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Abstract— We consider a power system with N transmission
lines whose initial loads (i.e., power flows) L1, . . . , LN and
capacities C1, . . . , CN are independent and identically distributed
with the joint distribution PLC(x, y) = P [L ≤ x,C ≤ y]; the
capacity Ci defines the maximum flow allowed on line i. We
survey some results on the robustness of this power system against
random attacks (or, failures) that target a p-fraction of the lines,
under a democratic fiber bundle-like model. Namely, when a line
fails, the load it was carrying is redistributed equally among the
remaining lines. We then consider the case where an adversary
can launch a targeted attack, and present several results on the
hardness of attacking optimally.

I. INTRODUCTION

Electrical power systems have been an integral part of our
daily lives for decades, and our quality of life largely depends
on the continuous availability of an electrical power supply.
This is expected to be further amplified in the near future
due to the increasing market share of electric vehicles and
increasing integration of major national infrastructures to the
power grid; e.g., water, transport, communications, etc. All
of these point to a future where the reliability of the power
systems will be paramount with the central research question
being how we can design a power system in a robust and
reliable manner.

A major problem with the existing power systems is the
seemingly unexpected large scale failures. Although rare, the
sheer size of such failures has proven to be very costly, at
times affecting hundreds of millions of people [15], [2]; e.g.,
the recent blackout in India [25], [20]. Such events are often
attributed to a small initial shock getting escalated due to
intricate dependencies within a power system [3], [22], [8].
This phenomenon, also known as cascade of failures, has
the potential of collapsing an entire power system as well
as other infrastructures that depend on the power grid [11],
[7], [24]. Therefore, understanding the dynamics of failures in
power systems and mitigating the potential risks are critical
for the successful development and evolution of many critical
infrastructures.

In this paper, we study the robustness of power systems
under a simple model based on equal redistribution of load
upon the failure of a power line. Namely, we consider a
power system with N transmission lines with initial loads

L1, . . . , LN and capacities C1, . . . , CN . If a line fails (for any
reason), its load is assumed to be redistributed equally among
all lines that are alive. Thus, the load carried by a line i may
exceed its initial value Li over time due to load-redistribution.
The capacity Ci defines the maximum flow allowed on the line
i, meaning that if the load carried by i exceeds this capacity
at any time, the line will be tripped (i.e., disconnected) by
means of automatic protective equipments so as to avoid costly
damages to the system. Subsequently, the load that was carried
by line i before failure will be redistributed to remaining lines,
which in turn may cause further failures, possibly leading to
a cascade of failures.

It was recently suggested by Pahwa et al. [13] that equal
load redistribution can be a reasonable assumption (in the
mean-field sense) due to the long-range nature of Kirchhoff’s
law, especially under the DC power flow model; the DC
model is known [12], [19] to approximate the AC model
well in many cases. With these in mind, our main goal is to
understand the robustness of power systems under the equal
load redistribution model described above against random and
targeted attacks. The former case was recently studied by
Yağan [23] under the assumptions that initial loads L1, . . . , LN

are independent and identically distributed with PL(x) =
P [L ≤ x] and that capacities are given by

Ci = (1 + α)Li, i = 1, . . . , N,

where α > 0 denotes the tolerance factor; in [23] all lines
assumed to have the same tolerance factor. There, Yağan
studied the robustness of the system against random attacks
that target a p-fraction of the lines; system robustness was
quantified by the final (i.e., steady-state) fraction n∞(p) of
non-failed lines. Among other results, it was shown that the
system robustness, is maximized if all lines are given the same
initial load, for a given fixed mean load value E [L].

Recently, Zhang and Yağan [26] extended the results in
[23] to the more general case where lines can have varying
tolerance parameters. Namely, they let

Ci = Li + Si, i = 1, . . . , N,

with Si denoting the free-space (or, redundancy) available
at line i; under this setting, the tolerance factor is given



by αi = Si/Li and may vary from one line to another.
Under the assumption that load-‘free space’ pairs (Li, Si)
are independent and identically distributed with the joint
distribution PLS(x, y) = P [L ≤ x, S ≤ y], they studied again
the robustness of the system against random attacks that target
a p-fraction of the lines. Their main result is that, with the
mean values E [L] and E [S] are fixed, the robustness metric
n∞(p) is uniformly maximized for all p values if all nodes
are given the same free space E [S], regardless of how the
loads are distributed. More precisely, they showed under the
enforced constraints that n∞(p) is maximized if

PLS(x, y) = PL(x)1 [y ≤ E [S]] ,

where the choice of PL(x) is arbitrary. This leads to the
counterintuitive conclusion that that lines with higher initial
load shall be assigned smaller tolerance factors to maximize
robustness.

With the case of random attacks being relatively well-
understood, we shift our attention in this paper to the case of
targeted attacks. As before, the main goal would be to derive
design strategies (in the form of optimal load-‘free space’
distributions) that would lead to maximum robustness, this
time against a knowledgable adversary attacking to a carefully
selected set of lines. However, for this optimization problem
to be well-defined one has to have a good understanding of the
problem from an adversary’s perspective. With this in mind,
this paper aims to reveal good attack strategies that lead to
maximal damage to the system for a given number of lines
that can be attacked.

