via FFT), denoted F (yC�1), should result in two peaks at
frequencies f1 and f2. However, in practice f1 and f2 are unlikely to
be at integer boundaries of the FFT bin, as explained earlier. As a
result, the peaks of the Fourier transform will likely be close, but
not equal, to f1 and f2. Let us denote the observed peak locations
as f̃1 and f̃2, respectively. One can then estimate the approximate
wireless channels h̃1 and h̃2 that best �t Eqn. 1. Fortunately, given
that Eqn. 1 is linear, this can be obtained using a least-squares closed
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Figure 4: Residual Function: Depicts the residual function for a represen-
tative trace with two colliding clients. The function is locally convex.

form as shown below:

[h̃1 h̃2] = (ETE)�1ETyC�1 ,where, E = [ej2� f̃1t ej2� f̃2t ] (2)

We can then estimate the goodness of �t of the estimated fre-
quency o�set from the observed values by capturing how well the
above channels �t the received signal. Speci�cally, we measure the
di�erence between the received signal and the reconstructed signal
based on f̃1, f̃2 as

R(f̃1, f̃2) = | |yC�1 � (h̃1ej2� f̃1t + h̃2ej2� f̃2t )| |2 (3)

Clearly, from Eqn. 1 and Eqn. 3 above, the residual R(f̃1, f̃2) will
be minimized when f̃1 = f1 and f̃2 = f2. Our solution therefore
re-estimates the above residual for frequency o�sets in the neigh-
borhood of f̃1 and f̃2, and identi�es the o�sets at which the residual
is minimized. Namely, we compute the updated frequency o�sets
f̄1 and f̄2 via

(f̄1, f̄2) = arg min
(f12(f̃1��,f̃1+�),f22(f̃1��,f̃2+�))

R(f1, f2) (4)

where � is the bin-size of the FFT. Repeating the above steps exhaus-
tively over all frequency o�sets can be computationally expensive.
However, in practice, the residual function R(f1, f2) is locally convex,
allowing for more e�cient search strategies. Intuitively, the local
convexity stems from the fact that wireless channels themselves
are physical phenomena and therefore tend to be continuous and
di�erentiable. To illustrate, Fig. 4 plots a representative example of
the residual function for a collision of two LoRaWAN transmitters
from our experiments in Sec. 9. This allows us to apply stochas-
tic gradient-descent algorithms [29] on the residual function with
randomly chosen initial points that are likely to converge to the
global minimum. Algm. 1 provides the pseudo-code of our approach.
We note that while the discussion above focuses on two colliding
transmitters, it can be readily generalized to multiple collisions.

5.2 Accounting for the Near-Far E�ect
While the previous discussion assumes that one can obtain a coarse
estimate of the frequency o�set by detecting peaks in the Fourier
transform, this is often not the case. Consider teams of colliding
clients where some are physically closer to the base station com-
pared to others. The nearby users will have clear peaks that are
readily discernible from the Fourier transform. The further away
users, however, may have signi�cantly weaker peaks that are com-
parable to the side-lobes of the nearby transmitters. Indeed, it is

quite possible that transmissions from users are missed altogether.
This is essentially a near-far problem where strong receptions from
nearby transmitters overwhelm weaker transmitters [20].

At �rst blush, one might consider directly employing successive
interference cancellation [21] as a solution to overcome this prob-
lem. This method estimates and extracts signals of the strongest
transmitter from the collision, and repeats this process for the sec-
ond strongest transmitter, and so on, until no transmitters remain.
However, this approach fails to eliminate leakage between a set of
transmitters of similar power levels. In contrast, our approach to
model and eliminate leakage as in Sec. 5.1 above gets rid of inter-
ference between transmitters, but is susceptible to missing weak
clients altogether.

Our approach therefore strives to strike a balance between mod-
eling leakage and recovering weak clients to get the best of both
worlds. We rely on the fact that while interference from strong
transmitters to weaker ones (and to each other) is likely to be high,
the opposite is unlikely to be true. This leads us to apply successive
interference cancellation in phases, as opposed to one transmitter
at a time. Speci�cally, our approach �rst measures frequency o�set
and channels of all the strong transmitters whose peaks are dis-
cernible simultaneously, as explained in Sec. 5.1 above. We then
subtract the signals of these transmitters from our received signal
to eliminate interference to any weaker clients whose peaks were
overwhelmed by these transmitters.

