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Abstract—We study the connectivity of a random graph
formed by the intersection of an inhomogeneous random key
graph with an inhomogeneous Erdős-Rényi graph. The former
graph is naturally induced by a heterogeneous random key
predistribution scheme introduced for securing wireless sensor
network communications. In this scheme, nodes are divided
into r classes according to a probability distribution µ =
{µ1, . . . , µr}, and a class-i sensor is assigned Ki cryptographic
keys that are selected uniformly at random from a common pool
of P keys. The latter graph represents a heterogeneous on/off
channel model, where the wireless channel between a class-i
node and a class-j node is on (resp. off) with probability αij

(resp. 1−αij) independently from others. We present conditions
on how to scale the parameters of the intersection model so that
it is connected with high probability as the number of nodes
gets large. The result is given in the form of a zero-one law and
supported by a numerical study in the finite-node regime.

Index Terms—Wireless Sensor Networks, key predistribution,
random graphs, connectivity.

1. INTRODUCTION

A wireless sensor network (WSN) is a collection of
wireless-enabled sensor nodes that are typically of low-
cost, low-power, and limited computational capabilities. Such
networks are envisioned to have numerous applications in
broad areas, such as military, health, environmental monitor-
ing, etc [1]. In most cases, WSNs are deployed in hostile
environments (e.g., battlefields) where communications can
be eavesdropped by an adversary who might also be able
to capture and maliciously use a number of sensor nodes.
Therefore, it essential to secure sensors’ communications
by means of cryptographic protection. However, the energy,
complexity, and cost constraints typically render classical
cryptographic approaches such as public key cryptography
non-feasible for WSNs; see [2], [3] for a detailed discussion
on the challenges involved. To date, most promising solution
is considered to be (random) key predistribution schemes,
introduced originally by Eschenauer and Gligor (EG) [4],
which are based on assigning a (possibly random) set of
symmetric keys to each sensor prior to deployment. Then,
sensors that share a key can establish a secure link in between
(of course, only if they have a wireless communication
channel available); see [5], [6] for a review of several key
distribution schemes.

Recently, a new modification of the Eschenauer-Gligor
(EG) key predistribution scheme was introduced in [7] that

accounts for varying level of resources and/or connectivity
requirements that the sensors might have; in fact, many
WSN applications are likely to have heterogeneous nodes,
e.g., regular nodes vs. cluster heads [8]. According to this
heterogeneous scheme, each sensor node belongs to a specific
priority class and is given a number of keys corresponding
to its class. More specifically, given r classes, a sensor
is classified as class-i with probability µi > 0 for each
i = 1, . . . , r. Each class-i sensor is assigned Ki keys selected
uniformly at random from a pool of size P , independently
from all other sensors. As with the EG scheme, pairs of
sensors that share key(s) can communicate securely over an
available channel after deployment.

With KKK = {K1,K2, . . . ,Kr}, µµµ = {µ1, µ2, . . . , µr},
and n being the number of nodes, let K(n;µµµ,KKK,P ) denote
the random graph induced by the heterogeneous key pre-
distribution scheme described above; i.e., a pair of nodes
are connected by an undirected edge if and only if they
have at least one key in common. This model, introduced
in [7], is referred to as the inhomogeneous random key
graph and generalizes the (homogeneous) random key graph
K(n;K,P ) where all nodes have the same number K of
keys [9], [10]. In [7], zero-one laws for the properties that
K(n;µµµ,KKK,P ) has no isolated nodes and is connected are
established under the assumption of full visibility. Namely, it
was assumed that all wireless channels are reliable and secure
communications among participating nodes require only the
existence of a shared key.