Formally, we consider the following optimization prob-
lem. Given N lines with loads L1, . . . , LN and free spaces
S1, . . . , SN , we seek to find the optimal set A of k lines that
the adversary should attack in order to minimize the final frac-
tion n∞(A) of alive lines. We provide optimal solutions via
greedy algorithms in three special cases: i) when all lines have
the same load; ii) when Si = αLi for each i = 1, . . . , N (as
considered in [23]); and iii) when all lines have the same free
space, i.e., when S1 = · · · = SN . The last case is of particular
interest as it is known to lead to maximum robustness against
random attacks. Then, we consider a variation of the problem
with an additional constraint on the total load of the lines
attacked; i.e., when the adversary is further constrained with∑

i∈A Li ≤ Q for some Q. We show that this variation of
the optimal attack problem is in fact NP-Complete, meaning
that no polynomial-time algorithm can find the optimal set A
that minimizes n∞(A), unless P ≡ NP . Our proof is based
on a polynomial time reduction to the k-Subset Sum problem,
i.e., to the problem that seeks to find whether a sequence of
integers has a subset of size k whose sum equals Q.

The rest of the paper is organized as follows: We describe
the system model in details in Section II. In Section III, we
give a detailed survey of the recent results by Zhang and
Yağan [26] concerning the robustness of power systems against
random attacks. These results characterize the robustness of
the power system under any load-‘free space’ distributions
and any attack size p, explain the order (i.e., first vs. second)

under which the system undergoes a complete breakdown,
and show the distributions that lead to maximum robustness.
Then, we consider targeted attacks and start our discussion
on optimal attack strategies in Section IV. There, we start by
demonstrating why certain greedy algorithms fail to give the
optimal solution in general. Then, in Section V we consider
some special cases of interest where greedy algorithms are
shown to find optimal attack sets. Finally, in Section VI we
prove a hardness result showing that a variation of the optimal
attack problem is NP-Complete.

We close with a word on notation in use. The random
variables (rvs) under consideration are all defined on the same
probability space (Ω,F ,P). Probabilistic statements are made
with respect to this probability measure P, and we denote
the corresponding expectation operator by E. The indicator
function of an event E is denoted by 1 [E]. For a discrete set
A we write |A| for its cardinality.

II. SYSTEM MODEL

We consider a power system with N transmission lines
L1, . . . ,LN with initial loads (i.e., power flows) L1, . . . , LN .
The capacity Ci of a line Li defines the maximum power flow
that it can sustain, and is given by

Ci = Li + Si, i = 1, . . . , N, (1)

where Si denotes the free-space (or, redundancy) available to
line Li. The capacity of a line is typically set [10], [21], [9],
[4] to be a fixed factor of the line’s original load, i.e.,

Ci = (1 + αi)Li

with αi > 0 defining the tolerance parameter for line Li.
Put differently, the free space Si is often given in terms of
the initial load Li with Si = αLi. It is assumed that a line
fails (i.e., outages) if its load exceeds its capacity at any given
time. In that case, the load it was carrying before the failure
is redistributed equally among all remaining lines.

Throughout we assume that the pairs (Li, Si) are in-
dependently and identically distributed with PLS(x, y) :=
P [L ≤ x, S ≤ y] for each line i = 1, . . . , N . The correspond-
ing probability density function is given by pLS(x, y) =
∂2

∂x∂yPLS(x, y). Let Lmin and Smin denote the minimum
values for load L and free space S; i.e.,

Lmin = inf{x : PL(x) > 0}
Smin = inf{y : PS(y) > 0}

We assume that Lmin, Smin > 0. We also assume that the
marginal densities pL(x) and pS(y) are continuous on their
support.

Our main goal is to characterize the robustness of this power
system against i) random attacks that result initially with a
failure of a (randomly selected) p-fraction of the lines; or
targeted attacks that initially fail a specific set A of lines. The
initial set of failures leads to redistribution of power flows
from the failed lines to alive ones (i.e., non-failed lines), so
that the load on each alive line becomes equal to its initial



load plus its equal share of the total load of the failed lines.
This may lead to the failure of some additional lines due to
the updated flow exceeding their capacity. This process may
continue recursively, generating a cascade of failures, with
each failure further increasing the load on the alive lines, and
may eventually result with the collapse of the entire system.

Throughout, we let n∞(p) denote the final fraction of alive
lines when a p-fraction of lines is randomly attacked. The
robustness of a power system will be evaluated by the behavior
of n∞(p) as the attack size p increases, and particularly by
the critical attack size p? at which n∞(p) drops to zero. In the
case where a specific set A of lines are attacked, we define
n∞(A) as the final fraction of alive lines. Throughout we will
seek to derive optimal attack strategies, i.e., to find the set A
of lines that minimizes n∞(A) under certain constraints; e.g.,
the size |A| being fixed.

The equal redistribution model described above is inspired
by the democratic fiber bundle model [1], [6], where N
parallel fibers with random failure thresholds C1, . . . , CN (i.e.,
capacities) drawn independently from PC(x) share equally an
applied total force of F ; see also [5], [18], [14], [17]. This
model has been recently adopted by Pahwa et al. in the context
of power systems with F corresponding to the total load that
N power lines share equally.

The problem formulation considered here was introduced
by Yağan [23] and Zhang and Yağan [26]. This formulation
differs from the original democratic fiber-bundle model in that
i) it does not assume that the total load of the system is fixed
at F ; and ii) it allows for power lines to carry different initial
loads. In addition, [13] is concerned with failures in the power
system that are triggered by increasing the total force (i.e.,
load) applied. Instead, our formulation allows analyzing the
robustness of the system against external attacks or random
line failures, which are known to be the source of system-
wide blackouts in many interdependent systems [16], [3], [24].
In addition, unlike the democratic fiber bundle model where
all lines start with the same initial load, power lines in real
systems are likely to have different loads at the initial set-up
although they may participate equally in taking over the load
of those lines that have failed.