We note that our approach, like traditional outdoor networks, is
always limited by the resolution of the analog-to-digital converter.
As a result, extremely weak transmitters are likely to be missed
if they are not registered by the analog components. We discuss
extending communication range for such transmitters in Sec. 7.

Decoding Data from Collisions: Next, we note that once the
wireless channels and frequency o�sets are estimated, decoding
data is extremely simple. Speci�cally, consider collisions of two
transmitters synchronized in time whose data as well as preamble
symbols collide. We �rst estimate the peak locations, i.e. frequency
o�sets, f̃1 and f̃2 averaged across each symbol of the preamble. We
then repeat this process for the data symbol, where peak locations
are given by d1 + f̃1 and d2 + f̃2, a sum of both the frequency o�sets
and the data (d1, d2). One can then subtract the known frequency
o�set from these values to obtain the data. Further, one can use the
fractional part of the frequency o�set (see Sec. 4) to infer which of
these data bits maps to which user across symbols. In Sec. 6 below,
we elaborate how timing and phase o�sets can further be used to
achieve this mapping accurately.

Finally, �ve additional points are worth noting: (1) Our system re-
lies on frequency o�sets of LP-WAN radios to remain stable within
a packet (⇠ 10 ms) but diverse across clients, owing to hardware
di�erences. Our results in Sec. 9.1 show that this is indeed the case
across a large number of LoRaWAN boards. While LoRaWAN is
the only available LP-WAN platform in the U.S. today, we expect
competing technologies to have similar characteristics, given that
they use similar inexpensive components [31]. (2) While the above
approach is tied to LoRaWAN’s chirp-based PHY, the notion of
using frequency o�sets to separate transmissions broadly applies
to other LP-WAN technologies such as NB-IoT [34] and SigFox [31].
Indeed, given that these technologies use an ultra-narrowband PHY,
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we expect their bandwidth to be far lower than frequency o�set
that allows �ltering their transmissions based on hardware o�sets
signi�cantly simpler. It is worth noting, however, that timing o�sets
do no necessarily map to frequency o�sets in these technologies,
thus Choir would have to be modi�ed in accordance. (3) While our
system allows collisions from multiple transmitters to be decoded,
its gains are not unbounded. Gains are limited by noise and the
possibility of overlapping frequency o�sets that increases with col-
lisions from a larger number of transmitters. Our results in Sec. 9.2
measures the scaling limits of Choir. (4) The current implementa-
tion of LoRaWAN allows simultaneous decoding of collided data
packets that were transmitted across di�erent orthogonal spreading
factors. Such a feature is made possible due to the orthogonality
of the chirps associated with the di�erent spreading factors. In
particular, a packet transmitted at a given spreading factor can only
be demodulated with a unique chirp associated with this spreading
factor. This form of diversity improves the overall data rate as it
allows parallel decoding of collided data packets. Choir considers
the extreme case of a congested network utilizing a single spreading
factor, and a single antenna. However, Choir can indeed bene�t
from i) a base station utilizing multiple antennas (see Sec. 9.5), or ii)
a network employing di�erent spreading factors. In particular, con-
sider 5 LP-WAN sensors simultaneously transmitting data packets
with spreading factors 7, 7, 8, 8, and 9, respectively. The base station
demodulates the received data stream using the unique chirps asso-
ciated with each spreading factor. In particular, let C7, C8, and C9
be the chirps associated with spreading factors 7, 8, and 9 respec-
tively, and let y denote the received signal. Consider y7 = yC�1

7 ,
y8 = yC�1

8 , and y9 = yC�1
9 . By the orthogonality of C7, C8, and C9,

it is clear that y7, y8, and y9 would only contain the part of the data
transmitted with spreading factors 7, 8, and 9, respectively4. At this
point, the base station can run Choir to the three independent data
streams y7, y8, and y9 to disentangle possible collisions occurring at
each of these di�erent spreading factors. Clearly, the orthogonality
of the chirps resulting from utilizing di�erent spreading factors
alleviates the collisions, and avoids the complexity and scalability
issues associated with having all collisions occurring on a single
spreading factor. (5) The objective of Choir is to handle unintended
collisions among LoRaWAN nodes. As for potential collisions be-
tween LoRa and other technologies, we rely on the fact that LoRa
utilizes CSS as a form of spread spectrum that makes it robust to
cross-technology interference similar to CDMA systems.