This paper is motivated by the fact that the full vis-
ibility assumption is too optimistic and is not likely to
hold in most WSN applications; e.g., the wireless medium
of communication is often unreliable and sensors typically
have limited communication ranges. To that end, we study
the secure connectivity of heterogeneous WSNs under a
heterogeneous on/off communication model, where the com-
munication channel between nodes of class-i and class-j is
on with probability αij and off with probability 1−αij inde-
pendently from all other channels. The heterogeneous on/off
communication model induces the inhomogeneous Erdős-
Rényi (ER) graph [11], [12], denoted hereafter by G(n;µµµ,ααα).
The overall WSN can then be modeled by a random graph
formed by the intersection of an inhomogeneous random key
graph and an inhomogeneous ER graph, which we denote by



H(n;µµµ,KKK,P,ααα) := K(n;µµµ,KKK,P ) ∩G(n;µµµ,ααα).
Our main contribution is as follows. We present conditions

(in the form of a zero-one law) on how to scale the param-
eters of the intersection model H(n;µµµ,KKK,P,ααα) so that it
is connected with high probability when the number n of
nodes gets large. Our result generalizes several results in
literature, including the zero-one laws for connectivity for
inhomogeneous random key graphs intersecting (homoge-
neous) ER graphs [13], and for (homogeneous) random key
graphs intersecting (homogeneous) ER graphs [14].

All limiting statements, including asymptotic equivalence
are considered with the number of sensor nodes n going to
infinity. The random variables (rvs) under consideration are
all defined on the same probability triple (Ω,F ,P). Proba-
bilistic statements are made with respect to this probability
measure P. We say that an event holds with high probability
(whp) if it holds with probability 1 as n → ∞. For any
discrete set S, we write |S| for its cardinality. In comparing
the asymptotic behaviors of the sequences {an}, {bn}, we
use an = o(bn), an = ω(bn), an = O(bn), an = Ω(bn),
and an = Θ(bn), with their meaning in the standard Landau
notation. We also use an ∼ bn to denote the asymptotic
equivalence limn→∞ an/bn = 1.

2. THE MODEL

Consider a network consisting of n sensor nodes (la-
beled as v1, v2, . . . , vn) and r possible classes. Each node
is independently assigned to one of the r possible classes
according to a probability distribution µµµ = {µ1, µ2, . . . , µr}.
We clearly have µi > 0 for i = 1, . . . , r and

∑r
i=1 µi = 1.

Put differently, an arbitrary node vx belongs to class-i with
probability µi for i = 1, . . . , r. Then, a class-i node is given
Ki cryptographic keys selected uniformly at random from a
pool of size P . More specifically, the key ring Σx of node
vx is an PKtx

−valued random variable where PKtx
denotes

the collection of all subsets of {1, . . . , P} with exactly Ktx

elements and tx denotes the class of node vx. It follows that
the rvs Σ1,Σ2, . . . ,Σn are i.i.d. with

P[Σx = S | tx = i] =

(
P

Ki

)−1
, S ∈ PKi

.

Let KKK = {K1,K2, . . . ,Kr} and consider a random graph
K induced on the vertex set V = {v1, . . . , vn} such that a
pair of distinct nodes vx and vy are adjacent, denoted by
vx ∼K vy , if they have at least one cryptographic key in
common, i.e.,

vx ∼K vy if Σx ∩ Σy 6= ∅. (1)

The adjacency condition (1) defines the inhomogeneous
random key graph denoted by K(n;µµµ,KKK,P ) [7], [13]. This
model is also known in the literature as the general random
intersection graph; e.g., see [15], [16]. Let pij denote the
probability that a class-i node and a class-j node are adjacent.
It is easy to check that

pij = 1−

(
P−Ki

Kj

)(
P
Kj

) (2)

as long as Ki + Kj ≤ P ; otherwise if Ki + Kj > P , we
have pij = 1. Then, the mean probability of edge occurrence
for a class-i node in K(n;µµµ,KKK,P ) is given by

λi =

r∑
j=1

pijµj , i = 1, . . . , r.