III. DEFENDER’S PERSPECTIVE: A SURVEY OF EXISTING
RESULTS [23], [26] ON OPTIMIZATION OF ROBUSTNESS

We now survey existing results obtained by Yağan [23] and
Zhang and Yağan [26] on the robustness of power systems
under equal redistribution of loads. These works are interested
in the problem from a defender’s perspective and provide
means to characterize, improve, and optimize the robustness
of the system, assuming in most cases that the adversary will
launch a random attack to a certain fraction of lines. With
the randomness involved in the attack model, as well as load-
capacity values, both [23] and [26] rely on mean-field analysis
and aim to characterize the mean (or, average) performance
of the underlying systems in the asymptotic regime where N
approaches infinity.

A. Final system size as a function the attack size

The first main result in [26] characterizes the robustness of
power systems under any distribution of initial load L and free
space S, and any attack size p.

Theorem 3.1 ([26]): Let L and S denote generic random
variables following the same distribution with initial loads
L1, . . . , LN , and free space S1, . . . , SN , respectively. Then,
with x? denoting the smallest solution of

P [S > x] (x+ E [L | S > x]) ≥ E [L]

1− p
(2)

over the range the x? ∈ (0,∞], the final system size n∞(p) is
given by

n∞(p) = (1− p)P [S > x?] . (3)
For a graphical solution of n∞(p), one shall plot

P [S > x] (x+ E [L | S > x]) as a function of x (e.g., see Fig-
ure 1(a)), and draw a horizontal line at the height E [L] /(1−p)
on the same plot. The leftmost intersection of these two lines
gives the operating point x?, from which we can compute
n∞(p) = (1 − p)P [S > x?]. When there is no intersection,
we set x? =∞ and understand that n∞(p) = 0.

B. The “Critical” Attack Size

In many practical cases, one would be interested in the
variation of n∞(p) as a function of p. This would help
understand the response of the system to attacks of varying
magnitude. Of particular interest will be to derive the critical
attack size p? such that for any attack with size p > p?, the
system undergoes a complete breakdown leading to n∞(p) =
0. The next result specifies this critical attack size for arbitrary
system parameters.

Theorem 3.2 ([26]): The maximum attack size p?

is related to the global maximum of the function
P [S > x] (x+ E [L | S > x]). In particular, we have

p? = 1− E [L]

max
x
{P [S > x] (x+ E [L | S > x])}

. (4)

C. No-cascade Condition

For extremely critical power systems it is desirable to
characterize the “no-cascade” condition under which the final
system size equals 1 − p, when p-fraction of the lines are
taken down by an attacker. In other words, it would be useful
to obtain conditions such that no single line fails other than
the pN lines that went down as a result of the initial attack.
The next result provides exactly that.

Theorem 3.3 ([26]): For any attack size p, the no-cascade
condition is given by

Smin >
pE [L]

1− p
. (5)

where Smin denotes the minimum free space that a line can have
in the system.

This result establishes (5) as the condition for no cascade
of failures, which can be of significant use in capacity pro-
visioning, i.e., in determining the line capacities needed for
robustness against p-size attacks.
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Fig. 1. We demonstrate the distinction between an abrupt first-order rupture, and a first-order rupture that is preceded by a diverging failure rate. pL(x) is
assumed to be of uniform density over the range [Lmin, Lmax] = [10, 50], and we assume that the free space of a line is given by Si = αLi for some α > 0;
i.e., the joint density is given by pLS(x, y) = pL(x)δ(y − xα) where δ(·) denotes the Dirac-delta function. In both plots, red (lower) curves stand for the case
where α = 0.2, whereas blue (upper) curves represent α = 1.2. Figure 1(a) shows P [S > x] (x+ E [L | S > x]), whereas Figure 1(b) plots the corresponding
variation of n∞(p) with attack size p. We observe that for α = 0.2 (Red), P [S > x] (x+ E [L | S > x]) takes its maximum at the point x = Smin = 2. As
a result, we see an abrupt first-order transition of n∞(p) as it suddenly drops to zero at the point p = p? = 0.0625, while decaying linearly as 1 − p up until
that point. The case where α = 1.2 is clearly different as P [S > x] (x+ E [L | S > x]) is now maximized at x = 21.1 > 12 = Smin. As expected from our
discussion, this ensures that the total failure of the system occurs after a diverging failure rate is observed. This divergence is clearly seen in Figure 1(b) where the
dashed line corresponds to the 1− p curve.

D. Understanding the “Phase Transition”: Rupture Condition

It is of significant interest to understand the behavior of the
system near the phase transition; i.e., when the attack size is
very close to but smaller than the critical value p?. One main
questions here is whether n∞(p) decays to zero continuously
(i.e., through a second-order transition), or discontinuously
(i.e., through a first-order transition). The practical significance
of this is that continuous transitions suggest a more stable and
predictable system behavior with respect to attacks, whereas
with discontinuous transitions, system behavior becomes more
difficult to predict based on past data.

The next result shows that the total breakdown of the system
for the model considered here will always be through a first-
order (i.e., discontinuous) transition.

Theorem 3.4 ([26]): Under the enforced assumptions, the
system always undergoes a first-order (i.e., discontinuous) tran-
sition at the point p?; i.e., we have

n∞(p?) > 0,

while by definition it holds that

n∞(p? + ε) = 0

for any ε > 0 arbitrarily small.
An interesting question is whether this first order rupture at

the point p? will have any early indicators at smaller attack
sizes; e.g., a diverging failure rate leading to a non-linear
decrease in n∞(p). An abrupt first-order transition is said to
take place if the linear decay of n∞(p) is followed by a sudden
discontinuous jump to zero at the point p?. Those cases are
reminiscent of the real-world phenomena of unexpected large-
scale system collapses; i.e., cases where seemingly identical

attacks/failures leading to entirely different consequences. A
distinction is demonstrated in Figure 1.