6 MITIGATING TIMING OFFSETS
Our discussion so far assumes that clients transmit their packets
coherently in time. In this section, we describe our approach to
estimate and actively exploit the natural timing o�sets between
transmissions. We then use timing and frequency o�set estimates,
along with wireless channels to map which bits belong to which
users within a packet.

6.1 Exploiting Timing O�sets
We exploit timing o�sets by leveraging the properties of the chirp
spread spectrum used by LoRaWAN radios. In particular, we use

4This is similar to how LoRaWAN currently demodulates collided data transmitted
with multiple spreading factors.

Algorithm 1 Decoding collisions using Choir
PreambleLen = `, SpreadingFactor = SF
SymSize = 2SF
FFTLen = 10 ⇥ SymSize
while SymCount < ` do

DemodSym = Symbols(SymCount). ⇤ DownChirp
n = N��P����(FFT (DemodSym, FFTLen))
[f̃1, . . . , f̃n] = F���P����(FFT (DemodSym, FFTLen))
[h̃1, . . . , h̃n] = L����S�����([f̃1, . . . , f̃n])
[f 1, . . . , f n] = argmin⇣

f12
⇣
f̃1��,f̃1+�

⌘
,. . .,fn2

⇣
f̃n��,f̃n+�

⌘⌘ R([f̃1, . . . , f̃n])
SymCount = SymCount + 1

end while

the fact that chirps, by de�nition, are signals whose frequency in-
creases linearly with time. This means that any o�set in time of
a received signal chirp can be equivalently interpreted as a corre-
sponding o�set in frequency. Given that our approach corrects for
and exploits frequency o�sets, it remains immune to timing o�sets
as well.
Analysis. To demonstrate why this is the case, let us consider
chirps (symbols) from two di�erent clients that collide in time. Let
us assume the two symbols in Eqn. 1 are o� by a shift in time of �t1
and �t2, respectively. Then a shift in time of �t is akin to a shift in
frequency of B�t/T . This means that, in the presence of frequency
o�set, the received wireless signal can be re-written as:

y(t) = h1e
j2�

⇣
f1+B

�t1
T

⌘
t
C + h2e

j2�
⇣
f2+B

�t2
T

⌘
t
C (5)

In other words, the timing o�set is simply absorbed into our fre-
quency o�set estimates in Sec. 5. More importantly, the timing
o�set between any two transmitters, just like the frequency o�set,
remains consistent across symbols over the duration of a packet
(we validate this in Sec. 9.1).
Dealing with Inter-Symbol Interference. While the approach
described above accurately accounts for timing o�set within a
symbol, it fails to capture the e�ect of inter-symbol interference. To
illustrate, consider Fig. 5 where transmissions of two users collide,
each sending di�erent data symbols and each encoded by a chirp. In
this case, it is quite possible that over the duration T of a chirp, one
can observe as many as four distinct symbols colliding as shown.
Failure to account for these collisions would lead to access points
dropping or re-ordering symbols between users.

Our solution to account for inter-symbol interference explicitly
tracks the peaks that result from this interference. Speci�cally,
a collision of two shifted symbols produces at most four peaks
in the Fourier Transform – two belonging to the �rst client and
two to the second. Fig. 5 shows such a Fourier transform for two
adjacent time windows, each of length T . One can then extract the
locations of these peaks to obtain four distinct data values per time
window. However, given that two symbols participate in both the
�rst and second collision, the two collisions are guaranteed to share
two common data values (see Fig. 5). Indeed, any pair of adjacent
collisions will share at least two common data values. By ensuring
that any such common values are reported only once (for e.g., the
�rst time they appear), one can eliminate half of the observed peaks.
This enables the data from all transmitters to be correctly reported
in-sequence, despite inter-symbol interference.



SIGCOMM’2017, August 2017, Los Angeles, California USA R. Eletreby, D. Zhang, S. Kumar, and O. Yağan

User 1

User 2

f1 f1f2 f2 ff

|f| |f|

Figure 5: Inter-Symbol Interference: Spectrogram of two collided chirps,
and the corresponding Fourier transform peaks.