In order to account for the possibility that communication
channels between nodes may not be available, e.g., due to
deep fading, interference, etc., we consider a heterogeneous
on/off channel model, where the channel between a node of
type-i and a node of type-j is on with probability αij or
off with probability 1 − αij independently from others. By
allowing the probability of channel existence to vary with the
class of the participating nodes, this model captures the fact
that different nodes could have different radio capabilities,
or could be deployed in locations with different channel
characteristics. The heterogeneous on/off channel model can
be represented by a random graph G induced on the same
vertex set V = {v1, . . . , vn}, where arbitrary nodes vx and
vy are adjacent, denoted vx ∼G vy , if Bxy(αtxty ) = 1 with
Bxy(αij) denoting a Bernoulli rv with success probability
αij . The resulting graph G(n;µµµ,ααα) is known as the inho-
mogeneous ER graph and has received significant attention
recently [11], [12]. Although the on/off representation of a
channel may be deemed too simplistic, we point out that it
allows a comprehensive analysis of the properties of interest
and such analyses were shown to provide useful guidelines
when more realistic channel models is considered; e.g., see
[14] that suggest that the connectivity behavior of the EG
scheme under the on/off channel model is asymptotically
equivalent to that under the disk model [17].

Let H(n;µµµ,KKK,P,ααα) denote the random graph obtained
by the intersection of the inhomogeneous random key graph
K(n;µµµ,KKK,P ) and the inhomogeneous ER graph G(n;µµµ,ααα);
i.e., H(n;µµµ,KKK,P,ααα) := K(n;µµµ,KKK,P )∩G(n;µµµ,ααα). Namely,
a class-i node vx is adjacent to a distinct class-j node vy in
H if and only if they are adjacent in both K and G. In words,
the edges in H(n;µµµ,KKK,P,ααα) represent pairs of sensors
that share cryptographic key(s) and have a communication
channel in between that is on, and hence can communicate
securely. Therefore, studying the connectivity properties of
H(n;µµµ,KKK,P,ααα) amounts to studying the secure connectivity
of heterogeneous WSNs under the heterogeneous on/off
channel model.

To simplify the notation, we let θθθ = (KKK,P ), and ΘΘΘ =
(θθθ,ααα). By independence, we see that the probability of edge
assignment between a class-i node vx and a class-j node vy in
H(n;µµµ,ΘΘΘ) is given by P[vx ∼ vy | tx = i, ty = j] = αijpij .
We denote the mean edge probability for a class-i node in
H(n;µµµ,ΘΘΘ) as Λi. It is clear that

Λi =

r∑
j=1

µjαijpij , i = 1, . . . , r. (3)

Let m(n) := arg mini Λi(n) for n = 1, 2, . . . and assume
that limn→∞m(n) = m. In other words, for all n sufficiently
large, there exists a particular class m such that Λm(n) ≤
Λi(n) for i = 1, . . . , r. We also let d(n) := arg maxj αmj(n)



for n = 1, 2, . . . and j = 1, . . . , r, and assume that
limn→∞ d(n) = d; i.e., for all n sufficiently large, we have
αmd = max{αm1, αm2, . . . , αmr}. Throughout, we assume
that the number of classes r is fixed and does not scale with n,
and so are the probabilities µ1, . . . , µr. All of the remaining
parameters are assumed to be scaled with n.

3. MAIN RESULTS AND DISCUSSION

We refer to a mapping K1, . . . ,Kr, P : N0 → Nr+1
0 as a

scaling for the inhomogeneous random key graph if

1 ≤ K1,n ≤ . . . ≤ Kr,n ≤ Pn/2 (4)

hold for all n = 2, 3, . . .. Similarly any mapping ααα = {αij} :
N0 → (0, 1)r×r defines a scaling for the inhomogeneous ER
graphs. A mapping ΘΘΘ : N0 → Nr+1

0 × (0, 1)r×r defines
a scaling for the intersection graph H(n;µµµ,ΘΘΘ) given that
condition (4) holds. We remark that under (4), the edge
probabilities pij will be given by (2).

We now present a zero-one law for the property that
H(n;µµµ,ΘΘΘ) is connected.