The result provides conditions for an abrupt rupture to take
place.

Theorem 3.5 ([26]): For the system to go through an abrupt
first order breakdown (e.g., see the below line shown in red in
Figure 1(b)) the function, we must have

arg max
x>0

{P [S > x] (x+ E [L | S > x])} = Smin

E. Achieving Optimal Robustness

Perhaps the most important question from a defender’s
perspective is concerned with deriving the universally opti-
mum distribution of initial loads L1, . . . LN and free spaces
S1, . . . , SN when the mean values E [L] and E [S], respec-
tively, are fixed. For the time being, we consider the maxi-
mization of robustness against random attacks or failures as
our optimality criterion, where maximization of robustness
is defined as the maximization of the critical attack size p?.
Later, we shall check whether maximizing p? also maximizes
the entire robustness curve n∞(p) vs. p. Zhang and Yağan
obtained [26] the answer to this important question, and the
corresponding result is presented next; see also [23] for a
similar result when Si = αLi for all i = 1, . . . , N .

Theorem 3.6 ([26]): For any initial load distribution, it
holds that

p? ≤ E [S]

E [S] + E [L]
=

E [S]

E [C]
. (6)

In words, this result states that the critical attack size can
never be larger than the ratio of mean free space (or, redun-
dancy) and mean capacity. In addition, the optimal robustness
given at (6) can be achieved by a Dirac delta distribution
of free space, regardless of how loads are distributed. More



precisely, let p?dirac denote the critical attack size when S1 =
· · · = SN = E [S]. We have

p?dirac =
E [S]

E [S] + E [L]
.

Thus far, we have seen that the equal distribution of free
space leads to the largest possible critical attack size, hereafter
denoted p?opt. It is clear that the final system size after an attack
of size p is always less than 1−p. With this in mind, the next
result establishes the optimality of the Dirac-delta distribution
of free-space in the sense of maximizing the robustness of
power systems uniformly over all attack sizes.

Theorem 3.7 ([26]): With Dirac-delta distribution of initial
free spaces, the breakdown of the system is always through an
abrupt first order rupture. Namely, with S1 = S2 = · · · = SN

we have

n∞(p) =

{
1− p for p < p?opt

0 for p ≥ p?opt

Hence, the Dirac-delta distribution maximizes n∞(p) over the
entire range 0 ≤ p ≤ 1.

These findings suggest that under the democratic fiber
bundle-like model considered here, power systems with ho-
mogenous distribution of redundant space are significantly
more robust against random attacks and failures, as compared
to systems with heterogeneous distribution of redundancy.
Interestingly, this suggests that the optimal robustness is
achieved when the tolerance factor αi = Si/Li decreases with
increasing load, leading to the counterintuitive conclusion that
the lines carrying the highest load should have the smallest
tolerance factor to achieve maximum robustness.

IV. ATTACKER’S PERSPECTIVE: OPTIMAL ATTACK
STRATEGIES

A. The Main Optimization Problem: ER-k

The Equal Redistribution (ER) problem with k attacks is
the problem in which we are interested in finding a set A of
k lines such that attacking A leads to the maximum number
of total line failures (as a result of load redistribution and
cascading failures), among all possible attack sets with size
k. Put differently, we seek to find A with |A| = k such that
n∞(A) is minimized. This problem is now stated formally.

INPUT: A list of n pairs of non-negative rational numbers
in the form (Li, Ci) indicating the load and the capacity of
each line, an integer 0 < k ≤ n, an integer 0 < k′ ≤ n and a
rational number L. We suppose Ci > Li so that no line fails
initially at its own load.

OUTPUT: We are interested in knowing whether or not
there is an attack set A with size exactly k, and total sum
of loads

∑
i∈A Li ≤ L, so that at the end of the cascading

failures the number of failed nodes is at least k′.

B. Greedy Algorithms that Fail

Here we will present three intuitive greedy algorithms and
give concrete examples demonstrating their poor performance
for the optimization problem described above. In doing so, we

will focus on the special case where k′ = N meaning that the
goal of the attack is to destroy the whole system.

In what follows, we often find it useful to view the problem
as a fun game, where we have N water containers with
capacities C1, . . . , CN , and initial water levels L1, . . . , LN .
As in the democratic fiber-bundle model, when a container is
“attacked” its content is redistributed equally to the remaining
containers. Also, if the water level in a container exceeds
its capacity, we assume that it has failed and redistribute its
content, again equally, to the remaining containers.

An important observation is that the following greedy
algorithms do not work and actually can deviate significantly
from the optimal solution.

a) Attacking the container with greatest load: This strat-
egy aims to maximize the load that we will redistribute in each
attack round by maximizing the nominator L0 of L0/(n− 1).
This strategy is not optimal in general because it fails to
recognize the opportunity to eliminate containers with very
large capacities that will otherwise be difficult to fail by
redistributing the load. The worst-case deviation from the
optimal (in terms of the number of lines need to be attacked
for whole system failure) is Θ(n); e.g., see Figure 2.

b) Attacking the container with greatest capacity: This
strategy attacks the container that has the maximum capacity
in each round. The idea here is that by taking out large
containers, the remaining, supposedly small, containers will
be destroyed due to load redistribution. This strategy is not
in general optimal either, because there may be containers
with large capacities but small (or, even almost zero) loads,
rendering an attack to such containers very ineffective in
terms of triggering failures by means of load redistribution.
The worst-case deviation from the optimal is again Θ(n) as
demonstrated in Figure 3.