6.2 Mapping Symbols to Users within a Packet
In this section, we use both time and frequency o�sets to map which
symbols (i.e., chirps) correspond to which user within a packet
(See Sec. 5.2) along with one other metric – wireless channels.
Like hardware o�sets, wireless channels are expected to remain
consistent for a given client over a packet and vary between clients.
For instance, in Fig. 5, we observe that peaks of the same user over
two symbols are not only identical in frequency o�set, but also in
relative height. This means that channel magnitude and phase, after
correcting for any phase o�sets between symbols introduced by
frequency o�sets, serves as a feature to identify users. This allows
us to build a semi-supervised clustering model (we use the HMRF-
based approach in [10]) using the fractional part of peak location,
channel magnitude, and phase. We give the clustering algorithm
known prior relationships, e.g. multiple peaks in the same symbol
map to distinct users. We then run the clustering algorithm to
recover the sequence of bits corresponding to each user.

7 EXPLOITING CORRELATED
TRANSMISSIONS

So far, we have explained our approach to disentangle and decode
colliding transmissions from clients who are all within communi-
cation range of the base station. We now argue how this approach
also provides a unique opportunity to retrieve data from clients
beyond communication range. The data transmitted by an LP-WAN
sensor can not be decoded by the base station if the received SINR
falls below a particular threshold. Indeed, a message modulated by
CSS can be recovered even if it is deeply buried in noise, but there
is a particular minimum SINR below which a transmitted message
will not even be detected by the base station.

Although one would expect that all LP-WAN sensors were ini-
tially deployed in the vicinity of an LP-WAN base station (and thus
should always be reachable), their transmissions may not reach the
base station because of the randomness of the wireless channel,
interference with other technologies sharing the same bandwidth,
or a change in the surrounding urban environment itself.

While individual sensors may be beyond communication range,
collisions of teams of such sensors can be detected by base stations.
One can then decode these collisions to recover bits transmitted by
these sensors that overlap. Indeed, given that sensors geographically
close to one another are likely to have several overlapping bits, one
can use this information to obtain a coarse view of sensor data in a
given geographical region.

- Test Locations
- Base Locations

3.4 km

3.
2 

km

- Sensors

95
 m

40 m

(a)   (b)

Figure 6: Testbed: (a) Sensor testbed spans four �oors of a large university
building; �oor plan of one such �oor is shown with sensor locations marked
by dots. (b) Anonymizedmap of the neighborhood surrounding CMU campus
with testbed spanning 10 square kilometers.

The rest of this section addresses various challenges in achiev-
ing such a design. First, how do we ensure that teams of sensors
transmit packets that are synchronized in time? Second, how do
we detect and decode their collisions, despite the fact that individ-
ual sensors are beyond communication range? Finally, how do we
choose which sensors transmit concurrently?

7.1 Coordinating Transmissions from Sensor
Teams

Consider a team of sensors that are individually beyond commu-
nication range but would like to transmit identical data packets.
Indeed, gathering a large team of sensors would cause the overall
received power to add up, increasing signal power. However, to do
so one would have to ensure that the transmissions are synchro-
nized in time so that identical symbols across transmitters add up
to reinforce received power.
Time Synchronization. We rely on the fact that Choir is immune
to timing o�set. Speci�cally, we �rst make the base station transmit
a beacon packet that solicits a response from all sensors in a given
geographic boundary. Given that the base station a�ords a much
higher transmit power (and superior antennas) as compared to the
client, its signal will be received by all these sensors, even if their
signals are individually too weak to reach the base station. The
sensors then respond concurrently with packets in the next time slot
(i.e. after a �xed pre-agreed duration of time). However, in practice,
such synchronization is never perfect and packets between di�erent
sensors will continue to have a small timing o�set. Fortunately,
given the relatively long symbol durations of LP-WAN (⇠ 10 ms),
this timing o�set is smaller than one symbol (see Sec. 9.1-9.3). As
described in Sec. 6, such timing o�sets can be interpreted as a
corresponding frequency o�set between the di�erent transmitters.
Recall that Choir exploits such frequency o�sets to obtain distinct
peaks corresponding to each client in any collision (as in Fig. 3).
As a result, the coarse time-synchronization provided by the base
station’s beacon packet is su�cient to observe such peaks, at least
for sensors above the noise-�oor at the base station.
Whom do we coordinate? Now that we have a mechanism to co-
ordinate sensors, how dowe decide whom to coordinate or schedule
at any given time. In practice, making this decision is a function of
the spatial distribution of sensor data, which can vary between dif-
ferent kinds of sensors and di�erent environments. Given that sen-
sors are often deployed statically in buildings over long durations,
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one can learn the extent of these correlations over time. Indeed,
such a scheduling algorithm can estimate the signal-to-noise ratio
of clients to schedule larger groups of sensors for transmitters that
are further away. In e�ect, this leads to a system whose resolution
of measured sensor data increases for sensors that are geographi-
cally closer to the base station. Our results in Sec. 9 measures the
correlation of data from various subsets of temperature sensors
deployed across multiple buildings in CMU campus.