Theorem 3.1. Consider a probability distribution µµµ =
{µ1, µ2, . . . , µr} with µi > 0 for i = 1, . . . , r, a scaling
K1, . . . ,Kr, P : N0 → Nr+1

0 , and a scaling ααα = {αij} :
N0 → (0, 1)r×r such that

Λm(n) ∼ c log n

n
(5)

holds for some c > 0.
i) We have

lim
n→∞

P
[
H(n;µµµ,ΘΘΘn) is connected

]
= 0 if c < 1

If limn→∞ αmd(n) log n = 0, or limn→∞ αmm(n) log n =
α∗ > 0

ii) If Pn = Ω(n), αmax

αmin
= o (log n), Kr

K1
= o (log n), and

αminp1r(n) = Ω
(

logn
n

)
, then, we have

lim
n→∞

P
[
H(n;µµµ,ΘΘΘn) is connected

]
= 1 if c > 1

Theorem 3.1 states that H(n;µµµ,ΘΘΘn) is connected whp if
the minimum mean degree, i.e., nΛm, is scaled as (1 +
ε) log n for some ε > 0. On the other hand, if this minimum
mean degree scales as (1−ε) log n for some ε > 0, then whp
H(n;µµµ,ΘΘΘn) is not connected. The proof of Theorem 3.1 is
lengthy and technically involved. Due to space limitation, we
omit the proof of Theorem 3.1 from this conference version.
All details can be found in [18].

A. Comments on the additional technical conditions

In establishing the zero-law of Theorem 3.1, it is
required that either limn→∞ αmd(n) log n = 0, or
limn→∞ αmm(n) log n = α∗ ∈ (0,∞] hold. This condition
is enforced mainly for technical reasons for the proof of the
zero-law to work. A similar condition was also required in
[14, Theorem 3.2] for establishing the zero-law for connec-
tivity in the homogeneous random key graph [9] intersecting
the homogeneous ER graph. There, it was required that
limn→∞ α(n) log n = [0,∞] for the proof of the zero-law

to work. We remark that the condition needed for our zero-
law of connectivity is not required if αii = maxj αij for
i, j = 1, . . . , r; i.e., intra-class links are more reliable than
inter-class links. In particular, if αmm := αmd, the condition
can indeed be eliminated by virtue of the subsubsequence
principle [19], [20, p. 12].

Next, we consider the conditions needed for the one-law of
Theorem 3.1. We remark that having Pn = Ω(n) is essential
for real-world WSN implementations in order to ensure the
resilience of the network against node capture attacks; e.g.,
see [4], [21]. For instance, assume that an adversary captures
a number of sensors, compromising all the keys that belong
to the captured nodes. If Pn = o(n), then it would be
possible for the adversary to compromise Ω(Pn) keys by
capturing only o(n) sensors (whose type does not matter in
this case). In this case, the WSN would fail to exhibit the
unassailability property [22], [23] and would be deemed as
vulnerable against adversarial attacks. We also remark that
this condition was required in [7], [10] to establish results in
the same vein as ours.

Condition αmin(n)p1r(n) = Ω (log n/n) is enforced
mainly for technical reasons for the proof of the one-law to
work. The need of such a lower bound arises from the fact
that our scaling condition (5) merely scales the minimum
mean edge probability, not the minimum (or each) edge
probability, as log n/n. For instance, the current scaling
condition (5) gives us an easy upper bound on the minimum
edge probability in the network, but does not specify any non-
trivial lower bound on that probability. More specifically, it
is easy to see that αmin(n)p11(n) = O (Λm) = O (log n/n),
but it is not clear if the sequence αmin(n)p11(n) has a non-
trivial lower bound. In fact, authors in [11] investigated the
connectivity of the inhomogeneous ER graph, while setting
the probability of an edge connecting two nodes of classes
i and j to κ (i, j) log n/n, where κ (i, j) returns a positive
real number for each pair (i, j); i.e., each individual edge was
scaled as log n/n. Condition αmin(n)p1r(n) = Ω (log n/n)
is itself a lower bound on a particular edge probability,
but combined with Kr,n = o (log n)K1,n it gives a non-
trivial lower bound on the minimum edge probability of the
network. In particular, combining those two conditions gives
us αmin(n)p11(n) = w (1/n) (see [18] for a proof).