c) Attacking the container with largest free space (i.e.,
(capacity−load) difference): It is clear from the previous two
cases that the optimal attack strategy will be one that considers
both the loads and capacities of the containers involved. The
greedy approach that targets containers with largest free space
(i.e., (capacity − load) difference) falls into this category,
and is based on the fact that containers with largest free space
will fail the latest in the course of a cascading failure; e.g.,
see Section IV-C for a discussion of this fact. Therefore, it is
sensible to eliminate those containers with a direct attack. On
the other hand, containers with small free space are already
on the verge of failing and therefore can be taken down of by
means of redistribution of loads. Although this greed strategy
is sensible (and in fact optimal in some special cases), it fails
to be the optimal solution in general. The main reason is
that this approach does not take into account the loads of the
containers directly. For example, a container may have a large
(capacity−load) difference but it may be the case that its load
is negligible comparably to the other containers’ capacities,
making it ineffective to attack it. The worst-case deviation
from the optimal is Θ(n) (attacked: n versus optimal: 1) as
demonstrated in Figure 4.



Fig. 2. In this example (for the greedy maximum-load attack) we have (load, capacity) values given by (10, 10+ 1/10), (9, 9+ 10/9+ ε), (8, 8+ 19/8+
ε), (7, 7+ 27/7+ ε), (6, 6+ 34/6+ ε), (5, 5+ 40/5+ ε), (4, 4+ 45/4+ ε), (3, 3+ 49/3+ ε), (2, 52/2+ ε), (1, 1+ 54/1+ ε) where ε > 0 is arbitrarily
small. The greedy will output k = 10 since it will start attacking the first/leftmost container with load L1 = 10 and no cascading failures will happen and
then it will continue towards the right. The optimal solution is k = 1 by attacking the last container because then the cascading failures will take place
(the first container will then fail since it will have L1 > C1), thus destroying the whole system. We can generalize this counterexample to the case with n
containers with the greedy algorithm’s output being k = n while the optimal solution being k = 1.

Fig. 3. In this example (to the max capacity attack) we have 2n+1 containers
where (load, capacity) values are given by (ε,M) for the first n containers
and (M −2ε,M − ε) for the last n+1 containers; here ε > 0 is arbitrarily
small. The greedy approach will output k = n+1 since it will start attacking
the first n containers with the highest capacity, but no cascading failures will
take place until a container that has slightly less capacity but is almost full
is attacked; at that point all containers will fail. On the other hand, the
optimal solution is k = 1 as it takes to attack only one of the containers with
(M − 2ε,M − ε) to trigger a cascading failure that will overfill the small
containers along with the big but empty containers.

Fig. 4. In this example (to the max (capacity − load) attack) we have
n containers with (load, capacity) values (ε, (n + 1)ε) for the first n − 1
containers and (M,M + (n − 1)ε) for the last container, where ε > 0 is
arbitrarily small and M satisfies M > (n2−n)ε. The greedy will output k =
n since it will start attacking the leftmost containers first and no cascading
failures will happen and then it will continue towards the right. The algorithm
must destroy all the containers in order for the system to break down. The
optimal solution is obviously k = 1 by attacking the last container.

C. Observations towards Designing a Smart Algorithm

We now present three main observations that shall be
useful in designing a smart algorithm to the aforementioned
optimization problem.

a) Order of failures during the cascading process:
Assume that containers are sorted by increasing free space,
Zi = (Ci − Li). Given that any failed load is redistributed
equally among the remaining containers, it is clear that this
ordering will remain the same throughout the course of cas-
cading failures; the containers that are attacked directly at the
beginning are excluded from this discussion. Therefore, in the
process of recursive load redistribution, containers will fail
(due to their free space diminishing to (below) zero) in this
exact same order; the one with smallest free space will fail
first, and so on and so forth.

b) A sufficient (but not necessary) condition to destroy the
system: Let C denote the set of all containers and A denote
those that are attacked; i.e., A is the set of containers our
algorithm chooses at the beginning to destroy. We observe
that a sufficient condition to achieve our goal of destroying
the whole system is the following:

∑
i∈A Li ≥

∑
i∈C\A(Ci−

Li). This means that the total load of the containers we are
currently attacking exceeds the sum of the empty spaces of
the remaining containers, and hence all containers will fail
after redistribution of the failed loads (though, not necessarily
simultaneously).

This condition can be seen to be not necessary for the whole
system to fail. What is instead necessary is that

∑
i∈A′(t) Li ≥∑

i∈C\A′(t)(Ci − Li) should hold at some point t = 0, 1, . . .
during the cascade of failures. Here, we define A′(t) as the
set of all containers that have failed until stage t = 0, 1, . . . of
the cascade of failures. More precisely, we have A′(0) = A,
and

A′(t) = A′(t− 1) ∪

{
j : Cj − Lj <

∑
i∈A′(t−1) Li

|C| − |A′(t− 1)|

}
,



for each t = 1, 2, . . .. Therefore, it is possible to start with
a small number of containers attacked, and by recursive
redistribution and failures, ultimately reach a point where the
aforementioned condition is satisfied.

With these in mind, we find it useful to refer to the attack
projection of a set of containers A as proj(A), defined as the
set of the attacked containers union the containers that will
be destroyed after all cascading failures have stopped. Our
main problem then reduces to finding a seed set A such that
proj(A) = C. The attack projection is calculated step by step
by Algorithm 1.

c) The order of attack does not matter: In the equal
redistribution scheme the order with which we launch our
attack will not affect the final set of failed containers. This
is because the load of the attacked nodes will be distributed
to all of the remaining nodes so at the end an amount of∑

i∈A Li will end up in the remaining containers (leading to
new failures or not) irrespective of the order we chose to attack
the containers in A.