7.2 Decoding Beyond Communication Range
Now that we have synchronized collisions from a desired group of
clients, we next detect and decode their data.
Detecting Packets. A key challenge however is that for trans-
mitters far away from the base station, all peaks may be buried
below the noise-�oor. Indeed, this makes detecting collided packets
from teams of weak client transmitters particularly challenging.
Our solution to overcome this problem relies on the multiplicity of
clients that collide as well as preamble symbols. In particular, we
coherently add the power of the Fourier representation, given by
Eqn. 1 over sliding windows of n symbols, where n is the size of the
preamble. Despite the fact that peaks in any one symbol are below
the noise, they are unlikely to be buried in noise when averaged
over a large number of symbols. This allows us to both detect the
packet as well as obtain coarse estimates of frequency o�sets as
required by Algm 1.
Decoding Algorithm. While averaging over symbols is useful to
detect the energy of the preamble, one cannot do so for the data
given that each data symbol carries a unique sequence of bits. There-
fore, our solution to decode data relies on a maximum-likelihood
approach that exploits the knowledge of frequency o�sets. Speci�-
cally, we reconstruct di�erent possible collisions of the transmitters
given their channels and frequency o�sets (from Algm. 1) for each
possible sequence of data bits in a symbol. We then obtain the data
bits by identifying the collision that best �ts the observed data sym-
bol. Mathematically, for any received signal y, channels hi , timing
o�sets ti and frequency o�sets fi for each client i, we obtain the
data symbol d as

d = argmin
d

| |y �
’
i
hiej2� (fi+B

�ti
T +d)tC | |2 (6)

where C is the known preamble chirp that spans a bandwidth B
over time T , as before. Given that the above equation models and
exploits the presence of multiple clients in the collision, it provides
a robust method to decode data despite each individual client’s
signal being below noise.
Dealing with Collisions. Despite scheduling certain teams of
transmitters with a beacon from the base station, it is possible that
such transmissions will experience collisions with other sensors
closer to the base station. Our approach to deal with such unwar-
ranted collisions is very similar to Choir’s solution for the near-far
e�ect in Sec. 5.2. In particular, we �rst measure and subtract peaks
above the noise from the received signal until repeatedly using
Algm. 1 until no clear peaks are visible. Finally, we apply the de-
tection and decoding steps described above to extract scheduled
transmissions from clients that are below the noise �oor.

A few points are worth noting: (1) Like any other protocol, Choir
may be unable to recover collisions owing to excessive interference

or noise leading to some packets unacknowledged. In this scenario,
Choir relies on LoRaWAN’s underlying MAC protocol (ALOHA or
TDMA) to identify such loses (e.g. using acknowledgments) and
re-transmit. (2) To achieve gains, Choir requires that overlapping
chunks of bits of sensor data lead to overlapping chunks of sig-
nals that then add up in power. However, interleaving and coding
schemes may cause even data di�erent by one bit to have few coded
bits in common. Our solution to resolve this is to splice sensed data
into smaller packets that carry di�erent chunks of consecutive
sensed bits so that those with most signi�cant bits remain identical,
even after coding.

8 IMPLEMENTATION
We implement Choir on a testbed of software radio base stations
and clients built using commodity components and the LoRaWAN
chip. Our base stations are composed of USRP N210 software radios
and the WBX daughterboards operating at the 900 MHz bands5. We
use the UHD+GnuRadio library and develop our own LoRaWAN
decoder and Choir’s algorithms in C++ and MATLAB to process
signals. Unless speci�ed otherwise, our base station uses a single
S469AM-915 antenna and a ZX60-0916LN+ low noise ampli�er. We
mounted the base station on the top �oors of three tall buildings
on CMU campus. Our experiments using MU-MIMO deploy with
up to 3 base-station antennas synchronized by a Jacksonlab Fury
clock.