Finally, conditions αmax(n) = o (log n)αmin(n), and
Kr,n = o (log n)K1,n limit the flexibility of assigning very
large values to the maximum key ring size and the maximum
channel probability compared to their respective minima.
These two conditions are required to obtain efficient bounds
for various expressions that involve Kr,n or αmax(n). In
particular, it is always easy to derive a lower bound on
those variables from the existing conditions, but the existing
conditions alone are not sufficient in obtaining non-trivial
upper bounds.

We conclude by providing a concrete example that demon-
strates how all the conditions required by Theorem 3.1 can
be met in a real-world implementation. Consider any number
r of sensor types, and pick any probability distribution
µµµ = {µ1, . . . , µr} with µi > 0 for all i = 1, . . . , r. Set



Pn = n log n, and use

K1,n =
(log n)1/2+ε√
αmin(n)

and Kr,n =
(1 + ε)(log n)3/2−ε

µr
√
αmin(n)

with any ε > 0. Other key ring sizes K1,n ≤
K2,n, . . . ,Kr−1,n ≤ Kr,n can be picked arbitrarily. For sim-
plicity, assume that λ1(n) = o(1); thus, we have p1j(n) ∼
K1,nKj,n

Pn
[7, Lemma 4.2]. It follows from Theorem 3.1 that

the resulting network will be connected whp. Of course, there
are many other parameter scalings that one can choose.

B. Comparison with related work

Theorem 3.1 complements the zero-one law established
in [24, Thm. 3.1] for the property that H(n;µµµ,ΘΘΘ) has no
isolated node. In particular, Theorem 3.1 establishes the
conjecture appeared in [24] which states that H(n;µµµ,ΘΘΘ)
would admit a zero-one law for connectivity with the critical
scaling given by (5), possibly under additional conditions
than needed for the property of absence of isolated nodes.
Our result confirms the validity of the conjecture and spec-
ifies the additional conditions required for H(n;µµµ,ΘΘΘ) to be
connected whp.

Theorem 3.1 also generalizes the results established in [13]
concerning the connectivity of the inhomogeneous random
key graph intersecting the homogeneous (i.e., the standard)
ER graph. There, authors considered a homogeneous channel
model, wherein the communication channel between any
two nodes (regardless of their respective classes) is on with
probability α or off with probability 1 − α. In particular,
authors considered a random graph H(n;µµµ,KKK,P, α) formed
by the intersection of the inhomogeneous random key graph
K(n;µµµ,KKK,P ) with the standard ER graph G(n;α) [25]
and presented conditions on how to scale the parameters of
H(n;µµµ,KKK,P, α) so that it is connected whp. Our paper con-
siders a more general channel model, namely a heteregenous
channel model, where the channel between a node of class-i
and a node of class-j is on with probability αij or off with
probability 1 − αij independently from others. Indeed, by
setting αij(n) = α(n) for i, j = 1, 2, . . . , r and n = 1, 2, . . .,
our results cover the results established in [13] regarding the
connectivity of H(n;µµµ,KKK,P, α). By allowing the probability
of channel existence to vary with the class of the participating
nodes, our model captures the fact that different nodes could
have different radio capabilities, or could be deployed in
locations with different channel characteristics.

The inhomogeneous random key graph K(n;µµµ,KKK,P ) was
introduced by Yağan in [7]. There, zero-one laws for the
property that the graph has no isolated nodes and the prop-
erty that the graph is connected were established assuming
that all communication links are reliable; i.e., on. Such an
assumption fails to capture the cases when communication
links between nodes fail due to battery depletion, jamming
attacks, or deep fading. In fact, by setting αij(n) = 1 for
i, j = 1, . . . , r and each n = 1, 2, . . ., our results reduce to
those given in [7].

We remark that our results are not limited in scope to
the secure connectivity problem of WSNs, but they can
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Fig. 1. Empirical probability that H(n;µµµ,ΘΘΘ) is connected for with n =
500, P = 104, α12 = α21 = 0.1, and α11 = α22 = α. The empirical
probability is obtained by averaging over 400 experiments. Vertical dashed
lines stand for the critical threshold of connectivity asserted by Theorem 3.1.

be useful in a diverse set of network applications where
multiple conditions are required for participating agents to
communicate; e.g., see [18] for specific examples.