V. GREEDY ALGORITHMS THAT SUCCEED

We now consider some special cases of the ER-k problem
and provide greedy algorithms that yield the optimal attack
strategies in these special cases. To aid this discussion, we de-
scribe two algorithms below, namely the ER-Attack Projection
algorithm that finds the impact an attack set A has, and the
Max-X (X=Load or Capacity) Greedy Algorithm for Special
Cases that attacks the container with maximum X value first.

Algorithm 1 ER-Attack Projection proj(A)

Require: Input is sorted according to FreeSpace: Zi = Li −
Ci for the binarySearch

Require: binarySearch returns all containers with free space
less than extra load
procedure proj(A)

new set= A
repeat

previous set = new set
extra load =

∑
i∈previous set Li / (n −

|previous set|)
new set= binarySearch(extra load)∪previous set

until new set = previous set
Return new set

end procedure

A. Same Loads

An interesting situation arises when initial loads are the
same for all containers while capacities differ. This reflects
situations in which all lines in the power system are given the
same initial load, but have different capacities owing to the
physical constraints or material used. We show that a greedy
algorithm finds the optimal solution in this special case. The
ER-k-Same Loads Problem is defined formally as follows.

Algorithm 2 Max-X (X=Load or Capacity) Greedy for
Special Cases
Require: Input is sorted according to Loads

procedure max-X GREEDY(k)
repeat

Attack=argmax(Xi)
Failed=proj(attack)∪Failed
Input=Input\Failed . we discard the failures
k = k − 1

until k = 0 or |failed|= n
end procedure

INPUT: A non-negative rational number L for the common
load and a list of n non-negative rational numbers Ci indicat-
ing the capacity of each line. We suppose Ci > L,∀i, so that
no line fails initially at its own load. The integer k represents
the number of attacks we can launch.

OUTPUT: The maximum damage we can give to the system
with the k available attacks; i.e., the maximum number of
lines that can be failed in total (initial attack plus cascading
failures).

In the above scenario the algorithm that we call max−C-
Greedy finds the optimal solution. We give the proof to the
following theorem:

Theorem 5.8: The max-C-Greedy Algorithm is optimal for
the ER-k-Same Loads Problem.

Proof: A key observation is that since the failed load
is always redistributed equally among alive lines, this system
will preserve the “equal load” property through the cascading
failures. Namely, at any stage the load of a line that is
functioning will be given by L(1 + M

N−M ) where M is the
number of failed lines (out of a total N lines) thus far. In
addition the sequence of attacks doesn’t affect the final state
of the system as discussed before. Therefore, the claim would
follow for general attack sizes k, if we establish it for k = 1.
This is because after a single line is attacked, the system will
again be one with equal loads and the optimization problem
will repeat itself with k − 1 additional lines to be attacked.
Continuing in this manner, we see that the optimal attack
strategy in this case would be a combination of optimal single-
line attacks launched sequentially.

Assume now that k = 1, i.e., the goal is to attack the line
that will lead to the maximum damage (i.e., number of failed
lines) to the system. Since all loads are equal, the lines that
fail as a result of this attack will be (with A0 denoting the
line chosen)

{A0} ∪ {` ∈ {1, 2, . . . , N}/A0 : C` ≤ LN/(N − 1)} (7)

The goal is then to find A0 that maximizes the cardinality of
this set, namely |proj(A0)|. Let Li and Lj be arbitrary distinct
lines. From (7) we have

|proj(Li)| − |proj(Lj)| =
1 [Cj ≤ LN/(N − 1)]− 1 [Ci ≤ LN/(N − 1)]



which automatically gives

|proj(Li)| ≥ |proj(Lj)| if Ci ≥ Cj . (8)

Since i and j are arbitrary, this shows that

arg maxi=1,...,N |proj(Li)| = arg maxi=1,...,NCi.

In other words, the total number of failed lines |proj(Li)|
is maximized by attacking the line Li with the maximum
capacity.

B. Same Free Spaces

Sometimes it might be the case that the containers have
arbitrary load and capacity but they have a fixed free space.
In [26], this was in fact shown to be the optimal design that
gives maximum robustness against random attacks. We refer
to the corresponding problem as the ER-k-Same Free Spaces
and give a greedy algorithm that finds the optimal solution.
The formal definition of the problem is as follows.

INPUT: A list of n non-negative rational numbers Li indicat-
ing the load of each advertiser and a positive rational number
Z indicating the common free space.

OUTPUT: Find out which is the minimum number k of
attacks in order to destroy the system.

We changed the output here from having a fixed number of
lines to be attacked to inflict the maximum damage, to the case
where we aim to destroy the whole system with the minimum
number of attacks. This is because in the case where every
container has the same free space, there are no intermediate
cascading failures. In all cases, the system will either fail
completely, or no single line will fail other than those attacked
directly. We now show that the max−L-Greedy algorithm that
targets lines with the largest loads finds the optimal solution.

Theorem 5.9: The max-L-Greedy Algorithm is optimal for
the ER-k-Same Loads Problem.

Proof: As in the case of the previous Theorem, the
key here is to observe that the optimization problem can be
reduced to finding the optimal single-line attack, and repeating
this recursively. Again, the reason is that since failed load
is equally redistributed, the system will maintain to have the
same free space (among all alive lines) throughout the cascade
process. Given also that the order of the attack does not matter,
it remains to find the optimal single-line attack, i.e., the case
where k = 1. Similar to (7), we have

proj(A0) = {A0} ∪ {` ∈ {1, 2, . . . , N}/A0 : Z` ≤ LA0
/N}

where A0 is the line that is attacked. Since all lines have equal
free space Z, this gives

|proj(A0)| = N1 [Z ≤ LA0
/N ] .