The clients are SX1276MB1LAS boards with an embedded Lo-
RaWAN chip that is mBed compatible. We connect these boards
with NUCLEO-L152RE boards with the mBed platform to program
the LoRaWAN chips to transmit sensor data at regular time peri-
ods. The boards operate at a center frequency of 902 MHz over a
bandwidth of 500 KHz or 125 KHz depending on the data rate the
wireless channel supports [5]. We consider three di�erent types
of data: (1) Random sequence of bits per packet that are transmit-
ted periodically at regular intervals (500 ms). (2) A speci�c known
sequence of bytes at the same period. (3) Sensor data from tem-
perature and humidity sensors placed across di�erent buildings in
the university campus, as they are observed. We leverage an open
environmental sensor board platform with an Atmel Atmega32L
microcontroller and on-board BME280 temperature and humidity
sensors.
Evaluation: We evaluate our system in a neighborhood of CMU
campus. The campus contains and is surrounded by several multi-
storey buildings, trees and hilly terrain. We make up to 30 client
nodes simultaneously transmit from as many as 100 locations across
four �oors of �ve di�erent buildings in di�erent parts of the campus
as well as in buildings, roads and pedestrian walkways outside
campus over an area spanning 10 square kilometers around the
campus. Fig. 6 plots the scale of our testbed area with the actual
roads and building shapes omitted due to anonymity. We note that
we consider concurrent transmissions from multiple distributed
client nodes to a single base station at any time.
Baseline: We compare our system with two baselines: (1)
LoRaWAN: A standard LoRaWAN baseline that uses slotted

5Note that dedicated LoRa base stations can support better ADCs than the USRP given
that the base station can a�ord to be more expensive and power hungry.
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Figure 7: Characterizing Hardware O�sets: (a)-(b) Measures the CDF of the time plus frequency o�set and only the frequency o�set as observed across 30
LoRaWAN LP-WAN nodes. (c)-(d) Measures the average and standard deviation of the root mean-squared error of the relative timing o�set and the frequency
o�set plus timing o�set within a packet.

ALOHA coupled with exponential backo� to retransmit; (2) Lo-
RaWAN+Oracle: LoRaWAN with an oracle scheduler that explicitly
schedules transmissions optimally to avoid collisions; (3) Choir: Our
System which decouples collisions using hardware o�sets. When
deployingmulti antenna stations (Sec. 9.5), we additionally compare
our system with the state-of-the-art uplink MU-MIMO [40].

9 RESULTS
9.1 Characterizing Hardware O�sets
In this experiment, we characterize the distribution of observed
frequency and timing o�sets measured across di�erent LoRaWAN
hardware. We do this to characterize the diversity of these o�sets
with real hardware, which is crucial to separate di�erent users. We
further evaluate how stable they remain across symbols over the
duration of a packet.
Method: We consider a testbed with two single-antenna LP-WAN
radio which transmit a known sequence of bits concurrently. We
synchronize transmissions using beacon packets as described in
Sec. 6.We receive collisions from these transmitters on a USRP N210
software radio emulating a single-antenna LP-WAN base station.
We repeat this experiment across multiple packets and measure the
timing and frequency o�set on a per-symbol basis as described in
Sec. 5 and 6. We further perform this experiment for di�erent pairs
of LoRaWAN radios across 30 LP-WAN radios.
Results: Fig. 7(a) and (b) plot the cumulative distribution of time
plus frequency o�set, and only the frequency o�set, respectively, as
measured across 30 nodes. We speci�cally focus on the fractional
component of frequency o�set and sub-symbol timing o�sets, given
that these are the quantities that help us separate transmissions
of users. We note that observed sub-symbol timing o�sets and
frequency o�sets in the wild across nodes are equally likely to span
the entire range of possible values. The diversity of these hardware
o�sets makes them suitable vehicles to track and separate users.

Next, we evaluate the stability of these values across symbols
and our ability to measure them accurately. We plot the average and
standard deviation of the root mean-squared percentage error of
the relative timing o�set and the frequency o�set plus timing o�set
within a packet in �g. 7(c) and (d) across a range of SNR values. As
a percentage relative to the duration of symbol and bandwidth of a
subcarrier, respectively, we observe the mean error of these o�sets
to be just 1.84 % and .04 % respectively, attesting the stability of
these values and Choir’s ability to track them accurately.