4. NUMERICAL RESULTS

In this section, we present numerical results that support
Theorem 3.1 in the finite node regime. In all experiments, we
fix the number of nodes at n = 500, the size of the key pool
at P = 104, and let r = 2 with µµµ = {0.5, 0.5}. For better
visualization, we use the curve fitting tool of MATLAB.

In Figure 1, we set the channel probability matrix to

ααα =

[
α 0.1

0.1 α

]
,

and consider four different values for K1 while setting K2 =
K1 + 5. For each parameter pair (KKK,ααα), we generate 400
independent samples of the graph H(n;µµµ,ΘΘΘ) and count the
number of times (out of a possible 400) that the obtained
graphs are connected. Dividing the counts by 400, we obtain
the (empirical) probabilities for the event of interest. For each
value of K1, we show the critical threshold of connectivity
“predicted” by Theorem 3.1 by a vertical dashed line. More
specifically, the vertical dashed lines stand for the minimum
value of α that satisfies

Λm(n) =

2∑
j=1

µjαmj

(
1−

(
P−Kj

Km

)(
P
Km

) ) >
log n

n
. (6)

We see that critical values of α obtained by (6) lie near the
middle of the probability transition interval. We note that for
each parameter pair (KKK,ααα) in Fig 1, we have Λm = Λ1.

In Figure 2, we set the channel probability matrix to

ααα =

[
0.2 α
α 0.2

]
,

and consider α = 0.3, α = 0.5, and α = 0.7. We vary the
parameter K1 from 10 to 35, and set K2 = K1 + 5. Using
the same procedure that produced Figure 1, we obtain the
empirical probability that H(n;µµµ,ΘΘΘ) is connected. As before,
the critical threshold of connectivity asserted by Theorem 3.1
is shown by a vertical dashed line in each curve.
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Fig. 2. Empirical probability that H(n;µµµ,ΘΘΘ) is connected as a function
of KKK for α = 0.3, α = 0.5, and α = 0.7 with n = 500 and P = 104;
in each case, α11 = α22 = 0.2, and α12 = α21 = α. The empirical
probability value is obtained by averaging over 400 experiments.

In Figure 3, we set the channel probability matrix to

ααα =

[
α11 0.15
0.15 0.15

]
and consider four different K1 values where K2 = K1 + 5
in each case. Varying α11 from 0 to 1 and using the same
procedure with Figure 1, we obtain the empirical probability
that H(n;µµµ,ΘΘΘ) is connected. An interesting observation
about Figure 3 is how the probability of connectivity behaves
as α11 increases. For instance, we see that the probability
of connectivity is monotonically increasing with α11 until
a certain point is reached, then it stays relatively constant
afterwards. This can be explained by the fact that when α11

exceeds a certain value (while α12, α21, and α22 are fixed),
the minimum mean degree changes from being Λ1 to Λ2

(see (3)); i.e., Λm changes from Λ1 to Λ2. From that point
onward, Λm is independent of the specific value of α11 and
the probability of connectivity remains constant, confirming
the form of the critical scaling condition (5).
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Fig. 3. Empirical probability that H(n;µµµ,ΘΘΘ) is connected as a function of
α11 for K1 = 25, K1 = 30, K1 = 35, and K1 = 40, with n = 500
and P = 104; in each case, α12 = α21 = α22 = 0.15 . The empirical
probability value is obtained by averaging over 1000 experiments.
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[10] J. Zhao, O. Yağan, and V. Gligor, “k-connectivity in random key graphs
with unreliable links,” IEEE Transactions on Information Theory,
vol. 61, no. 7, pp. 3810–3836, July 2015.

[11] L. Devroye and N. Fraiman, “Connectivity of inhomogeneous random
graphs,” Random Structures & Algorithms, vol. 45, no. 3, pp. 408–420,
2014.

[12] B. Bollobás, S. Janson, and O. Riordan, “The phase transition in
inhomogeneous random graphs,” Random Structures and Algorithms,
vol. 33, no. 1, pp. 3–122, 2007.
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homogeneous random key graphs intersecting inho-
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