It is now clear that |proj(A0)|, i.e., the total number of lines
failed by attacking A0, is monotone increasing in the load
LA0 of A0. Therefore, |proj(A0)| is maximized by attacking
the line with the maximum load. Repeating this argument
recursively, we see that in ER-k-Same Free Spaces, the optimal
strategy is to attack lines with largest loads.

C. Capacities Proportional to Loads

In many cases, the capacities and the loads of power lines
are related in a particular way. Namely, the capacity of a line
is often set to be proportional to its load. For example with
α > 0 denoting the tolerance factor, we have Ci = (1 +α)Li

for each line i = 1, . . . , N . In this variation, we will also show
that there is a greedy algorithm achieving the optimal solution.
The ER-k-(C ∝ L) Problem is defined formally as follows.

INPUT: A list of n non-negative rational numbers Li indicat-
ing the load of each line and a positive rational number α as
the tolerance parameter.

OUTPUT: The maximum damage we can cause to the system
with the k available attacks, that is which nodes to attack to
destroy the maximum number of nodes in total.

In the above scenario the max − L-Greedy algorithm that
targets the lines with the largest loads gives the optimal
solution.

Theorem 5.10: The max-L-Greedy Algorithm is optimal
for the ER-k-(C ∝ L) Problem.

Proof: The key observation about the ER-k-(C ∝ L)
Problem is that, given Ci = (1+α)Li, the load, capacity, and
free spaces of lines all follow the same order. Namely, the lines
with the largest loads, whom are tempting to attack to shed
more load on others, are also the ones with the largest free
spaces, whom are also tempting to attack given the difficulty
of failing them by load redistribution. This eliminates the
trade-off faced in the optimal attack problem and simplifies
it greatly.

In this setting, the problem does not repeat itself as cascad-
ing failures take place since after load redistribution, it may
no longer be the case that all lines have the same tolerance
factor (i.e., the ratio of free space to load). However, the
aforementioned key property will be maintained throughout.
For instance, assume without loss of generality that initial
loads are ordered as L1 ≤ L2 ≤ · · · ≤ LN . Then, at any
stage of the cascading failures, Li, Ci, and Zi will all be in
increasing order for all i = 1, 2, . . . , N that are still alive.

With these in mind, we will first show the optimality of
max-L-Greedy Algorithm for single line attacks in any system
whose loads L1, L2, . . . , LN and free spaces Z1, . . . , ZN

follow the same ordering. Since this property will be preserved
throughout the cascades and the sequence of attacks doesn’t
affect the final state of the system, the proof of Theorem 5.10
will be completed.

We now consider the case of k = 1, i.e., the case where
a single-line A0 is to be attacked to maximize the number
|proj(A0)| of failed lines. This time, we have

proj(A0) = {A0} ∪ {` ∈ {1, 2, . . . , N}/A0 : Z` ≤ LA0/N}



With Li and Lj denoting arbitrary distinct lines we have

|proj(Li)| − |proj(Lj)| =∑
`∈{1,...,N}/{i,j}

(1 [Z` ≤ Li/N ]− 1 [Z` ≤ Lj/N ])

+ 1 [Zj ≤ Li/N ]− 1 [Zi ≤ Lj/N ]

Now, if Li ≥ Lj , we clearly have

1 [Z` ≤ Li/N ]−1 [Z` ≤ Lj/N ] ≥ 0, ` ∈ {1, . . . , N}/{i, j}.

Since Zi = αLi in the ER-k-(C ∝ L) Problem, Li ≥ Lj also
implies Zi ≥ Zj . Together, these inequalities also give

1 [Zj ≤ Li/N ]− 1 [Zi ≤ Lj/N ] ≥ 0.

Combining, we find

|proj(Li)| ≥ |proj(Lj)| if Li ≥ Lj ,

and this establishes the optimality of attacking the line with
the highest load in any setting where loads and free spaces
follow the same ordering. Given that this ordering will prevail
through the cascade process, we establish the optimality of the
max-L-Greedy Algorithm.

VI. HARDNESS REDUCTIONS

In this Section, we will prove that a variation of the ER-k
Problem is NP-Complete. In particular, we consider the ER-
k-k′-min

∑
L problem, defined formally as follows.

INPUT: A list of n pairs of non-negative rational numbers
in the form (Li, Ci) indicating the load and the capacity of
each line, an integer 0 < k ≤ n, an integer 0 < k′ ≤ n and a
rational number L. We suppose Ci > Li so that no line fails
initially at its own load.

OUTPUT: We are interested in knowing whether or not
there is an attack set A with size exactly k, and total sum
of loads

∑
i∈A Li ≤ L, so that at the end of the cascading

failures the number of failed nodes is at least k′.
It is clear that the objective is two-fold here and that

there is an inherent tradeoff: by attacking lines with larger
initial loads we can shed more load on other lines and have
a better chance to trigger a cascade of failures that would
destroy the whole system. However, the optimization problem
requires minimizing the total load of the attacked containers.
This knapsack-like tradeoff is what makes the problem NP-
complete as we now show. Our proof is based on the reduction
of the ER-k-min

∑
L problem to the k-Subset Sum variant

defined as follows: Given a set of integers and a target sum
Q, is there any subset of size k whose sum is Q?

Theorem 6.11: The ER-k-min
∑
L Problem is NP-

Complete.
Proof: First, we show that ER-k-k′-min

∑
L Problem is

in NP: The certificate is a list of the k containers we need
to attack. We can check in polynomial time (see the ER-
Attack Projection algorithm) whether all lines in the system
fail or not. Since we have a certificate that can be checked in
polynomial time, ER-k-k′-min

∑
QL is in NP!