9.2 Disentangling Collisions
In this experiment, we present our results from disentangling colli-
sions from simultaneous transmissions by a large number of LP-
WAN nodes.
Method: We consider a testbed, initially with two single-antenna
LP-WAN radios which each transmit a randomly chosen sequence
of bits concurrently. We receive collisions from these transmitters
on a USRP N210 software radios emulating a single-antenna LP-
WAN base station. We repeat this experiment across a range of
locations of the two LP-WAN nodes where both nodes experience
di�erent levels of signal-to-noise ratio (SNR). We then progressively
add nodes until the network has as many as 10 nodes transmitting
concurrently at any time. We measure three metrics: (1) network
throughput of all nodes; (2) latency measured between a beacon
packet from the base station and the response packet from a client;
(3) total number of transmissions and re-transmissions required to
send one packet worth of data – a useful metric to measure energy
e�ciency, as that packet transmission is a major drain on battery
for sensors [3].
Results: Fig. 8(a)-(c) Measures the throughput, latency and num-
ber of transmissions for Choir and the LoRaWAN baseline for two
radios across di�erent SNR regimes – low (<5 dB), medium (5-
20 dB) and high (>20 dB). Nodes transmit at the fastest data rate
that can be supported by the SNR. We observe that Choir experi-
ences a 2.58⇥(2.113⇥) gain in throughput vs. LoRaWAN(+Oracle),
3.9⇥(1.5⇥) reduction in latency and 3.0549⇥(6) ⇥ reduction in num-
ber of transmissions required to send a useful packet of data over
standard LoRaWAN. Indeed, Choir’s performance remains consis-
tent across SNR regimes. Fig. 8(d)-(f) measures the throughput,
latency and number of transmissions for Choir and the LoRaWAN
baseline as the number of concurrent users colliding progressively
increases. Our system’s performance increases progressively as
the number of users increases, given the opportunities to decode
multiple users simultaneously, with 29.02⇥(6.84⇥) gain in through-
put vs. LoRaWAN(+Oracle), and 19.37⇥(4.88⇥), 4.54⇥ reduction in
latency and retransmissions respectively for 10 simultaneous users.
We observe that the scaling, while impressive is not unbounded.
This is because at such a large number of concurrent users, the
near-far e�ect coupled with collisions in hardware o�sets become
increasingly likely to limit system performance.

6Oracle has perfect performance in # transmissions
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Figure 8: Disentangling Collisions: Consider concurrent transmissions from several LP-WAN nodes across a wide range of SNRs decoded at a single-antenna
LP-WAN base station. (a)-(c) Measures the throughput, latency and number of transmissions for Choir and the LoRaWAN baseline across low (<5 dB), medium
(5-20 dB) and high (>20 dB) SNRs. (d)-(f) Measures the throughput, latency and number of transmissions for Choir and the LoRaWAN baseline across number of
users.

9.3 Extending Range of LP-WANs
In this experiment, we evaluate the promise of Choir in extending
the range of low-power networks in urban settings.
Method: We consider two or more nodes in our testbed physi-
cally separated by the USRP base station by a given distance and
transmitting identical data. In particular, we focus on locations of
nodes from which signals cannot reach the base station, even at the
minimum data rate of LoRaWAN. We then progressively increase
the number of sensors situated at randomly chosen positions in
the testbed that collide at any time. We group the observed data
based on the minimum distance between the nodes that collide and
the base station. We measure two quantities: (1) the throughput
achieved by teams of these sensors in transmitting the desired data
sequence, as the number of sensors broadcasting identical data
increase across a range of distances (and SNR) between the base
station and clients; (2) the maximum distance of the closest trans-
mitter whose collisions were decodable when it collaborates using
Choir with di�erent number of other transmitters to reach the base
station.
Results: Fig. 9(a) measures the throughput of various numbers of
LoRaWAN clients coordinating to transmit a given data sequence
to the base station. We chose these clients so that individually,
their throughput to the base station is zero even at the lowest data
rate. However, collectively their throughput increases substantially
with teams of up to 30 nodes transmitting at data rates as high as
5470 bps. This is because as larger teams of clients collide, their
signals are received at greater power, allowing these clients to
transmit at higher data rates. Next, we study the impact of this on
the range of the LP-WAN network. Fig. 9(b) plots the maximum
of the distance of the closest transmitter to a base station, as it
collaborates with teams of other transmitters to reach the base

station. We observe that while one client in the network could
reach at best a distance of 1 km – a fairly low quantity, in part due
to the tall buildings and hilly topography of CMU campus as well
as hardware limitations of the USRP’s receive chain [35]. Under
identical hardware constraints, teams of colliding 30 clients using
Choir could reach the base station even when the closest of them
was 2.65km away, an improvement of 2.65 ⇥.

9.4 Exploiting Correlated Sensor Data
In this experiment, we evaluate Choir’s ability to exploit transmis-
sion of sensor data that is spatially correlated
Method: We leverage a testbed of sensor nodes placed in four
di�erent �oors of across two large buildings in CMU campus (Fig. 6
plots the sensor locations). Each sensor measures both temperature
and humidity values in the room in which they are placed. We
co-locate 36 LP-WAN radios with these sensors and transmit. These
sensors transmit periodically at a rate of 1 reading per minute. We
then measure the network throughput and resolution of the sensor
data from the base station.
Results: Fig. 11(a) plots the mean percentage error of the observed
sensor data against the true values, for sensors grouped together
using di�erent strategies – randomly, by �oor and by relative dis-
tance from the center of the �oor. We �nd that the relative distance
from the center of the �oor to be an excellent method to group
together sensors. This stems from the fact that the farther away
these sensors are from the center of the building, the closer they
are to the outside temperature (or humidity). Next, we evaluate the
end-to-end performance of our system compared to the LoRaWAN
baselines. Speci�cally, our system schedules transmissions from
groups of sensors that are beyond the range of the LP-WAN base
station, while allowing nearby sensor nodes to transmit data as
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Figure 9: Extending LP-WAN Range: Consider concurrent identical transmissions from several LP-
WAN nodes to a single-antenna LP-WAN base station. (a) Measures throughput gain of Choir over the
LoRaWAN baseline systems across SNRs. (b) Measures the physical range achieved given di�erent num-
ber of concurrent users.
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they collect them. We then apply Choir’s algorithms described in
Sec. 7.2 to decode potential collisions as well as to exploit corre-
lation in sensor data to recover overlapping bits from groups of
sensors that are beyond base station’s range. Fig. 11(b) measures
the network throughput of observed sensor data for Choir and the
baseline systems. We note that our system has a gain of 29.3377⇥
over LoRaWAN+ALOHA and 5.609⇥ over the LoRaWAN+Oracle
baseline. Finally, one may wonder how the resolution of observed
sensor data from sensors beyond communication range varies with
their distance to base station. Fig. 10 plots the mean percentage er-
ror of the recovered sensor data across an increasingly large group
of sensors as we vary their distance to the base station (relative
to the closest sensor). As expected, we observe a gradual decrease
in resolution with distance, with an error of 13.2% for teams of up
to 30 sensors at a distance of at least 2.5km from the base station.
We note that despite the loss in resolution, Choir is far superior to
the baseline systems, where all of these nodes would be beyond
communication range of the base station.

9.5 E�ect of Multiple Antennas
We evaluate the performance of Choir relative to MU-MIMO for
a base station with 3-antennas. Fig. 12 plots the network through-
put of a team of 5 sensors transmitting data to the base station
using: (1) Only one receiver antenna and LoRaWAN+ALOHA; (2)
Only one receiver antenna and LoRaWAN+Oracle; (3) All three
antennas and uplink MU-MIMO; (4) Choir using only one receiver
antenna; (5) Choir run on all three antennas and averaging results.

We observe that while MU-MIMO’s gain over standard LoRaWAN
is capped at 9.994 ⇥(3.04 ⇥) vs. LoRaWAN(+Oracle), Choir, with
even a single antenna is at 11.07 ⇥(3.37 ⇥). Further, the presence of
multiple antennas can be used to further improve Choir’s gain to
13.8489 ⇥(4.217 ⇥), demonstrating that its gains are complementary
to MU-MIMO.
10 CONCLUSION
This paper presents Choir, a system that improves throughput and
range of low-power wide area networks in urban environments.
Choir proposes a novel approach that exploits the natural hardware
o�sets between low-power nodes to disentangle collisions from
several LP-WAN transmitters using a single-antenna LP-WAN base
station. Further, Choir allows teams of LP-WAN sensor nodes with
correlated data to reach the base station, despite being individually
beyond communication range. Our system is implemented and
deployed on a large outdoor testbed spanning 10 km2 around CMU
campus.
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