Given an instance of the k-Subset Sum problem we will
create an instance of the ER-k-k′-min

∑
L problem: Given

a set of N integers a1, a2, ..., aN , the k-Subset Sum problem
asks whether there exists k members of the set whose some
equals Q. If k = N , we can check if

∑N
i=1 ai = Q and

respond accordingly. From now on, we suppose k < N and
create an equivalent version of the ER-k-k′-min

∑
L problem

in the following manner. Let lines L1, . . . ,LN have loads
L1 = a1, L2 = a2, ..., Ln = aN and consider the ER-k-N -Q
problem; i.e., we seek to find a set A of k lines such that∑

i∈A Li ≤ Q and that attacking A leads to failure of all N
lines in the system. We also set Ci = Li + Si where the free
space is Si = Q

N−k for each i = 1, . . . , N . This last constraint
ensures two things. First, as discussed in Section V-B, when
all lines have the same free space then attacking k lines can
only have two consequences: either only those k lines that
are attacked fail, or all N lines fail. In either case, there is
no cascade of failures and the system reaches a steady-state
immediately. Thus, with equal free space among all lines, the
ER-k-k′-Q problem with k′ > k is equivalent to ER-k-N -Q
problem. Secondly, under the enforced assumptions it is clear
that a complete system failure will take place if and only if
the total load failed by the initial attack A is larger than the
sum of the free spaces of those that are not in the attack set
A; i.e., if and only if∑

i∈A
Li ≥

∑
j∈{1,...,N}/A

Sj = (N − k)
Q

N − k
= Q.

Here, the first equality follows from the facts that |A| = k and
Si = Q

N−k for each i = 1, . . . , N . Recalling that ER-k-N -Q
problem seeks to find A such that

∑
i∈A Li ≤ Q, this leads to∑

i∈A Li = Q. Therefore, the created instance of the ER-k-
N -Q problem indeed seeks to find a subset A of {a1, . . . , aN}
such that |A| = k and

∑
i∈A Li = Q, rendering it equivalent

to the k-Subset Sum instance that we have started with. For
the reverse direction, assume that the ER-k-N -Q problem has
a solution with k lines L(1), . . . ,L(k). Then the loads of these
lines constitute a solution to the k-Subset-Sum problem.

The above reduction can be constructed in polynomial
time (linear time to be exact), so if there was a polynomial
algorithm that could solve the ER-k-k′-min

∑
L, then the k-

Subset Sum would be in P, which is wrong unless P=NP.
Thus, we conclude that the ER-k-k′-min

∑
L Problem is NP-

complete.

VII. CONCLUSION

In this paper, we seek to develop a framework towards
mitigating cascading failures that cause large-scale blackouts
in electrical power systems. We consider an equal load-
redistribution based cascading failure model, and study it from
i) a designer’s perspective that aims to achieve optimal robust-
ness under system constraints; and ii) an attacker’s perspective
that seeks to fail as many lines as possible by attacking a
given number of lines. For the former case, we survey several
results from [23] and [26] concerning the final system size as
a function of the size of random attacks, the critical attack size



above which the system breakdowns completely, and optimal
load-capacity distributions that maximize robustness. In the
latter case, we study the constrained optimization problem of
finding k initial lines to be attacked to minimize the final
number of alive lines in the system. We give optimal greedy
algorithms in several special cases, and prove that a variation
of the problem (with a bound on the total load of the initial
attack set) is NP-Complete.

There are several interesting directions one might consider
for future work. First of all, the complexity of the optimal
k-line attack problem (without a bound on the total load of
those attacked) is still unknown. Also, given that even poly-
nomial algorithms may be prohibitively complex in practical
applications, it would be interesting to design heuristic attack
strategies that give close-to-optimal solutions. Last but not
least, with the results of this paper shedding some light on
good attack strategies, one might turn to the defender’s side
and seek optimal design strategies of the power system (e.g.,
in the form of load-capacity distributions) against the targeted
attacks developed here.
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[15] M. Rosas-Casals and R. Solé. Analysis of major failures in europes
power grid. International Journal of Electrical Power & Energy Systems,
33(3):805–808, 2011.

[16] V. Rosato, L. Issacharoff, F. Tiriticco, S. Meloni, S. Porcellinis, and
R. Setola. Modelling interdependent infrastructures using interacting
dynamical models. International Journal of Critical Infrastructures,
4(1):63–79, 01 2008.

[17] C. Roy, S. Kundu, and S. Manna. Fiber bundle model with highly
disordered breaking thresholds. Physical Review E, 91(3):032103, 2015.

[18] D. Sornette, K.-T. Leung, and J. Andersen. Conditions for abrupt failure
in the democratic fiber bundle model. arXiv preprint cond-mat/9712313,
1997.

[19] B. Stott, J. Jardim, and O. Alsac. Dc power flow revisited. Power
Systems, IEEE Transactions on, 24(3):1290–1300, Aug 2009.

[20] Y. Tang, G. Bu, and J. Yi. Analysis and lessons of the blackout in indian
power grid on july 30 and 31, 2012. In Zhongguo Dianji Gongcheng
Xuebao(Proceedings of the Chinese Society of Electrical Engineering),
volume 32, pages 167–174. Chinese Society for Electrical Engineering,
2012.

[21] W.-X. Wang and G. Chen. Universal robustness characteristic of
weighted networks against cascading failure. Phys. Rev. E, 77:026101,
Feb 2008.

[22] D. J. Watts. A simple model of global cascades on random networks.
Proceedings of the National Academy of Sciences, 99:5766–5771, 2002.
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